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Preface

Spatial statistics is one of the most rapidly growing areas of statistics, rife with fascinating research
opportunities. Yet, many statisticians are unaware of those opportunities, and most students in the United States
are never exposed to any course work in spatial statistics. This report aims at illustrating the wide scope of
spatial statistics to provide an introductory snapshot of the field to researchers and graduate students in both
statistics and related areas. It is hoped that these readers will go on to explore the many research opportunities in
the subject, or bring appropriate problems to the attention of practicing spatial statisticians.

This panel was specifically charged to prepare a cross-disciplinary report on spatial statistics and image
analysis that would (1) describe the contributions of the mathematical sciences, (2) summarize the current state
of knowledge and open problems, and (3) identify likely future fruitful directions for research.
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1

Introduction

Spatial statistics is concerned with the study of spatially referenced data and associated statistical models
and processes. It is therefore relevant to most areas of scientific and technological inquiry. In addition, there are
many problems that occur in subjects that are not overtly spatial, for example in speech recognition or in the
construction of expert systems, that can be given useful spatial interpretations or can benefit in some other way
from research in spatial statistics. Indeed, the abundance of application areas has meant that the task of the panel
in preparing this report has been not only stimulating but also difficult, in that a limited number of topics had to
be chosen for detailed discussion.

The title of the report clearly implies that the panel places considerable emphasis on the relationship of
spatial statistics to digital image analysis. This emphasis reflects the recent surge of interest among
mathematicians and statisticians in this exciting area, which is destined to play an increasingly important role,
not only in science and technology but in everyday life. For example, sequences of satellite images of regions of
the Earth are now collected routinely. Each individual image is concerned with only a small part of the Earth's
surface and itself is subdivided into a rectangular array of picture elements or "pixels," typically 1024 × 1024.
For every pixel several or many measurements are taken, each of which corresponds to a reflectance value in a
particular range of the visible or near-visible electromagnetic spectrum. The eventual aim might be to convert
this vast quantity of two-dimensional, multivariate data into a simple crop inventory that can be used, for
instance, to estimate the total potential winter-wheat harvest of a country. Satellite images are also used for other
purposes, such as locating and monitoring the condition of rocket silos in foreign territories; here, there are
analogies in computer vision, where object recognition is one of many
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important tasks. Significantly, conceptually similar problems occur in (nuclear) magnetic resonance imaging
(MRI) of the brain and of other human organs, where it is required to produce tissue classifications (e.g., into
white matter, gray matter, spinal fluid, and tumor) from multispectral data.

Magnetic resonance imaging, mentioned above, represents just one of several different imaging modalities
in nuclear medicine. Other examples include the CAT-scan, in which X-ray images taken from several different
positions are combined to reconstruct views of cross-sections of the anatomy of a patient; positron emission
tomography (PET) and single photon emission computed tomography (SPECT), which are used to measure
perfusion (blood flow) and metabolic activity in specific organs; and ultrasonic imaging, for measuring reflective
and refractive gradients, such as organ boundaries, within the body. Here, we briefly describe SPECT, a low-cost
technique within the reach of most medical facilities, as opposed to PET, which requires an on-site cyclotron and
is available only in roughly 100 hospitals worldwide. Of course, there is a price to pay: SPECT currently
produces much cruder images. However, this inadequacy stems in part from poor use of underlying, well-
understood physical principles and it is here that mathematical and statistical modeling can play a fundamental
role.

In SPECT, a patient is injected with a radiopharmaceutical that has been tagged with a radioactive isotope.
The pharmaceutical is chosen for its propensity to concentrate in the organ of interest in a way that is related to
the particular phenomenon under study. The aim is to map the concentration of the pharmaceutical throughout
the target region, usually on a slice-by-slice basis; time may also be a factor, as when different phases of a heart
cycle are being monitored. SPECT relies on the radioactive decay of the isotope, which causes photons to be
emitted according to a Poisson process in space and time, with intensity at any particular location being
proportional to the concentration of the pharmaceutical there. A bank of gamma cameras, usually in a 64 × 64
array, counts the photon emissions that reach it and, by repeating the procedure for typically 64 positions around
the patient's body, data that correspond to 64 different projections are collected. Mathematical interest centers on
how the 64 × 64 × 64 array of counts can be used to reconstruct an accurate estimate of the true intensity map,
suitably discretized. Commercially available reconstruction methods are based on ''filtered back projection''
(FBP), a technique borrowed from transmission (e.g., X-ray) tomography. However, FBP is not appropriate to
SPECT, because of the very low signal-to-noise ratio and the importance of non-uniform attenuation and depth-
dependent scatter and blur. These
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forces combine to produce unsatisfactory reconstructions. At first sight, it might appear sufficient to build a
proper physical model, in which the data are independent observations from Poisson random variables with
means determined by a particular transform of the true intensity map. Unfortunately, the inverse problem of
inferring (a discretized version of) the true intensities is too ill-posed for this to provide a satisfactory solution.
An additional regularization assumption must be made, which prevents the local behavior of the reconstruction
from becoming too disjoint, yet does not impose undue smoothness on the image. The Bayesian solution to this
dilemma is one of the topics tackled in chapter 2, but the basic idea is to specify a stochastic model for the true
image that is at once globally flexible, yet locally constrained to produce severe discontinuities only when there
is convincing evidence of their existence in the data. Incidentally, a somewhat similar problem occurs in the
epidemiology of rare, noncommunicable diseases, such as particular forms of cancer, when incidence rates are
observed over a specific period of time in a large number of contiguous administrative regions and the objective
is to estimate underlying differences in risk. In each region, the number of cases can be viewed as an observation
from a Poisson distribution, with mean proportional both to the population and to the risk there. When the means
axe small, the observed rates are very noisy and provide a poor measure of risk, so that some form of smoothing
is required to produce a more readily interpretable map. Note that this problem is simpler than SPECT in that it
involves direct rather than indirect sensing and also the number of observations is much smaller. As a result, it is
possible to implement computationally intensive methods of spatial statistical analysis that axe not yet feasible
for genuine images. Such problems are therefore not only valuable in their own right but provide useful insights
for the future.

However, attention should also be paid to the origins of spatial statistics, as well as to its present and future.
Perhaps the best known and most accessible among early examples is that of Dr. John Snow, a medical
practitioner, who traced the precise source or cholera epidemic in central London in 1864 by plotting the
locations of water pumps and of deaths from the disease on the same map (see Tufte, 1983, p. 24). Such simple
graphical techniques are still very important, though it should be noted that they are often of little value in
modern epidemiology because of variations in background population density. One could cite many other
isolated examples, but it is probably fair to say that spatial statistics did not emerge as an identifiable discipline
until 1960, with the publication by Bertil Matern of his doctoral
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dissertation entitled Spatial Variation. Much of the material was well ahead of its time, although, remarkably
enough, some of it had been completed as early as 1947. The treatise has recently been republished (Matern,
1986) and still provides much useful guidance, regarding both statistical theory and practice. However, it was not
until the 1970s and 1980s that spatial statistics began to receive widespread attention from other mathematicians
and statisticians. Nonetheless, it may be said to have "come of age," as it now provides a major focus of
contemporary research. Applications are many and varied and generate a steady stream of new problems.

Historically, observational programs that use the analysis methods of spatial statistics (e.g., earth sciences,
agriculture, and epidemiology) have been limited by sparse sampling. As recently as 20 years ago, for example,
as few as 10 observations of sea surface temperature per day over a 200-km2 area of the ocean was considered
state of the art. From a statistical point of view, the inadequacy of such sparse sampling in a domain of large
spatial and temporal variation (such as in the ocean) was clear. Modern data acquisition methods (e.g., satellite
observations from space) now have greatly circumvented this sampling limitation. Data rates as high as 106-107

bits per second are routinely achieved with this new technology. A similar situation exists in nuclear medicine.
The overall result of this improvement in data acquisition is the development of data bases that provide a high
spatial resolution and a synoptic realization of a given process under study. Such data bases are manageable,
however, only because of contemporaneous advances in digital computer processing and mass storage/retrieval
devices.

Computer resources are also required to execute the large number of repetitive operations typically required
in the application of a technique of spatial statistics or digital image analysis to a field of science. Advances in
work station technology, data base management, data compression, and data archiving, coupled with the
expansion of computer network topologies, now provide the necessary technical infrastructure for the
development of joint university curricula in spatial statistics and digital image analysis and in its cross-
disciplinary application of methods to a broad range of scientific, engineering, and medical problems.

The vast amounts of data collected by satellites, radar, and sonar measurements needs to be organized and
reduced in complexity. While statistics originally emphasized obtaining maximal information from minimal data,
the challenge from these new data sources is to summarize eloquently and to increase understanding of enormous
quantities of information. Pictures need to be sharpened, new summary measures need to be developed, and
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different forms of storing, organizing, and retrieving information need to be implemented. The interface between
statistics and computer science is particularly important here: data structures, such as geographic information
systems (GIS), can help in both organization and display of spatially expressed data, and graphical tools that
visually link overlaid data components are useful in detecting and exhibiting relationships. There are many open
research problems in the area of visual data-analytic techniques. For example, how does one display the
uncertainty connected with contour lines on a statistical map, and what is an effective way of displaying more
than one spatially expressed variable?

The remainder of this volume consists of 10 scientific chapters. Chapter 2 describes the Bayesian/spatial
statistics framework in image analysis and computer vision. Particular attention is paid to image reconstruction.
Chapter 3 addresses the application of non-Bayesian digital image analysis methods to oceanography and
atmospheric science. Examples of image segmentation (i.e., cloud detection in complex natural scenes), near-
surface velocity computation from image sequences, and ice boundary detection in satellite data are given.
Chapter 4 applies methods of spatial statistics to a broad range of environmental science issues: spatial variation
in solar radiation, environmental impact design, and modeling of precipitation using space-time point processes.
Chapter 5 provides a basis for geostatistical analysis of earth science data. The variogram and kriging are then
exploited to study the flow of groundwater from a proposed nuclear waste site and the spatial distribution of acid
rain over the eastern half of the United States. The uses of spatial statistics to analyze data from agricultural field
experiments are explored in chapter 6. The objective of such analyses is to compare the effectiveness of different
treatments (e.g., fertilizers) on a particular crop variety or to make comparisons between different varieties of the
same crop but with a valid assessment of error. Chapter 7 examines the traditional use of point process methods
in ecology and analyzes some of the weaknesses in this applications area. Spatial statistics as a signal processing
tool for radar and sonar systems in the ocean is the topic of chapter 8, while chapter 9 uses spatial statistics to
examine chemical kinetics of active chemical systems. Chapter 10 provides a statistical basis for the field of
stereology and discusses statistical modeling of stereological data. Finally, chapter 11 discusses problems of
speech recognition with the ultimate goal of enabling machines to emulate human speech.

Although this report attempts a broad overview of main areas of spatial statistics and digital image analysis,
there are many areas that we have not
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covered. For example, spatial aspects of epidemiology have been used extensively in attempting to relate disease
incidence to potential causes, but this application is not addressed in this report. Likewise, in astronomy,
Neyman and Scott (1958) initiated the uses of the clustered point processes (cf. Chapter 7) to describe the
distribution of galaxies and clusters of galaxies. Recent work on processing images of galaxies (Molina and
Ripley, 1989) provides a substantial improvement over traditional (maximum entropy) methods in the area.
Methods of digital image analysis have recently found application in population genetics to deal with complex
pedigrees (Sheehan, 1989). Sampling techniques for spatial data, emphasizing systematic designs, are reviewed
in Ripley (1981, Ch. 3).

At first glance, this diversity in the applications of spatial statistics and digital image analysis may mask
some of the underlying concepts common to most of the applications. Historically, spatial statistics and digital
image analysis have tried to extract the most information from limited data sets. Modern data acquisition systems
(e.g., remote-sensing of the Earth using satellites, nuclear medicine) now provide well-sampled spatial data.
Hence, a relatively new role for spatial statistics and digital image analysis is to synthesize and reduce large
volumes of data into manageable pieces of information. "Modeling," used in a most generic sense, is perhaps the
most fundamental concept unifying the diverse applications base of modern spatial statistics. Models attempt to
provide a coherent framework for the interpretation of complex data sets. Statistical models, which generally are
noncausal in nature, draw conclusions about data sets without necessarily providing future predictive capability.
Physical models, which generally include time dependence, attempt to provide a prognostic capability about a
physical process based on available data sets. It is likely that significant advances in science and engineering will
be made by judiciously combining these two types of models. It is also important to note that some phenomena
(and/or data sets) may not be amenable to modeling. In this case, spatial statistics attempts to develop the best
representation of the data set from which the maximum statistically robust information can be extracted. Some of
the methods found in these applications are (1) exploitation of local specification models (i.e., Markov random
fields), (2) use of covariance estimation, and (3) the revolutionary role of the Gibbs Sampler in Bayesian statistics.

Recent advances in computer science and computer technology have contributed significantly to the
efficient and effective utilization of spatial statistics by other fields (e.g., engineering sciences). Present computer
architec
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tures, however, are still far from ideal for several other classes of important problems in spatial statistics. For
example, although massively parallel computers are applicable to some problems in spatial statistics and digital
image analysis, current designs are not particularly appropriate to the important tomographic reconstruction
problem.

Modern advances in image display technology, visualization techniques (e.g., dithering), and the theory and
implementation of compact, efficient data structures now allow scientists and engineers to store, retrieve, and
display efficiently the large amounts of spatial data now being routinely recorded in such diverse fields as
medicine, oceanography, and astronomy. Advances in spatial statistics will also be closely linked to these
advances in computer science, especially within the subfield of data structures. Continued research in data
structures should be directed toward determining the most compact and efficient data structures for the storage
and representation of information related to problems in two-dimensional signal analysis and image analysis.

Spatial statistics and digital image analysis will play important future roles in science and industry. For
example, nondestructive evaluation (NDE) methods will be used more extensively by industry and government
to perform quality control and assurance on a spectrum of applications ranging from manufacturing of circuit
boards to metal fatigue tests on airplane fuselages. Often such applications of NDE involve ultrasound detection
and tomographic reconstruction, and/or two-dimensional signal processing and methods of digital image
analysis. Methods of digital image analysis and image reconstruction also will be used to analyze the large-
volume spatial data sets necessary to study a variety of issues (e.g., acid rain, ozone depletion, and global
warming) related to quantitatively understanding climate and global change processes on planet Earth. Continued
advances in data acquisition and digital image analysis will have a significant impact on such diverse fields a
medicine and astronomy.

At present, the United States has limited indigenous expertise in spatial statistics and its relation to modern
methods of digital image analysis. Few university programs exist that properly accommodate the inherent cross-
disciplinary nature of the field. The panel believes that careful consideration should be given to the development
of joint curricula in spatial statistics and digital image analysis, which should accurately reflect their diverse
applications in the fields of science, engineering, and medicine.
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2
 Image Analysis and Computer Vision

Donald Geman,
University of Massachusetts
and
Basilis Gidas,
Brown University

2.1 INTRODUCTION TO IMAGE ANALYSIS

The goal of computer vision is to build machines that reconstruct and interpret a three-dimensional
environment based on measurements of radiant energy, thereby automating the corresponding processes
performed by biological vision systems, and perhaps eventually extending some abilities of these systems. This
goal is far from being attained, and indeed most of the fundamental problems remain largely unsolved. The field
is generally immature by comparison with standard scientific disciplines, the present methodology being a
hybrid of those from artificial intelligence, classical signal processing, pattern theory, and various branches of
mathematics, including geometry and statistics. Still, important advances have been made that are beginning to
substantially affect such areas as industrial automation, earth science, medical diagnosis, and digital astronomy.

Computer vision tasks are generally divided into "low-level" and "high-level" problems to differentiate
between those that (apparently) are largely data-driven (''early vision") and those that (apparently) rely heavily
on stored knowledge and symbolic reasoning. More specifically, low-level vision includes such problems as
coding and compressing data for storage and transmission; synthesizing natural and man-made patterns;
restoring images degraded by blur, noise, digitization, and other sensor effects; reconstructing images from
sparse data or indirect measurements (e.g., computed tomography); computing optical flow from motion
sequences; and reconstructing
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three-dimensional surfaces from shading, motion, or multiple views (e.g., binocular stereo) or multiple
wavelengths (e.g., multichannel satellite data). In contrast, high-level vision tends to be driven by more specific
goals and generally involves object recognition and scene interpretation. These are perceived as the most
difficult of the "natural" processes to replicate; in particular, one of the factors that inhibits the introduction of
industrial and exploratory robots is their inability to "see," in particular, to infer enough information about
objects to navigate in complex, cluttered environments. Indeed, invariant object recognition is one of the most
challenging modern scientific problems whose resolution may require new conceptual principles, computational
procedures, and computer architectures.

Biological vision systems, in particular the human eye and brain, analyze scenes in an apparently effortless
way. This ability appears miraculous (especially to workers in computer vision) and is attributed to several
factors, not the least of which is the large proportion of the human brain devoted to vision. Still, we actually
know very little about the principles of biological vision despite the information gathered by physiological,
psychophysical, and neurophysiological studies. We do know that our visual system is able to integrate cues
from many sources (e.g., binocular stereo, motion, and color) and that we exploit a priori expectations, specific
scene knowledge, and contextual clues to reduce ambiguities and "correctly" perceive the physical world. It also
appears that low-level analysis of retinal information and high-level cognition are done interactively, sometimes
referred to as the integration of "bottom-up" and "top-down" processing. Finally, there is little doubt that our
recognition and interpretation system is largely scale invariant and at least partially rotation invariant.

Computer vision systems are usually quite inferior to biological ones. This may be due in part to the lack of
raw processing power or suitably parallel computation, but also, and perhaps more important, to the inability of
synthetic systems to integrate sources of information and place appropriate global constraints. At the moment,
automated visual systems rarely make "interpretation-guided" or "knowledge-driven" decisions, due probably to
a lack of sufficiently invariant representations and to feedback mechanisms between these representations and
the raw data. It appears inefficient, if not fruitless, to attempt to represent a given object in all its possible
presentations. Instead, object representations and recognition algorithms should possess certain invariances with
respect to scale, location, and rotation.

Despite these shortcomings, important successes have been achieved in actual applications. In some areas,
the sheer amount of data leaves no choice
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except automated analysis. For instance, a single Landsat Multispectral Scanner image may contain 30 Mbytes
of data. In fact, some of the earliest and most publicized successes of computer vision occurred during the 1960s
and 1970s when images received from orbiting satellites and space probes were substantially improved with
linear signal processing techniques such as the Wiener filter. More recently, significant advances have been
made in the classification of satellite data for weather and crop yield prediction, geologic mapping, and pollution
assessment, to name but three other areas of remote-sensing. Another domain in which automated systems are
achieving success is the enhancement and interpretation of medical images obtained by computed tomography,
nuclear magnetic resonance, and ultrasonics. Other applications include those to optical astronomy, electron
microscopy, silicon wafer inspection, optical character recognition, robot navigation, and robot manipulation of
machine parts and toxic material.

By and large, the algorithms used in machine vision systems are specifically dedicated to single applications
and tend to be ad hoc and unstable. From a practical viewpoint, problems arise when algorithms are so critically
"tuned" to the particulars of the environment that small perturbations in the output of the sensors, or ordinary day-
to-day variations, will significantly reduce their level of performance. Obviously, there is a need for algorithms
that are more robust and that are based on solid theoretical foundations. But these are ambitious goals; the
problems are very difficult, ranging, in mathematical terms, from ill-conditioned (unstable) to ill-posed
(underdetermined), the latter due to the loss of information in passing from the continuous physical world to
sampled and quantized two-dimensional arrays. In order to reduce the ambiguity, it is necessary to reduce the set
of plausible interpretations by incorporating a priori knowledge and integrating multiple cues. One then seeks a
mathematical representation for structure and regularity.

Standard regularization theory, as applied, for example, to inverse problems in particle scattering, is
deterministic and lacks flexibility. One major current trend is toward "stochastic regularization." This is not
surprising in view of the fact that many natural regularities are in fact nondeterministic: they describe
correlations and likelihoods. Spatial statistics, in general, and lattice-based random field models, in particular,
provide a promising framework for capturing these regularities and quantifying generic and a priori knowledge.
Such models, properly conceived, impose severe but natural restrictions on the set of plausible interpretations.
Thus spatial processes and Bayesian inference have provided a coherent theoretical basis for cer
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tain inverse problems in low-level vision. Moreover, this framework supports robust and feasible computational
methods (e.g., Monte Carlo algorithms), measures of optimality and performance, and well-designed principles
of inference. This methodology is described in more detail in §2.4. Section 2.2 contains a brief review of digital
images, and §2.3 describes four specific image analysis tasks.

2.2 DIGITAL IMAGES

The data available to an automated vision system are one or more images acquired by one or more sensors.
The most familiar sensors are optical systems, with ordinary cameras and lenses, that respond to visible light.
Other sensors respond to electromagnetic radiation corresponding to other parts of the spectrum (e.g., infrared, X-
rays, and microwaves), or to other forms of energy such as ionized high-energy particles (protons, electrons,
alpha particles), ultrasound, and pressure (tactile sensors). Many applications employ multiple sensors; for
example, navigation robots may be equipped with video camera(s), range, and tactile sensors, and the Landsat
multispectral scanners collect data in bands of both visible light and infrared radiation. Sensor fusion is a current
trend in many technologies and inferential procedures.

Regardless of the form of energy acquired and the specific processes of detecting, recording, and digitizing,
the output of all sensors has a common structure: it is a finite collection of measurements, ,
indexed by a finite set T. With few exceptions (e.g., photon emission tomography), y is a two-dimensional array,
i.e., T is a grid of points (pixels) in the two-dimensional image plane. Each yt is integer-valued or, as in the case
of multispectra satellite and color images, a vector with integer-valued components. Except in photon counting
devices, the values of y may be regarded as ''quantizations" of a continuum signal , which, in
turn, is a discrete approximation or sampled version of a function g(u), , defined on the two-dimensional
image plane (or some domain ). In addition to the errors introduced by digitization (= sampling +
quantization), g involves various types of degradation (e.g., blur and noise; see below). In the absence of these
degradations and other artifacts, i.e., in an "ideal" system, we would observe an ideal energy pattern f(u), .

The data y or  may be thought of as a representation of the physical scene being imaged. The
task of computer vision is to estimate or infer properties ("attributes") of the scene on the basis of the data and a
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priori knowledge or expections about the physical world. Attributes of interest may be the true pattern f(u) itself
(as in image restoration ); geometric features (e.g., orientation, depth, curvature) of objects in the scene; or
semantical labels for scene entities, such as in object recognition or remote sensing, in which regions are
classified as "forest," "cropland," "water," and so on. The relation of specific attributes (e.g., shape) to the true
pattern f(u) is problem-specific, and some concrete cases will be treated in §§2.3, 2.4.

More specifically, the true pattern f(u) corresponds to the distribution of energy flux (radiance) emitted by
objects, either because they are "illuminated" by an energy source, or because they are a primary source of
energy themselves; it is often referred to as "scene intensity" or "brightness." The measured values g correspond
to the energy flux (or irradiance) intercepted, detected, and recorded by the sensor, and are usually referred to as
"image intensities" or again simply as ''brightness.'' Between emission and detection, various types of distortion
and artifacts occur. These are usually lumped into three major categories (before digitization): blur, which may
be introduced by scattering within the medium (e.g., atmosphere, human body), defocused camera lenses, or
motion of the medium, objects, or cameras; noise, introduced by the random nature of photon propagation
("quantum noise") or by the sensing and recording devices (e.g., film grain noise or current fluctuations in
electronic scanners); nonlinear transformations of the signal (referred to as "radiometric distortion") introduced
again by the sensing and recording devices.

These degradations amount to a transformation from f(u) to g(u). The most general transformation
encountered is

Here, K accounts for blur and . In the linear case, K(u, v, z) = K(u, v)z and K
(u, v) is called the point spread function (PSF); the function Φ accounts for radiometric distortions,  is a
collection of noise processes, and ψ defines the noise mechanism (e.g., additive, multiplicative). These
parameters have been studied extensively for many sensors (e.g., Vidicon and CCD cameras) and media (e.g.,
the atmosphere and human tissues). We refer to [9] and references cited there for more details.
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2.3 SOME PROBLEMS IN IMAGE ANALYSIS

In this section we describe four specific problems, which are representative of those in low-level computer
vision: (1) image restoration; (2) boundary detection; (3) tomographic reconstruction; (4) three-dimensional
shape reconstruction. These problems demonstrate the mathematical difficulties encountered in converting
information which is implicit in the recorded digital image to explicit properties and descriptions of the physical
world. By and large, these problems are naturally nonparametric, and, as inverse problems, range from ill-
conditioned to ill-posed. Consequently, as discussed in §2.1, one seeks a priori assumptions, or a priori
information about the physical world (i.e., separate from the data and imaging equations), to constrain the set of
possible, or at least plausible, solutions. An approach to some of these problems based on stochastic
regularization is presented in §2.4. Other approaches are briefly indicated in §§2.3 and 2.4, and a few references
are cited for more details. However, these problems have been studied extensively in the computer vision and
engineering literature, and we refer the reader to [9] (and other surveys) for more complete references to related
approaches based on stochastic regularization and Bayesian inference. Finally, the field of mathematical
morphology [26], which is not considered here, offers a quite different methodology for some of these problems.

2.3.1 Image Restoration

The classical image restoration problem for intensity data is that of recovering a true, two-dimensional
distribution of radiant energy, f(u), , from the actual recorded image values. In a "continuous-
continuous" setup, the problem is posed by equation (2.1). However, since the number of recorded values is
finite (in fact space-discretization is inherent in many sensors), the continuous-discrete formulation is more
realistic. Ignoring, for the moment, quantization of the measurement values, we can assume the actual recorded
data constitute a two-dimensional array  of positive real numbers on a regular grid

, in fact an N × N integer lattice. Then (2.1) is replaced by

Assuming the degradation mechanism to be known (or previously estimated), the problem of recovering f
(u) from {gi} is nonparametric and obviously ill-posed in general. For computational purposes, the domain of f(
u) is
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discretized into a larger integer lattice S', concentric to S, of dimension N' × N'  and f(u)is replaced by
. Then K becomes a discrete representation of the point spread function, and for linear space-

invariant systems we have

Assuming K has bounded support (a reasonable assumption in most cases), then S' should be taken large
enough so that the summation over  includes all terms for which K(i-j) > 0. This is not exactly a
convolution; one can imagine f convolved with K on the infinite lattice, but only observed on S, and
reconstructed on S'.

The problem of estimating {fi} from {gi} is still ill-posed. To see this, consider the simple case of a linear
model: g = Kf + η, with only blur and a single noise process. By relabeling the sites of S and S', we can regard g,
η, and f as vectors of dimension N2, N2 , and N'2, and K as an N2 × N'2 matrix. For η= 0 and N < N', the problem
is underdetermined and K-1 is not well-defined. But even if N = N' and K were invertible (e.g., toroidal
convolution), the matrix is usually nearly singular, so the existence of measurement and quantization errors then
renders the problem unstable in the sense that the propagation of errors from the data to the solution is not
controlled. Put differently, given g and K, two images with blurred values very close to g can be very different.

Consequently, one seeks additional information to constrain or "regularize" the problem. Traditional
approaches (see section 4.2 of [9] and the references there) may be divided into linear methods, such as the
traditional Wiener filter and other constrained least-squares methods, and nonlinear methods, such as the
maximum entropy technique. Linear methods are typically ill-conditioned and the reconstructions are often
compromised by large oscillatory errors. Maximum entropy has been extensively examined and is widely
popular in certain areas, such as digital astronomy [16, 8, 19, 24]. The regularization underlying the standard
constrained least-squares filter is equivalent to a Gaussian (improper) prior distribution, whereas that of
maximum entropy is equivalent to a particular random field model whose variables interact only through their
sum (= total energy). None of these methods addresses the crucial issue of discontinuities, which often convey
much of the information in the image, and which are difficult to recover with standard methods. A general
framework for nonlinear estimation based on spatial stochastic processes is outlined in §2.4.

2 IMAGE ANALYSIS AND COMPUTER VISION 15

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


2.3.2 Boundary Detection

The boundary detection problem is that of locating (discrete) contours in a digital image that correspond to
sudden changes of physical properties of the underlying three-dimensional scene such as surface shape, depth
(occluding boundaries), surface composition (texture boundaries), and surface material. A common complication
is that sharp physical boundaries may appear in an image as slow intensity transitions or may not appear at all
due to noise and other degradation effects. In addition, extraneous "edges" may appear from artifacts of the
imaging system, such as sensor nonlinearities and digitization, or from "nonphysical" boundaries, such as
shadows. Boundary classification refers to detecting and labeling boundaries according to their physical origins,
but it is rarely attempted and appears essentially impossible, at least without additional information from
multiple views or sensors, temporal sequences, or specific scene knowledge.

Segmentation is a closely related problem; one seeks to partition an image into disjoint regions (pixel
classes) on the basis of local properties such as color, depth, texture and surface orientation, or on the basis of
more global (or even semantical) criteria, for instance involving dichotomies such as "object-background" or
"benign-malignant." Clearly, each partition induces a unique boundary "map," whereas only boundary maps that
are sufficiently organized yield useful segmentations.

These problems are studied extensively in computer vision, and there are many concrete applications. For
example, texture is a dominant feature in remotely sensed images, and texture segmentation is important in the
analysis of satellite data for resource classification, crop assessment, and geologic mapping. Other applications
include automated navigation and industrial quality control; for example, in silicon wafer inspection, low
magnification views of memory arrays appear as highly structured textures. Nonetheless, most work on boundary
detection and segmentation has been of a general nature, separated from specific problems, and regarded as a
"preprocessing" step toward further analyses such as extracting three-dimensional shape attributes (see §2.3.4),
object recognition, and full-scale scene interpretation. In the view of some researchers, including the authors, this
modular approach to image analysis is highly suspect, and generic segmentation is overemphasized.

Algorithms abound for "edge detection," which refers to the problem of locating the individual changes in
intensity independently of the overall scene geometry. Most of these algorithms are heuristic, partly because it is
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difficult to state these problems in precise mathematical terms. Traditional edge detectors [17, 20] are
deterministic procedures based on (discrete) differential operators. Boundaries are then regarded as well-
organized subsets of edges and the construction of boundary maps is usually considered as a second phase in
which the detected edges are "cleaned," "smoothed," and otherwise massaged into structures we associate with
real boundaries. A variational method proposed in [22] for boundary detection has lead to interesting
mathematical problems, but its practical utility is uncertain. Statistical methods for segmentation in remote
sensing are very prevalent [9, 25] and often successful. However, until recently most techniques employed non-
spatial methods, such as linear discriminant analysis. Statistical methods that are truly spatial are currently
gaining popularity, and an example involving texture segmentation is presented in §2.4.2.

2.3.3 Tomographic Reconstruction

Tomography is an imaging technology widely used in medical diagnosis (and also in industrial inspection
and other areas). The two basic types are transmission and emission tomography. The most commonly used form
of transmission tomography is the "CAT-scan," whereby a radiation source rotates about the patient's body and
bombards it with X-rays or other atomic particles. Those particles that pass through the body are counted, and an
image (or series of images) is formed from the combined counts; fewer counts correspond to regions of higher
attenuation, which may, for example, indicate the presence of tumors.

In emission tomography, a pharmaceutical product is combined with a radioactive isotope and directed to a
location in the patient's body, usually by injection or inhalation. The pharmaceutical is selected so that its
concentration at the target location is proportional to some organic function of interest, for example, metabolic
activity or local blood flow. The objective is then to reconstruct the (internal) two-dimensional or three-
dimensional isotope concentration based on counting the number of released photons that escape attenuation and
are registered by arrays of detectors placed around the body. For instance, in positron emission tomography
(PET), the isotope emits a positron, which, upon colliding with a nearby electron, produces two photons
propagating in opposite directions.

From here on the focus is on single photon emission computed tomography (SPECT), in which the isotope
releases a single photon each time a radioactive decay occurs. Arrays of collimators are placed around the area
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of interest and capture photons that escape attenuation and whose trajectories carry them down the collimator.
The problem is then to reconstruct the isotope concentration from the photon counts and is similar to the inverse
problems mentioned in §2.3.1.

The dominant physical effect is photon attenuation, by which photons are annihilated mad their energy
absorbed by body matter. Other significant effects axe photon scattering and background radiation, as well as
those effects induced by the sensors. Attenuation is accurately described by a single function µ whose values are
known for bone, muscle, and so on, and for various photon energies. The incorporation of scattering and other
effects is more subtle [13].

We formalize the SPECT reconstruction problem as follows [12, 27]. Let x(u) be the isotope density defined
on some domain So, which is usually taken as a two-dimensional region corresponding to a cross section of the
body. The detectors σj, j = 1,..., m, are arranged on a linear array at equally spaced intervals, and the array is
positioned at equally spaced angles k, k = 1,..., n, for the same time duration at each angle. Let T = {(σj, k) : j
= 1,..., m; k = 1,..., n}. The total number of observed photons is an array . Assuming that the
photons generated in regions So are governed by a spatially nonhomogeneous Poisson process with mean x(u) at
the point , the observation y is a realization from another nonhomogeneous Poisson process,

, with mean

where the linear operator A incorporates attenuation (via the attenuated Radon transform) and other
physical effects [13]. Hence, the conditional probability distribution of Y given x is

For computational purposes, the region So is discretized into a grid S of pixels. Then 
represents a piecewise constant approximation of x(u), and the operator A becomes a matrix ,

.
The oldest, and still current, method used for reconstructing x from y is back-projection, which essentially

inverts (2.3), and is not very accurate. A more recent method [27] is that of maximum likelihood (ML), i.e.,
maximize P(y|x) with respect to x, which is implemented with the expectation maximization (EM) algorithm.
However, it has been widely realized that the ML
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estimator is too "rough." Various procedures for smoothing this estimator have been suggested (see the
references in [9]), including penalized ML and the method of sieves. Another alternative within the Bayesian
framework is described in §2.4.2.

2.3.4 Three-Dimensional Shape Reconstruction

The problem of estimating or reconstructing properties of three-dimensional surfaces, such as orientation,
height, Gaussian curvature, and Euler characteristics, from digital images is also widely studied in computer
vision. In a common paradigm, especially in robot vision, these features are regarded as indispensable steps
toward object recognition and other goals; the extraction of geometric features is followed by the imposition of
relational structures among the features (using "grammars," symbolic graphs, and so on), and in turn by
matching these data structures against stored models of real objects and spatial relationships among them. Again,
the paradigm consists of distinct steps, and the extraction of geometric features is itself preceded by "pre-
processing," which encompasses noise removal and other aspects of restoration, edge and boundary detection,
and perhaps segmentation.

The main sources of information ("cues") for three-dimensional shape reconstruction are the intensity
changes themselves ("shape-from-shading"), pairs of images corresponding to multiple views ("stereopsis") or
wavelengths, motion sequences (''shape-from-motion"), texture analysis (''shape-from-texture"), and range data.
Stereopsis is thought to be the most important process by which human beings obtain depth information, but has
played a lesser role in automated systems due to computational demands and lack of accuracy. In contrast,
shading has played a larger role in machine vision than in human vision, and range data is becoming an
important source of information for automated systems but is unavailable to humans.

The mathematical problems encountered in three-dimensional shape reconstruction are similar to those in
§§2.3.1-2.3.3. We conclude §2.3 with two examples in more detail.

Stereopsis

Stereo vision uses two cameras (corresponding to our two eyes) and a single light source. The relative
difference, or so-called disparity , in the positions of an object in the two images is useful information for
extracting surface orientation and relative distances between objects. A physical point in the viewed
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scene has corresponding points in the two images and the correspondence problem is to find these pairs. The
disparity between these points, together with simple geometric arguments, is then used [20] to estimate
orientation or relative depth. The standard implementation of stereopsis [20] consists of the following steps: (1)
detect significant intensity changes at various resolutions in both images, specifically, for example, "zero-
crossings" of a Laplacian or other discrete differential operator or "filter"; (2) match these zero-crossings or
properties thereof in the two images; (3) estimate from the disparity data the desired property of associated and
sparse three-dimensional points; and (4) combine these data with regularization procedures to estimate entire
surfaces. In addition, there are various pre-processing steps.

Shape-from-Shading

It is easier to state the problem in the fully continuous setup. The aim is to estimate a surface z = z(u),
, from an observed image irradiance function g(u) on the image plane . The

radiance (see §2.2) f(u) is related to the geometry of the surface via the "irradiance equation" [17]:

where  is the surface unit normal at the physical point (u1,u2, z),  and  are the directions of the
illumination source and the camera, respectively, ρ(u) is a property of the surface material (called albedo), and R
is called the reflectance map. This function has been studied extensively [17] for many materials and
illumination conditions, and we assume it to be known. In practice, not only z(u) but also  and ρ(u) may be
unknown and require estimation. However, assuming that these are also known and that we observe f(u) (or
derive it from g as in §2.3.1), then equation (2.5) is a first-order differential equation for z = z(u) over its domain

. The problem of estimating z is underdetermined unless one knows the normal vectors along
occluding boundaries or along certain contours. Various numerical schemes have been used for solving this
boundary value problem and for dealing with underlying instabilities. (These involve first detecting occluding
boundaries.) Other approaches [18, 23] employ deterministic regularization, which leads to a second-order
(elliptic) differential equation. An important issue in the discrete implementation of these methods is the
incorporation of the integrability condition, i.e., of the discrete version of 
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Finally, there are many related problems, such as photostereo, in which one has two images acquired by a
single camera but with separate light sources, and shape-from-motion, in which one is given a sequence of
images induced by relative motion between the scene and the camera.

2.4 BAYESIAN/SPATIAL STATISTICS FRAMEWORK

2.4.1 General Framework

Real scenes exhibit a variety of regularities: nearby locations typically have similar brightness; boundaries
are usually smooth and persistent; textures, although possibly random locally, have spatially homogeneous
regions; entities such as roads, leaves, and arteries have characteristic structures; object surfaces consist of
locally smooth patches on which orientation and curvature change smoothly, whereas abrupt changes appear
along object boundaries. The statistical variability of such regularities suggests a Bayesian formulation in which
a priori knowledge and expectations are represented by a prior distribution. Spatial processes in general, and
Markov random fields (MRF) in particular, provide flexible candidate distributions and the resulting framework
supports reasonable computational algorithms, measures of performance, and inference procedures.

This framework consists of six basic steps: attribute modeling (i.e., choice of the prior), degradation
modeling, computation of the posterior distribution, model identification, attribute estimation, and algorithmic
implementation. These axe described below; examples are given in §2.4.2. A more detailed exposition of the
methodology and its applications is given in [9] (to which we shall refer for original and other references). See
also [5, 24] for recent reviews and additional applications, [3] for seminal work on the role of MRF's in spatial
statistics, and [15] for an early and influential paper on Bayesian scene modeling and stochastic relaxation.

Attribute Modeling

Scene attributes may often be regarded as two-dimensional arrays. Examples are intensity values
corresponding to the "true" distribution of radiant energy; labels of textures, boundaries, or objects; and values of
surface orientation, depth, or curvature. In some problems, we are interested in more than one array
simultaneously. The collection of arrays of interest, denoted by X, is modeled as a discrete-parameter stochastic
process indexed by the
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vertices ("sites") of a graph . The set S of vertices of  serves simply to index the process,
, whereas the edges or "bonds" of  capture the interactions among the individual random

variables. If Ni denotes the set of vertices connected to site , then  defines the
neighborhood system for , and we identify  with (S,N). The graph  is usually sparse in the sense that the
neighborhoods Ni are small compared to the graph size, and are usually "local" as well in the sense that the
neighbors of i are spatially near i, which is rather natural for modeling spatial coherence and spatial context, and
it is very convenient in computations.

The probability law, π(x) = P(X =x), is the prior distribution, usually chosen to be a Gibbs distribution (i.e.,
X is a MRF with respect to ) meaning that

Z being a normalizing constant called the partition function and U(x) an energy function which is usually
locally composed: U(x) =  , . The choice of the neighborhoods
and "interactions" i is problem-specific. As a simple example, amplified in later sections, let X denote the true
intensity values, S the regular pixel grid with a four nearest neighbor system (i.e.,

), and consider the problem of modeling spatial cohesion. We then might choose

where (·) is increasing on [0, ). In this way, the measure π favors configurations in which nearby pixels
have similar gray levels.

Sometimes it is convenient (if not necessary) to allow "infinite energies" (zero probabilities) in the prior.
For example, in boundary detection, rather than stochastically inhibiting "blind" boundary endings and redundant
boundary representations (see §2.4.2), it is more appropriate to simply disallow, or forbid, such configurations.
These "constraints" are realized with a nonnegative "penalty function" V(x). Then the prior is defined on the
''allowed'' set {x : V(x)=O}, i.e.,
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Degradation Model

By design,  contains all the relevant information for inference and decisionmaking.
The goal is to estimate X based on the prior distribution and the observed data y, which is assumed to be a
realization of an observation process  indexed by a discrete set T that might be different from
S. The observation y may be a collection of multiple arrays available from multiple sensors, views, wavelengths,
etc. The process Y is related to X by a conditional probability P(Y|X)— the degradation model—which may or
may not be degenerate. This model, or the transformation from x to y, is problem-specific, and most often
nonlinear. In the restoration problem, the degradation model is induced by (2.2); in boundary detection and
segmentation, it is a projection; in tomography, it is given by (2.4); in shape-from-shading, it is induced by (2.5)
(and (2.2)); and in other problems, it may involve "missing" observations (e.g., due to obscuration).

Posterior Distribution

The prior π(x) and degradation model P(Y|X) determine the joint distribution of (X,Y), and in particular the
posterior distribution π(X|Y) of X given Y. For a given observation Y = y, π(X|y) contains all the relevant
information about X, i.e., it reveals the likely and unlikely states of the "true" but unobserved attributes X. For a
wide class of degradation models, π(X|y) is again a Gibbs distribution over a new graph P, which is in general
larger than  but still sparse. However, exceptions occur; for example, in tomography (§2.4.2), P is highly
nonlocal, and its complexity depends on the matrix A of (2.3).

Given π(X) and P(Y|X), the posterior π(X = x|Y = y) is derived by Bayes' rule, and has the form

in case (2.6), and

in case (2.7). Here,  is the energy associated with the posterior distribution; it is computed from U
(x) and the degradation model.
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Model Identification

Both the prior π(X) and the degradation P(Y|X) may contain unknown parameters which need to be
estimated from the data. The estimation of the parameters is often difficult and computationally expensive, and it
is regarded by some as a serious drawback of the Bayesian framework. Its difficulty stems in part from the
complexity of the likelihood function, i.e., the marginal distribution of Y. Other complicating factors include the
high dimensionality of the data and the strong dependence of the individual random variables.

Several methods have been developed for estimating the parameters (see references in [9]): for complete
data (i.e., observable x), ML via a stochastic gradient algorithm, maximum pseudo-likelihood (MPL), variational
methods [2], coding, and logistic-like methods; for incomplete data, ML via the EM algorithm [12], and the
method of moments [12, 13]. The problem of parameter estimation has given rise to interesting mathematical
questions, and to an interplay between statistical inference and the phenomena of phase transitions [7].

Attribute Estimation

The ultimate goal, of course, is to choose a particular estimate, , of the attributes X given the data
y. One choice is the MAP (maximum a posteriori) estimator, which is the mode of π(x|y); it is the Bayes
estimator corresponding to the zero-one loss function. Another Bayes estimate is the mean of π(x|y), which
derives from squared-error loss. Estimates of X are obtained by the basic algorithms described next. This
estimation is distinct from the parameter estimation problem, but, in some cases, the two have been treated
simultaneously [4].

Algorithms

The conditional distribution  is usually too complex to allow a direct computation of
. Instead, Monte Carlo type algorithms (motivated by analogies with physical systems in statistical

mechanics) are used to generate sample realizations from , approximate global expectations with ergodic
averages, and estimate modes by "annealing."

For example, the MAP estimate of (2.8) amounts to finding a minimal energy state of .
Physically, a low-energy state is achieved
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by heating and then slowly coding a substance—a procedure called annealing. This suggests searching for global
minima of  by simulating the dynamics of annealing using the Metropolis Algorithm (MA) (see references
in [1]) or variants such as the Gibbs Sampler (GS) [10] (also called stochastic relaxation) and the Langevin
equation. These algorithms generate a Markov chain X(t) with transition probabilities arranged so that the
equilibrium distribution is . For example, in GS one chooses a sequence of sites i(1), i(2), . . . so that each
site in S is visited infinitely often. If, say, X(t) = x, then Xj( t + 1)= xj for all , and  is a
sample from the conditional probability

where  is the posterior neighborhood system. An important feature of these algorithms is that
there is no need to compute the partition function , which is intractable in general.

To simulate annealing, one introduces an artifical "temperature" (or control parameter) T(t) into the
posterior distribution. Let

Now let  as  sufficiently slowly (e.g.,  , C small) so that the
nonstationary Markov chain X(t) converges weakly to a distribution supported by the global minima of 
[10, 1]. The annealing algorithm (AA) has also been modified to deal with the constrained optimization problem
underlying (2.9); see [9].

These algorithms are computationally demanding, but parallelizable. In practice, one compromises between
the theoretical algorithms and practicality via such methods as low-temperature sampling [11], iterated
conditional modes (ICM) [4], iterated conditional expectation (ICE) [13], and the renormalization group
algorithm [14].

2.4.2 Examples

Image Restoration

The basic degradation model is given by (2.2). For simplicity we assume the presence of only one noise
process {ηi}, and N = N'. Although not necessary, we assume that the intensities are quantized. We will denote the
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pixel lattice by , the grey-level intensity process by
, and the observation process by . Then

We assume that K, Φ, ψ, and the law of η are known.
The basic idea proposed in [10] is to use MRF models to account for the spatial coherence among the

intensity levels of nearby pixels, as well as for the existence of discontinuities between intensity surfaces. To this
end, in addition to the intensity process XP, a second "edge" process XE is introduced. The process XE accounts
for discontinuities, and is indexed by the dual lattice SE of SP; SE consists of all nearest-neighbor pairs < i, j >
from SP, and an element ("site")  corresponds to a putative edge between the corresponding pixel sites.
Thus,  where  (resp. 0)

indicates presence (resp. absence) of an edge at . The process XE is neither part of the data nor the target
of estimation; rather, it is an auxiliary process designed to bring exogenous information into the model, and it is
coupled to XP in such a manner that in the likely states of the joint probability distribution of X = (XP, XE), the
intensity function is locally smooth with possibly sharp transitions, and the locations of the edges satisfy our a
priori expectations about the behavior of boundaries.

The process X = (XP,XE) is indexed by , and is chosen to be a MRF with energy function of
the form

where U1 reflects our expectations about interactions between intensities and edges (where edges "belong"),
while U2 reflects boundary organization. Both terms are constructed from "local energies" corresponding to a
neighborhood system . The simplest neighborhood system ("nearest neighbors'') is shown
in Figure 2.1, where dots denote pixels and crosses edge sites.

The energy  is defined so that the low energy states will have  (resp. 0) when
 is large (resp. small). More specifically,

with 1 > 0, Φ(0)=-l, and Φ even and nondecreasing on [0, ). Note that when , the bond
("interaction") between pixels i and j is broken;
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also, the properties of  ensure that when , |i-j|=1, then  is a lower energy state than
 and, in the absence of boundaries, there is cooperation between nearby pixel intensities. Note also

that when , we have no preference about the state of an edge at site < i,j >. A specific (·) that
has been used in restoration problems [9] is

Figure 2.1

where ∆ is a scaling constant.
The energy U2(xE) reflects our prior expectations about boundaries: most pixels are not at boundary regions;

boundaries are usually persistent (no isolated or abandoned segments); boundary intersections (junctions), sharp
turns, and "small structures," are relatively unlikely. For specific choices of U2(xE), we refer to [9] (and
references cited there). Some of the above genetic properties of boundaries may also be captured with penalty
functions (see (2.7)). For problems, such as image restorations and shape-from-shading, where the edge process
XE is auxiliary, using "soft constraints" such as U2(xE) is satisfactory, whereas for problems in which the
boundaries are of central interest (e.g., texture segmentation; see the next subsection), penalty functions are often
more appropriate.

The energy function (2.13) determines the prior π(x). Assuming that the noise process {ηi} is independent of
X = (XP,XE), the transformation (2.12) determines the degradation model P(Y|X) in a straightforward manner.
The posterior distribution π(X|Y) is then computed from the joint distribution P(Y|X)π(X). For example, suppose
that ηi is Gaussian with mean p and variance σ2, and that  is invertible, say,
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 for some F(u,v). Then assuming that F(u,v) is strictly increasing and
 exists, the posterior energy (see (2.8)) is given by [9]

Boundary Detection

We summarize the procedure developed in [11] for detecting textural boundaries. The method also applies
to the problem of locating boundaries representing sudden changes in depth and surface orientation.

The procedure involves two processes: the intensity process , as in the first
subsection of §2.4.2, and the boundary process , which is indexed by a regular lattice
SB with sites interspersed among the pixels of SB. Again,  with Xt = 1 (resp. 0) indicating
presence (resp. absence) of a boundary at . The prior distribution for X=(X P, XB) is chosen to be of the
form (2.7) with U(x)=U(xP, xB) and V(x)=V(xB).

The intensity-boundary term U(xP, xB) is chosen to promote placement of boundaries between regions in the
image that demonstrate distinct spatial patterns. In [11] it was chosen to be of the form

where < t, s > denotes nearest-neighbors in SB. The function  is critical; it is a measure of disparity
between the gray-level values in two blocks of pixels adjacent to < t,s >; large disparities ( ) encourage
the presence of an active boundary (i.e., ), while small disparities ( ) discourage the
presence of a boundary (i.e. ). Specific choices of  in [11] are constructed in terms of the
Kolmogorov-Smirnov distance applied to either the raw data ("first-order" statistics), or to transformed data
corresponding to higher-order statistics (e.g., window means, range, variance, and "directional residuals"). As a
function of xB, (2.17) is similar to "spin glass" models in statistical mechanics.

The penalty function V(xB) is chosen to inhibit unwanted configurations such as blind endings of
boundaries, redundant boundaries, sharp turns, and other forbidden patterns (see [11] for details).
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Assuming that there are no degradations that preclude direct observation of xP, then the data . The
degradation model P(Y|XB) is singular (the point mass at y = xP), and the posterior energy is

. The MAP estimate is equivalent to global optimization with constraints.
Plates 2.1 and 2.2 (from [11]) show two experiments. Plate 2.1 is an L-band synthetic aperture radar (SAR)

image of ice floes in the ocean: (a) original image, 512 × 512, (b) sixteen "snapshots" from sixty sweeps of
stochastic relaxation with constraints. Plate 2.2 is a collage composed of nine Brodatz textures: leather, grass,
and pigskin (top row), raffica, wool, and straw (middle row), and water, wood, and sand (bottom row). Two of
the textures, leather and water, are repeated in the two circles; (a) original 384 × 384, (b) detected boundaries
obtained by deterministic (left) and stochastic (right) algorithms.

Single Photon Emission Tomography

The digitized isotope intensity (see §2.3.3) is thought to be a realization of a spatial process
. The idea of [12, 13] is to use a Gibbs prior to reflect the common observation that

neighboring locations of the isotope surface typically have similar concentration levels, whereas sharp changes
in concentration may occur, for instance, across an arterial wall or across a boundary between two tissue types.
In contrast to the procedure in restoration, sharp changes are not represented explicitly by an edge or boundary
process; instead, the intensity model is designed to allow such changes. Specifically (cf. [12]),

where < i,j > denotes a nearest-neighbor bond, [i,j] represents a nearest-neighbor-diagonal bond, and  is
given by (2.15).

The degradation model is given by (2.4), and the posterior energy is then

Although U(x) has a local structure, the graph for  is highly nonlocal due to A.
The choice of the "smoothing" parameter β is critical. For β = 0, the MAP estimator is just the ML estimator

and, hence, typically too rough. For
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large β, the MAP estimator is too faithful to the prior and, hence, typically too smooth. The value of β is
estimated in [12, 13] via the EM algorithm or the method of moments. The parameter ∆ in Φ is also important,
but its statistical estimation from the data appears to be difficult. Fortunately, reconstructions are not sensitive to
moderate changes in ∆, and empirical values based on information about range intensities work well [12].

Plates 2.3, 2.4, and 2.5 show three experiments from [13] with real (hospital) data, using the ICE algorithm.
For comparison, the reconstruction with the filtered back projection (FBP) method is also shown. In all three
cases the β is estimated by the ML method. Plate 2.3 shows a slice of a human skull across the eyes: (a) FBP, (b)
ICE with β = 2.7. Note that in (b) one can distinguish details such as the nose bone, eyes, brain region; also the
skull border is sharp. Plate 2.4 displays a SPECT reconstruction of a simulated phantom. The model used in this
experiment was developed by the Nuclear Medicine Department of the University of Massachusetts Medical
Center, in Worcester. This is a comprehensive model that captures the effects of photon scattering, photon
attenuation, camera geometry, and quantum noise: (a) original phantom, (b) FBP reconstruction, (c) ICE
reconstruction with β = 1. Plate 2.5 is a human liver/spleen scan: (a) FBP, (b) ICE with β = 3. The value β = 3 is
the ML estimation; (c) and (d) are ICE reconstruction with β = 0 and β = 20 respectively; they demonstrate the
significance of the parameter β.

Shape-From-Shading

We focus on the estimation of surface orientation. For simplicity, we assume that S and p are known, that
the reflectance map is spatially homogeneous and known, and that V is constant throughout the image
(orthographic projections). However, the procedure presented below can be modified [28] to estimate also 
and ρ. There are three basic processes: The true (undegraded) intensity process , the shape
process  where  is the unit normal at the surface "point" corresponding to pixel i, and
the observation process . Here, S is a discretization of the domain of z(u) (see §2.3.4). The
shape process N (the target of estimation) is related to XP via the discrete version of (2.5), and XP is related to Y
via (2.12). XP is an indeterminate process and will play no direct role here.

In the absence of degradation we have , which is a deterministic constraint on N. The shape-
from-shading problems usually refer (see [17])
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to this case (i.e., observable XP), and we refer to [17,18] for various approaches to the problem including
deterministic regularization techniques.

The procedure below was developed in [28] and applies to both undegraded and degraded data. The basic
idea is to use Gibbs distributions to articulate general properties of shapes: surfaces are locally smooth,
orientation may exhibit jumps because of changes in depth or presence of surface discontinuities. As in
restoration, the process N is coupled to an edge process , where  and SE are as in the
first subsection of §2.4.2. The coupled process X = (N, XE) is a MRF with an energy function

 (compare with (2.13)), where U2(xE) is chosen as in the first subsection of
§2.4.2, and

with 1, 2 > 0, < i, j >, [i, j] as in (2.18), and  if any of , , ,
, are true, zero otherwise; her i, j, t1, t2, t3, t4 are as in Figure 2.2.

Figure 2.2

The function ø was chosen [28] to be . Because of the
constraint , the prior resulting from this choice of ø is non-Gaussian even if 2 = 0 and xE = 0. In fact,
model (2.19) has worked well in some cases [28] even without the edge process (i.e., xE = 0).

In the absence of degradation, the distribution P(Y/X) is degenerate and amounts to the constraint
. In the presence of degradation, P( Y/X) is computed as in the first

subsection of §2.4.2. In both cases, there is an extra deterministic constraint V
2
(N) = 0
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corresponding to the integrability condition. In the former case, the shape-from-shading problem reduces to
minimizing U(N, xE) under the constraint V1(N) + V2(N) = 0; in the latter case, to minimizing the posterior
energy U*(N, xE) under the constraint V2(N) = 0.

The procedure does not require boundary conditions. However, in the absence of degradation and a single
image, the quality of reconstruction is better [28] if one assumes correct boundary conditions along the image
border. In the presence of noise, the results are satisfactory if one uses two images (photostereo) obtained with a
single camera but two light sources of different origin.

Plate 2.6 shows an experiment from [28] with an egg imaged under uncontrolled illumination. The surface
of the egg was assumed to be matte, and the algorithm estimated, in addition to N, the albedo p and an effective
light source direction . The reconstruction used a combination of constrained annealing and ICM: (a) original
image, 64 × 64, (b) reconstruction, (c) reconstructed egg illuminated from x-direction, and (d) reconstructed egg
illuminated from y-direction.

Deformable Templates

In this subsection we briefly describe a powerful and elegant methodology introduced by Ulf Grenander for
pattern synthesis and analysis of biological shapes. It provides a promising geometric/Bayesian paradigm for
medical and industrial applications.

The procedure [6] is based on global shape models designed to incorporate prior (biological) knowledge
about the variability and global properties of shapes, and quantitative information about the variability of the
geometric object. The shape model has three basic components: (a) a ''geometry" consisting of a space G of
generators, a connector graph σ, a "regularity" relation R, and a transformation group ; (b) a
template (or templates) describing the overall architecture of the shape; and (c) a group-valued stochastic
(typically Markoy) process, which articulates the statistical variations of the shape. The choices of the template,
transformation group, and stochastic process control the desired global and local geometric properties of shapes.
The choice of (a) is application-specific.

We refer to [6] for the general framework, experiments, and references. Here we outline the method for the
special case of two-dimensional (planar) shapes (as in the HAND experiment [6]). Assuming that all the relevant
information is contained in the boundary, and approximating the boundary
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by a polygon with, say, n edges, the components of (a) are as follows: gi  G,  are
polygonal edges; σ is a cyclic graph consisting of the n nodes; R may, for example, be the condition that the
polygon is closed and simply connected (other regularity conditions are often desirable); S may be chosen to be
the general linear group GL(2), or the Euclidean group (i.e., rotations O(2) and translations), or the group US(2)
of uniform dilations US(2) × O(2).

The configuration space of interest is : ,gi  G,  i.e., the
set of boundaries of closed, simply connected polygons. The interior of a polygon defines a pure image I. A
template is a specific configuration   C(R) that represents the prototypical shape being
considered; for example, in the HAND experiment [6], c(0) is an "ideal" male hand computed by "averaging"
several male hands. The purpose of the group-valued process is to define a prior distribution on C(R). This is
done as follows: let µ be a fixed measure on S, and , sj  S, a probability density (w.r.t. µ) on
Sn. In [6], π was chosen to be of Gibbs type with nearest-neighbor interactions, i.e.,

with A  L2(S × S, µ × µ), so that π(Sn) = 2 (the actual form of A is dictated by applications; see [6] for
examples). This probability distribution is now restricted (conditioned) by using the template c(0), and
considering only those s-sequences for which   C(R). For special cases, this conditioning
is straightforward; in general, it involves subtle limit arguments. This results in a probability measure P—the prior
—on C(R).

In the above framework, shape synthesis amounts to simulation of P. Samples from P reflect the variability
of the shape under consideration. For example, in the HAND experiment [6], the variability accounts for
differences between hands of individuals, as well as for possible hand shapes (e.g., position of fingers) of a given
individual.

For analysis tasks such as restoration, segmentation, detection of anatomical pathologies, recognition, and
so on, inferences are made on the basis of the prior P and the data. Let us consider restoration, for example. The
procedure not only gives a restored image, but it also yields a "structured" restoration, in the sense that it
provides the configuration analysis of it. This automatically makes possible, for instance, more challenging
problems such as finding statistically meaningful abnormalities. Suppose that we ob
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serve a degraded version ID of a true pure image I which is our target of estimation. The degradation mechanism
 defines the degradation model P(ID|I), equivalently P(ID|c), as in the first subsection of §2.4.2. Then

the posterior distribution P(c|ID) is computed as before, and contains all the relevant information about the
unknown image I (equivalently c). The computational burden of estimating I is demanding, but feasible.
Asymptotic arguments and other specific properties have been exploited in [6] to reduce the computations. One
important aspect of the approach is that it can often be combined with dynamic programming to speed up the
processing considerably.

Bibliography

[1] Aarts, E., and J. Korst, Simulated Annealing and Boltzmann Machines, John Wiley and Sons, 1989.
[2] Almeida, M., and B. Gidas, A variational method for estimating the parameters of MRF from complete or incomplete data, preprint,

Brown University, 1989.
[3] Besag, J., Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Stat. Soc., B 36 (1974), 192-236.
[4] Besag, J., On the statistical analysis of dirty pictures (with discussion), J. R. Stat. Soc., B 48 (1986), 259-302.
[5] Besag, J., Towards Bayesian image analysis, J. Appl. Star. 16 (1989), 395-407.
[6] Chow, Y., U. Grenander, and D. Keenan, HANDS, A Pattern Theoretic Study of Biological Shapes, to be published by Springer-Verlag,

1990.

2 IMAGE ANALYSIS AND COMPUTER VISION 34

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


[7] Comets, F., and B. Gidas, Parameter estimation for Gibbs distributions from partially observed data, submitted to Ann. Appl. Prob. (1989).
[8] Frieden, B. R., Restoring with maximum likelihood and maximum entropy, J. Opt. Soc. Amer. 62 (1972), 511-518.
[9] Geman, D., Random Fields and Inverse Problems in Imaging, to appear in Lecture Notes in Mathematics, Springer-Verlag, 1990.
[10] Geman, S., and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. 

Machine Intell. 6 (1984), 721-741.
[11] Geman, D., S. Geman, C. Graffigne, and P. Dong, Boundary detection by constrained optimization, IEEE Trans. Pattern Anal. Machine

Intell . 12 (1990), 609-628.
[12] Geman, S., and D. McClure, Statistical methods for tomographic image reconstruction, in Proceedings of the 46th Session of the Int.

Stat. Institute, Bulletin Int. Stat. Inst. 52 (1985).
[13] Geman, S., D. McClure, K. Manbeck, and J. Mertus, Comprehensive statistical model for single photon emission computed tomography,

preprint, Brown University, 1990.
[14] Gidas, B., A renormalization group approach to image processing problems, IEEE Trans. Pattern Anal. Machine Intell. 11 (1989),

164-180.
[15] Grenander, U., Tutorial in Pattern Theory, Technical Report, Brown University, 1983.
[16] Gull, S. F., and J. Skilling, Maximum entropy methods in image processing, IEE Proc. 131 (1984), 646-659.
[17] Horn, B. K. P., Robot Vision, MIT Press, 1986.
[18] Horn, B. K. P., Height and Gradient from Shading, MIT A.I. Memo No. 1105.
[19] Jaynes, E. T., On the rationale of maximum entropy methods, Proc. IEEE 70 (1982), 939-952.
[20] Mart, D., Vision, W. H. Freeman, 1982.

2 IMAGE ANALYSIS AND COMPUTER VISION 35

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


[21] Marroquin, J. L., S. Mitter, and T. Poggio, Probabilistic solution of ill-posed problems in computational vision, J. Am. Star. Assoc. 82
(1987), 76-89.

[22] Mumford, D., and J. Shah, Boundary detection by minimizing functionals, talk presented at the IEEE Conference on Computer Vision
and Pattern Recognition, San Francisco, 1985.

[23] Poggio, T., V. Torro, and C. Koch, Computational vision and regularization theory, Nature 317 (1985), 314-319.
[24] Ripley, B. D., Statistical Inference for Spatial Processes, Cambridge University Press, 1988.
[25] Ripley, B. D., Statistics, images, and pattern recognition, Can. J. Stat. 14 (1986), 83-111.
[26] Serra, J., Image Analysis and Mathematical Morphology,Academic Press, New York, 1982.
[27] Shepp, L. A., and Y. Vardi, Maximum likelihood reconstruction in positron emission tomography, IEEE Trans. Medical Imaging 1

(1982), 113-122.
[28] Torreao, J., A Bayesian Approach to Three-Dimensional Shape Estimation for Robot Vision, thesis, Brown University, 1989.

2 IMAGE ANALYSIS AND COMPUTER VISION 36

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


3

 Oceanographic and Atmospheric Applications of Spatial
Statistics and Digital Image Analysis

James J. Simpson
Scripps Institution of Oceanography

3.1 INTRODUCTION

Historically, remote sensing of the environment has helped process-oriented studies examine individual
aspects of the physics, chemistry, and biology of the earth-ocean-atmosphere system. From such studies, several
problems of global significance have emerged that are cross-disciplinary in nature. Examples include acid rain,
the increase in atmospheric carbon dioxide, anticipated depletion of the ozone layer, El Niño-related
modifications in weather and ocean circulation with their resultant effects in agriculture and fisheries, and
tropical rain forest destruction by fires of human origin. It has been recognized that the key to progress on these
and other cross-disciplinary issues in earth science during the decade of the 1990s probably will be addressing
those questions that concern the integrated functioning of the earth as a system (EOS, 1984). The hydrologic
cycle, the biogeochemical cycle, and climate processes are the fundamental processes that integrate the earth as a
system, and thus each of these cycles must be examined in detail and on a global scale if meaningful progress is
to be made on the problems cited above.

Large-scale, synoptic observations of a wide variety of phenomena (e.g., sea surface temperature, sea level,
wind stress, ozone concentration, radi
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ation heat balance, sea ice, vegetation, and near-surface current velocity) are required to study these cycles
properly, and remote sensing provides the only practical way to collect synoptically the necessary data on the
global scale. The magnitude of the data set, however, may preclude understanding unless it can be distilled and
synthesized into organized patterns that can be related meaningfully to the underlying governing physics,
chemistry, or biology of these global cycles and processes. Spatial statistics and mathematical methods of digital
image analysis provide mechanisms for such a synthesis.

This chapter discusses a few areas of spatial statistics and data representation useful in digital image
analysis that have immediate application in the area of remote sensing of the earth. Some special considerations
needed for the correct analysis of remotely-sensed data are presented and a few critical research areas are
identified.

3.2 SELECTED ANALYSIS AREAS

In this section three mathematical methods useful in digital analysis of sequences of remotely sensed
images are presented. These methods were chosen because they have a broad range of applications in earth
science. These methods are non-Bayesian in nature; a presentation on Bayesian methods used in image analysis
is given in chapter 2 of this report.

Several abbreviations commonly used in remote sensing and the earth sciences appear in this chapter. Each
is defined at the place it first occurs in the text. For easy reference, there is an appendix containing abbreviations
and their definitions at the end of this chapter.

3.2.1 Principal Component Analysis

General Concepts

Principal component analysis (PCA) is a multivariate statistical technique that can be applied to all forms of
multispectral or multi-temporal image data and is most commonly applied in the general context of arbitrary
multivariate data. Forms of PCA have been used to study pattern classification (Geladi et al., 1989), sequential
segmentation (Esbensen and Geladi, 1989), spatial patterns of variability in sea surface temperature and
phytoplankton pigment observed in satellite data (Lagerloef, 1986), and in algorithms for cloud removal from
satellite data (e.g., Gallaudet and Simpson, 1991a).
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The principal component transformation (PCT) is the basis for all these analyses. The PCT is a linear
transformation that isolates uncorrelated linear combinations of a given set of variables in such a way that each
element in this combination represents a decreasing amount of variance in the original variables (Ingerbritsen
and Lyon, 1985). This linear transformation defines a new set of coordinate axes for the data such that (1) the
transformed origin is at the mean of the data distribution (Lillesand and Kiefer, 1987), (2) the transformed
coordinate axes are mutually orthogonal (Jensen, 1986), and (3) the transformed coordinate axes are in the
directions of maximum variance (Jensen, 1986). Below, two examples of PCA are developed, one using
multispectral image data and the other using multi-temporal image data. An extensive treatment of the use of
PCA techniques in atmospheric sciences and oceanography is given by Preisendorfer (1988).

Multispectral Data Application

The ability to accurately and automatically segment clouds in remotely sensed imagery is critically
important to a broad range of disciplines in earth science. Clouds significantly affect the net heating of the
atmosphere and the underlying ocean-land surface by modifying solar and terrestrial radiation (Ohring and
Clapp, 1980). This net radioactive heating governs the thermodynamics and dynamics of the atmosphere, which
in turn influence the formation and dissipation of clouds (e.g., Matveev, 1984). The potential feedback effects
associated with this cloud-radiation interaction are among the greatest sources of uncertainty in determining the
relation between changes in external conditions such as solar radiation and atmospheric carbon dioxide
concentration and changes in climate (e.g., Henderson-Sellers, 1982; Ramanathan, 1987). Clouds also affect our
ability to remotely sense the properties of the atmosphere, ocean, and land; such observations are needed, for
example, in weather prediction (e.g., Pailleux, 1986), oceanography (e.g., Eckstein and Simpson, 1990a,b), and
agriculture (e.g., rainfall, Browning, 1986). The PCT can be used with multispectral image data to robustly
segment clouds from natural images. An example of such an application is given below.

The Principal Component Transformation Split-and-Merge Clustering (PCTSMC) Algorithm. Here,
the development of the PCTSMC algorithm is presented in abbreviated form. Mathematical details of the
algorithm are given in Gallaudet and Simpson (1991a). An AVHRR infrared
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image, designated T, consisting of brightness temperatures calibrated to degrees Celsius in bands 3, 4, and 5
(hereinafter referred to as T3, T4, T5) is first differenced to construct a 2-banded differenced image D (i.e., T3 - T4,
T3 - T5). This differenced image now contains all the information of the original infrared image needed for cloud
detection, but only in two linearly independent bands. Next, this differenced image is transformed using the PCT.
The result is a 2-banded transformed differenced image in which all interband correlation is destroyed (Mather,
1987), thus making it a logical preprocessor to the segmentation operation (step 3) of the PCTSMC algorithm.

Step 3 of the PCTSMC algorithm performs image segmentation using a split-and-merge clustering
procedure (e.g., Pavlidis, 1977; Seddon and Hunt, 1985; Richards, 1986) on the PC transform of the differenced
image. This results in a segmented image in which the natural spectral classes in the original image are separated
into distinct groups (i.e., land versus ocean versus cloud). The method of clustering that is employed in the
PCTSMC algorithm combines both the partitional and hierarchical approaches. It consists of a partitional
clustering algorithm augmented by a splitting- and-merging step at each iteration. Combining a partitional with a
hierarchical method has several advantages over the use of either method alone: (1) pure hierarchical methods
are not appropriate for complex data (Muerle and Allen, 1968; Fukada, 1980; Jain and Dubes, 1988); (2) pure
hierarchical methods are more appropriate for data that is to be partitioned on the basis of both local and global
information, rather than global information only (Jain and Dubes, 1988); (3) pure hierarchical methods impose a
taxonomic structure on the data (Anderberg, 1973), which is not characteristic of cloud-containing AVHRR
imagery; (4) pure hierarchical methods are order dependent—i.e., the resulting segmentation will vary
depending upon the order in which the regions are split and merged (Cheevasuvit et al., 1986); this often results
in less than optimal segmentations of the data; (5) pure partitional algorithms often converge to local minima of
the clustering criterion function (Pairman and Kittler, 1986; Jain and Dubes, 1988); (6) the combined approach is
more efficient than pure merging or pure splitting methods of region detection (Pavlidis, 1977; Richards, 1986);
and (7) the combined approach is less dependent on the initial segmentation, and therefore is more capable of
recovering all of the natural clusters in the data (Seddon and Hunt, 1985; Jain and Dubes, 1988); this is because
the number of clusters in the initial segmentation need not be the same as those
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that actually exist in the given data (Seddon and Hunt, 1985; Pairman and Kittler, 1986).
In the final step of the PCTSMC cloud screening procedure, the data are retransformed back to the feature

space, and each of the clusters is labeled as either a cloud or non-cloud. In the first three steps discussed above,
the operations performed on the data were entirely unsupervised—i.e., no a priori knowledge was required.
Hence, they apply to an arbitrary image segmentation. In this fourth step, expert knowledge is introduced to
perform a boolean classification. Rules appropriate for land versus cloud versus ocean separation in AVHRR
image data are given in Simpson and Humphrey (1990) and Gallaudet and Simpson (1991a).

Plate 3.1a shows AVHRR Band 2 data; clouds appear as white or gray tones. The coastline is white in this
panel. Plate 3.1b shows AVHRR Band 4 infrared temperature; coldest temperature is white and warmest
temperature is black. In this panel, the coastline is black. The segmented image produced by the PCTSMC
algorithm is shown in Plate 3.1c and the final cloud-masked sea surface temperature is shown in Plate 3.1d. In
this final panel, the warmest ocean temperature is white, cooler ocean temperatures appear as shades of gray, and
cloud contaminated pixels and land are shown as black. Land was masked from the Plate 3.1 images using a
recursive polygon fill algorithm (Simpson, 1991) and is rendered either white or black depending on the gray
scale mapping used in the individual panel.

Multi-Temporal Data Application

A major objective of earth science studies is to identify spatial patterns of variance in temporal sequences of
images. Examples include the analysis of variability in sea surface temperature structure in oceanic current
systems (e.g., Lagerloef, 1986) and in seasonal and interannual variation in phytoplankton abundance (e.g., Strub
et al., 1990). The form of PCA used in such studies is generally referred to as empirical orthogonal function
(EOF) analysis: ''empirical" because the functions arise from the data themselves and "orthogonal" because they
are uncorrelated. Note that closed-form mathematical functions generally cannot be used as the basis functions
representing the complex images observed in nature.

Empirical orthogonal functions are useful in work with large data sets. The method separates a data set D(x,
t) into spatial components Fi(x) and
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temporal components Ai(t) such that

where NT is the number of EOFs computed. Note that x and t represent generalized spatial and temporal
coordinates, i.e., x represents the set  and t represents the set . In matrix notation,
D(x, t) is an NX × NT matrix, with NX representing the number of positions x and NT the number of time steps t.
Each column of the F matrix is an EOF. Each EOF has NX values, and there are NT EOFs. Thus, F is an NX ×
NT matrix. The time series matrix A has NT rows and NT columns.

Forms of Normalization. The computations may be implemented with two different normalization
schemes because the EOF representation decomposes the space-time series, using separation of variables, into a
sum of products of temporal amplitudes, Ai(t), modulating spatial patterns of variance, Fi(x). Note that, in
physics, separation of variables occurs widely because of the form of the underlying differential equations. Here,
the motivation is to provide a compact statistical representation of the data in which spatial patterns in variance
can be distinguished from temporal patterns. Either the Ai(t) or the Fi(x) can retain the same physical units as the
original data. Historically, a normalization scheme (method 2) has been used in which the temporal components
of the decomposition retained the same units of the data. More recent studies in oceanography and atmospheric
science (e.g., Barnett and Patzert, 1980) prefer to use EOFs with the same units as the original data for easier
interpretation of the spatial patterns of variance resuiting from the EOF analysis (method 1). Both methods of
normalization are equivalent and both are given here for completeness. (The summation notation is used for
consistency with the vast majority of published studies.)

In the first method

where Fi and Fj are columns of the F matrix and δij is the Kronecker delta function. The coefficient λi is an
eigenvalue of the covariance matrix  where DT is the transpose of D. The rows of the time series
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matrix are orthonormal, i.e.,

where Ai and Aj are rows of A. The EOFs then give the variance in the same units as the data.
The second normalization method forces the EOFs to be orthonormal, i.e.,

Hence,

where I is the identity matrix. The rows of the time series matrix are orthogonal:

With this normalization, the EOFs no longer have the same units as the data.
Theoretical Basis. The objective of EOF analysis is to represent a given matrix of data D by the product F ·

A. In the discussion that follows, the second method of normalization is used, and thus the matrix F satisfies
equation (3.5).

The equations governing EOF theory can be derived from the eigenequation of the covariance matrix,

where C is the NX û NX covariance matrix = , A is the diagonal matrix of eigenvalues, and F is the
matrix of EOFs. Because C is a real symmetric positive definite matrix, the elements of A are positive. By
definition of the covariance matrix C, (3.7) can be rewritten as

The eigenvectors in the matrix F are now used to define the matrix A = FT · D. This is the principal
component transform. Thus, F · FT = I and necessarily
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At this point the number of EOFs is equal to NT. The purpose of EOF analysis, however, is to produce a
representation of the data that is more compact than the original data set. For this goal to be met, it is necessary
for most of the variance (65 to 80%) in the original data set to be contained in the first few EOFs. (By
convention, the eigenvalues are ordered with the largest being first.) If this is true, then F may be truncated to
produce a new matrix  having just  columns, where . Then  is the approximation to D
computed from the EOF decomposition:

The decomposition is the most efficient representation of D with regard to a mean square error criterion
(Davis, 1976).

Finally, it should be noted that if D contains a noninteger number of cycles of a sinusoidally varying
variance mode, then the variance represented by the associated eigenvalue may not agree with the actual
variance. For example, the variance of a sine wave differs for one-half and one full cycle, but the covariance
matrix  is the same. Hence, the EOF will return the variance for an entire cycle when the data
represent one-half cycle.

A Computational Method. The empirical orthogonal functions can be computed from a singular value
decomposition (SVD) of the data D. When , then (Press et al., 1986)

where U is an NX × NX orthogonal matrix with only NT linearly independent columns, W is an NX × NT
matrix with an NT × NT diagonal upper portion having positive or zero elements, and V is an NT × NT
orthogonal matrix. Note that the diagonal elements in the NT × NT upper portion of W contain the singular
values of D. Call this portion of W the matrix W'. The U and V matrices are orthogonal in the sense that their
columns are orthonormal, that is,

Using this decomposition, the covariance eigenequation can be written as

3 OCEANOGRAPHIC AND ATMOSPHERIC APPLICATIONS OF SPATIAL STATISTICS AND DIGITAL IMAGE ANALYSIS 44

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


which simplifies to

This is equivalent to the eigenequation (3.7) with F  the highest order columns of U and &Lambda;  W2/
NT, using the second method of normalization. Hence, the diagonal elements Wi of W' relate to the eigenvalues
λi of the covariance matrix C via the equation

Thus, the SVD returns the EOFs as the highest order columns of U, and A = W' · VT

Generalizations to Two Dimensions. The EOF decomposition is not confined to space-time series where
space is one-dimensional. If the positions are actually (x, y) coordinates, such as latitudes and longitudes or lines
and samples from images, then if each time step covers the same locations, D(x, y, t) can be reduced to D(x', t).
The sequence of positions x' is constructed by setting

. If one considers x and y to be rows
and columns of an individual time step matrix, then x' is equivalent to concatenating the rows of D together.
Whether one concatenates the rows or the columns is immaterial. (Note, EOF analysis with two-dimensional
images is actually three dimensional: x, y, and t. To render the problem tractable, the spatial dimensions must be
concatenated so that one can work with a two-dimensional space-time matrix.) Then the individual EOFs Fi are
also vectors in x' and, in order to map the patterns of variation associated with the EOFs, this vector must now be
parsed back into its rows and columns.

Example. The purpose of this example is to show that EOF analysis can be useful for determining the
dominant patterns of spatial variance in a sequence of images. (The normalization scheme used in this example is
that of method 1.) For this purpose, a sequence of eight images was constructed by superimposing an image of
an inclined plane with that of a disk that is out of phase with the inclined plane. Note also that the range of data
in the image of the inclined plane is about twice that of the image of the circle. One-half cycle of the image
sequence so constructed is shown in Plate 3.2a. The EOF decomposition of this sequence (Plate 3.2b) identifies
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two dominant patterns of spatial variance in the test sequence. EOF # 1 is an inclined plane that accounts for
67.7% of the total variance in the sequence. EOF #2 is a circle that accounts for 32.2% of the total variance. The
corresponding time series for EOF #1 and EOF #2 (Plate 3.2b) correctly establish the phase relationship between
the two patterns.

Additional Considerations. In remote-sensing applications, multiple observations are generally spread
over different times. Moreover, data are generally not evenly distributed either in time (e.g., due to variations in
orbit) or in space (e.g., cloud cover may obscure some pixels in the scene). These circumstances can bias the
results of an EOF analysis because the EOF analysis is predicated on evenly distributed data in both space and
time. If the NT images in the data set D (equation (3.1)) are not equispaced in time, the resultant EOF
decomposition may be biased toward specific time periods. A practical way to minimize such temporal bias is to
construct a weighting scheme for the images in the data set. Generally, temporal weights are constructed in such
a way as to preserve the total mean and total variance of the data while simultaneously minimizing the temporal
bias (e.g., Kelly, 1985). Spatial data (i.e., one or more of the NX pixels in a given image) are often replaced by
compositing data from other images that surround the given image in time. Care must be taken to ensure that the
composite time scale is very much less than the time step between images in the sequence undergoing EOF
analysis. Other interpolation schemes (e.g., kriging) can also be used to minimize spatial and temporal bias in
EOF analyses resulting from imperfectly sampled data.

There are three ways to compute EOFs: (1) large covariance matrix approach, (2) small covariance matrix
approach, and (3) singular value decomposition. The first two methods involve a direct solution of the
eigenvalue equation of the covariance matrix of the data set D. There are two ways to do this because the data in
the image sequence can be stored in the two-dimensional data array in two different ways. If the data are stored
such that there are NX rows and NT columns, the covariance matrix will be NX × NX. If, however, the data are
stored such that there are NT rows and NX columns, then the covariance matrix will be NT × NT. For most
remote sensing applications, the number of spatial points NX in a given image in the sequence is usually very
much greater than the number of images, NT, in the sequence. Thus the method of data storage giving rise to an
NX × NX covariance matrix is often called the large covariance ma
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trix approach and generally cannot be used in remote sensing applications. Likewise, the method of storage
resulting in an NT × NT covariance matrix is generally called the small covariance matrix approach. It has been
used often in oceanographic and atmospheric applications (e.g., Preisendorfer, 1988). Solution of the eigenvalue
equation of the covariance matrix by singular value decomposition was discussed earlier in this chapter. A
detailed discussion of the various methods of solution of the eigenvalue equation of the covariance matrix, in the
context of EOF analysis, is given by Gallaudet and Simpson (1991b).

3.2.2 Velocity Estimates from Image Sequences

General Comments

All methods of motion estimation based on image sequence analysis depend in some way on the detection
of image brightness gradients. These gradients are defined as normal in direction to contours of constant
brightness (or sea surface temperature [SST] for the case of the Advanced Very High Resolution Radiometer
[AVHRR] flying on the NOAA series of operational satellites). The total velocity v at any point on a contour can
be written as

where v and  are the magnitudes of the normal and tangential velocity components, respectively, and 
and  are the unit vectors in the directions normal and tangential to the contour, respectively. The total velocity
vector can also be decomposed into ordinary Cartesian coordinates

where u and v are the magnitudes of the x and y velocity components, respectively, and  and  are the unit
vectors in the x and y directions, respectively. Below, objective methods for computing the total, normal, and
tangential components of near-surface oceanic flow from sequences of AVHRR data are presented. The
formulation follows closely that of Wahl and Simpson (1990a,b). Note that atmospheric motions can be
computed using these same methods from sequences of either AVHRR or Geostationary Operational
Environmental Satellite (GOES) data.
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Total Flow Field From Pattern Matching

Consider a pair of real, discrete, two-dimensional random functions, s(m, n) and p(m, n). The expectation
value of these random functions can be approximated as the normalized sum over the tile occupied by the
random function in the image. Thus,

where NL and NS are the number of fines and the number of samples in the tile. Assuming stationarity of
their first two cross moments, the auto-covariance and cross-covariance of the two functions are given by

respectively, where E[·] is the expected value, (m0, n0) is the spatial lag between the functions, and ηs and ηp

are given by the function means

It can be seen that the function variances  and  are the zero lag autocovariances. The correlation
coefficient is defined as

such that

If the second signal is an exact spatially lagged version of the first signal,

then equations (3.20) and (3.25) require that the correlation coefficient achieve an absolute maximum value
at this lag, or . For any physical signals, the maximum correlation will be a value less than 1
since the second signal is not necessarily an exact lagged version of the first.
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A detailed discussion of the two-dimensional cross-correlation function is given by Dudgeon and Mersereau
(1984).

Now consider two consecutive satellite SST images mapped to the same spatial grid. These images can be
thought of as two-dimensional discrete functions. Given an image subsection s(m, n) from the second image, the
problem is to determine if it contains a region similar to a smaller subsection p(i, j) from the first image. Let p(i,
j) be called the pattern tile, and let s(m, n) be called the search tile. The pattern tile is a section of the first image
that occupies the same spatial coordinates as the center region of the search tile in the second image. Then, the
correlation matrix between the pattern and search tiles is given by

where ηs(k, l) is the average value of s(m, n) in the subregion coincident with p(i, j), and the summations are
over the coordinates common to both s and p. The value of ηp is computed once outside the summations and is
given by (3.22), where the pattern tile p(m, n) replaces the search tile s(m, n) in (3.18). The ranges of k and l
correspond to the regions of correlation in which p(i, j) is completely contained in s(m, n).

The pattern matching method determines the spatial lag between the pattern tile from the first image and the
search tile in the second image by finding the location of their maximum correlation. With this spatial lag and the
time between the images, the average velocity of the features in the pattern tile can be computed. The most basic
assumption of the method is that the spatial displacement of thermal gradient features can be tracked as if the
shape were time invariant. This assumption would be rigorously true if the correlation (3.27) were equal to 1 for
each pattern-search tile pair. Unfortunately, this condition is never met. Hence, it becomes necessary to
determine an acceptable minimum correlation or correlation threshold (see Wahl and Simpson, 1990a).
Velocities obtained from the pattern matching technique and proper choice of correlation threshold show good
correspondence with observations.

The pattern matching method may also be implemented in the wave number domain. This implementation
uses the discrete Fourier transform (DFT) property
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where * represents the correlation operation, S'(kx, ky) is the conjugate of the DFT of s(m, n), and P(kx,ky) is
the DFT of p(m, n). This is the case because the correlation in the space-time domain and the spectrum in the
frequency-wavenumber domain are Fourier transform pairs (Dudgeon and Mersereau, 1984). Thus, the
correlation between two discrete signals can be computed by taking the product of the DFT of a zero-padded
pattern tile with the conjugate of the DFT of the search tile and taking the inverse DFT of this product. It may
seem that computing the DFT of the discrete functions via the fast Fourier transform (FFT) is a more efficient
approach. In most applications, however, the pattern tile usually occupies a much smaller area than the search
tile. If the number of non-zero terms in the pattern tile is less than 132, it is more efficient to implement (3.27)
than to use the FFT algorithm to compute the correlation function (Campbell, 1969). (For odd size tiles the
Winograd implementation of the FFT is recommended.)

The method used here is similar to other template matching schemes, such as area correlation and matched
filtering (Jain, 1989). Matched filtering involves the construction of a linear filter that maximizes the output
signal-to-noise ratio. Using the matched filtering technique, the area surrounding the pattern is assumed to be
colored noise. If the power spectral density of the noise is known, the signal-to-noise ratio can be maximized by
passing the signals through a high-pass filter before performing the area correlation.

Minimum distortion methods have been used to do interframe registration in video camera systems (Jain
and Jain, 1981). Simpson and Bloom (1990) have applied this method to the computation of near-surface
velocity from sequences of images and have shown that the distortion is simply related to the correlation. In
effect, maximizing the correlation is equivalent to minimizing the distortion assuming that the variance and
standard deviations of the different search tiles remain the same. Both methods yield the same velocity fields
(Simpson and Bloom, 1990) for a given image sequence. However, the minimum distortion method executes
faster because it does not require a standard deviation computation.

The basic assumption of these methods is shape invariance of the pattern under translation. Rotational
motion of the pattern, however, also can occur. Pattern matching techniques that detect rotational motion and/or
combined translational-rotational motion of the pattern have been developed (e.g., Jain, 1989). These methods
are computationally very expensive but will perform well in the presence of curvature in the motion field of the
pattern. Only translational techniques were used herein because they are sufficient to determine the general flow
pattern in the image sequence under consideration.
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The Normal Component of Flow

Marr and Ullman (MU) Method. Early visual primitives can provide clues to establish the motion of
elements in a visual field (Marr and Ullman, 1981). The simplest such primitives are the image raw intensity
values, but these provide no information about the shapes of objects. The next higher-order primitives axe the
zero crossing segments produced by the convolution of an image with the Laplacian of Gaussian (LOG)
operator,  (Marr and Hildreth, 1980). The LOG operator is defined by

where x and y are the number of rows and columns from the function center, is the Gaussian width
parameter, and k is a normalization constant. The parameter σ determines the spatial scales of intensity changes
detectable by the  operator. The  operator is the optimal smoothing bandpass filter in the sense that it
minimizes the product of bandwidth and spatial localization (e.g., Marr and Hildreth, 1980). If I is the demeaned
image function, then locations of zero crossings of the convolution of the  operator with I will correspond
to locations of intensity changes (i.e., gradients). Let this convolution be denoted , where I' is the
output of the convolution. Note the units of I and I' are the same (ºC for AVHRR data). Note also that the LOG
operator (a commonly used edge detector) produces a set of zero crossings in the image. The locations of the
zero crossings (i.e., the edges) are then determined by a zero crossing operator that detects the positions of the
edges by finding the locations of changes in sign in the LOG-convolved image.

The idea of directionally sensitive units, which can establish the direction of movement of an edge detected
by the  operator, was introduced by Mart and Ullman (1981, hereafter referred to as MU) to determine the
motion of visual elements. Given an approximation to the time derivative of I' and the spatial rate of change of I',
the direction of motion of a zero crossing in either the line or sample direction can be determined. The locations
of zero crossings in the first convolved image of the sequence are determined by a zero crossing operator. Then,
at each zero crossing pixel, the normal component of flow can be estimated using the equation
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where the subscript represents differentiation with respect to time, and the unit normal vector  is in the
direction of the gradient . Equation (3.30) is the conservation of heat equation ( ) for the convolved
image I'. If the magnitude of the gradient is negative and  is positive, then motion of the edge is in the positive
x direction. If  is negative, motion is in the negative x direction. The opposite is true if the magnitude of the
gradient is positive. Thus, the negative sign in (3.30) gives the correct direction of the normal component of
flow. It can be seen that a directionally sensitive unit is represented by a transition in the sign of  combined
with the sign of the gradient.

Spatial-Scale Considerations. Methods used to compute the normal component of flow employ small
neighborhoods, typically 4 × 4 pixels or smaller in size. The total velocity is computed over a much larger
neighborhood. Typically, pattern tile sizes vary between 16 × 16 and 32 × 32 pixels. Thus, estimates of the total
velocity via pattern recognition represent the mean motion of the centroid of the pattern as measured by the
displacement of the two-dimensional cross-correlation maximum of the pattern. The normal velocities, however,
provide local estimates of the displacement of small spatial-scale gradient, typically computed over 4 × 4 tiles.
This basic difference in spatial scales further constrains the computation of the tangential flow.

Other Representation

Optical Flow (OF) Method. Optical flow (hereafter referred to as OF) is an estimate of the motion of solid
bodies based on a first-order variation of brightness patterns in an image (e.g., Horn and Schunck, 1981). This
method of computing the velocity field from a sequence of images is based on the solution of two constraint
equations. The first constraint equation relates the velocity in an image to the image brightness (or temperature)
pattern and is called the ''motion constraint equation'':

where  is the material derivative operator, Tt is the partial derivative of brightness (or SST) with respect
to time, and v is the total velocity vector. This equation can only estimate the normal component of velocity
because the tangential component solution is an annihilator (i.e., ).
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The form and physical interpretation of the second constraint used in OF methods is one that has been
widely debated. In general, it seems that the second constraint imposed is not based on any physical
characteristics of the flow field, but, rather, it is a mathematical constraint imposed to produce a unique solution.
Horn and Schunck (1981) used a constraint based on the smooth variation of the flow field to derive an iterative
scheme for computing what they referred to as the "total flow." Various other schemes have been introduced to
estimate the total flow (see Aggarwal and Nandhakumar (1988) for a review of OF methods). It is noted (e.g.,
Horn and Schunck, 1981; Hildreth, 1983; Verri and Poggio, 1989) that the estimate of the total flow field may be
very fax from the actual velocity field, depending on various factors influencing the time series of images.

Given the material derivative constraint (3.31), one assumes that the flow is continuous and varies smoothly
over small spatial scales. One way to define the measure of smoothness is to examine the squares of the
magnitudes of the spatial rate of change of the OF velocity. This can be written as a departure from smoothness
error

where (u, v) is the local total velocity vector, and the subscripts represent differentiation with respect to the
spatial coordinates (x, y). There will also be errors in the estimation of the partial derivatives of brightness
because noise is amplified by differentiation. Thus the equality of (3.31) will not be exact. Define this error term
as

where subscripts indicate differentiation with respect to either a spatial (x, y) or temporal (t) coordinate. The
objective function to be minimized can be written as the integral

where Eb is the error in computing the material derivative, Ec is the measure of smoothness, and α2 is a
weighting parameter. The calculus of variations can be used to minimize this integral. Then the variation
equations can be rewritten as spatial iterative equations
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where the superscript k is an iteration index. The first step is to compute the brightness derivatives at all
points in the image using centered finite differences. Then, starting with an initial estimate of zero velocity, the
method spatially iterates on the velocity values until velocity residual between estimates is small. The resulting
velocity field is then used as the new initial velocity estimate for the next time step if more than one time step is
available. It is interesting to note that updated velocity values in the iteration equations (3.35) do not rely solely
on the previous values at a given point, but rather on the local averages of velocity. Note that the local averages
of velocities typically are computed over small spatial domains and are computationally efficient. The parameter
α2 is seen to be important in regions of small gradient. If the gradients are small relative to α2 then α2 will
dominate any perturbations in the estimation of the derivatives at this point.

Minimum Norm (MN) Solution for Normal Flow. Equation (3.31) gives one equation for the two
unknowns (u, v) of the total velocity. This underconstrained system has fewer equations than unknowns and thus
has an infinite number of solutions. One way to solve such underconstrained systems is to find the solution with
the minimum vector length, or norm (Luenberger, 1969). Equation (3.31) was solved for the normal component
of velocity using the singular value decomposition to obtain the solution of minimum norm (hereafter referred to
as MN) at every point in the given image subsection (Wahl and Simpson, 1990b). It cast again be seen that the
solution yields only the normal component of flow because the tangential component is an annihilator of (3.31).
The MN solution of normal velocity was done on a point-by-point basis on raw temperature data using a
centered finite difference for the derivatives of temperature.

Equivalence of Minimum Norm (MN) and Optical Flow (OF) for α2 = o. Both the MN and OF estimates
of the normal component of flow are based on the same motion constraint equation (i.e., equation (3.31)). The
first error equation used in the OF method (equation (3.32)) is a measure of the smoothness of the flow field. The
second error equation (3.33) is the error in the estimation of the motion constraint equation. The objective
function minimized in the OF method is the integral of the sum of these
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errors (equation (3.34)) where the parameter α2 weights the smoothness error. If α2 is set to zero then the OF
method essentially minimizes the error in the estimation of the motion constraint (3.31). When α2 = 0 the
solution for (3.34) using the OF method converges to the solution of (3.31) using the MN method.

The Tangential Component of Velocity

General Considerations. In the previous section, only the component of flow normal to isobrightness
contours was discussed because the tangential component of flow cannot be calculated directly. The difficulty
arises from what is known as the aperture problem and manifests itself in different ways for each motion
estimation algorithm. In the MU case, the problem occurs when the motion of an oriented edge is detected by a
direction-sensitive unit that is small compared to the moving edge. Then the only information that can be
extracted is the component of motion perpendicular to the local orientation of the edge. Hence the component of
motion oriented along the edge is invisible. In both the OF and MN methods for estimating the normal
component of velocity, the aperture problem manifests itself as the annihilation of the tangential component in
the basic constraint equation (3.31). An alternative interpretation of the aperture problem occurs if a point of
brightness along an isobrightness contour moves along that contour from time tl to time t2; this motion cannot be
detected. These considerations show that a direct method for computing the tangential component of flow is not
possible. Vector decomposition of the known total velocity field, given a known normal component of flow,
however, can yield an estimate of the tangential component of flow. These considerations are consistent with a
proof given by Verri and Poggio (1989).

An Indirect Solution. Given the total flow field computed on a rectangular grid from the pattern matching
method mentioned previously, one can take the normal component of flow and perform a vector subtraction to
obtain the tangential component. This decomposition was performed using the three normal component
representations discussed above. The MU normal component of velocity was chosen for this purpose because
Wahl and Simpson (1990b) have shown that it produces better estimates of the normal component of velocities
than either the OF or MN method.

The MU method velocities are computed only at the points of zero crossings of edges. These vectors must
be spatially aligned on the same grid as
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that of the total velocity prior to the decomposition. To estimate the normal components of velocity at the
locations of the total flow, the MU normal components were subsectioned into the same size tiles as the total
flow. The normal velocities which fell within the region of the pattern tile area of the first image were then
averaged to produce an overall average normal velocity for a given tile. This procedure is consistent with the
assumption that the total velocity vector produced by the pattern matching technique represents the average
velocity of the feature in a pattern tile. The mean normal component of flow was then decomposed into its
Cartesian components and these components were used in the final vector decomposition to compute the
tangential component of flow.

Example

A sequence of cloud-free AVHRR images for a region off the central California coast was co-registered to a
latitude-longitude grid and calibrated to SST (Plate 3.3). The image is stored as a matrix where, by tradition in
image analysis, the row index is referred to as a line and the column index is referred to as a sample. Co-
registration is the process of mapping images observed in the line and sample domain to the same latitude and
longitude domain using an appropriate map projection (e.g., Brush, 1985; Jezching and Jain, 1989). Calibration
is the process of converting the raw measured brightness counts in one or more of the images to a geophysical
variable (e.g., Kaufman, 1988). This sequence is characterized by a cold-water filament extending southward
from the top of the sampled region. Thermal structure edge maps for time step 2 of the image sequence were
computed using the LOG operator with a value of σ = 5 (Plate 3.4a). Motion inferred from these edge maps
agrees well with estimates of the total flow field computed using the pattern matching method (Plate 3.4b).

These edge maps were then used to compute the normal component of velocity of the thermal structure over
time using (3.30) at the zero-crossing points. A centered finite difference scheme was used to compute the spatial
gradient of I', and a single time-centered difference was used to approximate the temporal derivative of I'. It is
important to emphasize that the MU method (i.e., equation (3.30)) only yields an estimate of the normal
component of velocity near a well-defined edge (Plate 3.4a). The normal component of flow so obtained
(Plate 3.4c) accurately represents motion inferred from the edge maps. Note especially the north-south oriented
feature in the center right region (see region marked 3 in Plate 3.4c). The tangen
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tial component of flow (Plate 3.4d) again shows good correspondence with motion inferred from the edge maps.
Ideally the estimated normal and tangential components of flow should be orthogonal. The need for spatial

averaging of the normal components, however, may introduce directional errors in the approximation of the
tangential component. Wahl and Simpson (1990b) have shown that typically the angles between the normal and
tangential components of flow are between 75º and 80º. Thus, this method generally will not produce an exact
tangential solution. It does, however, produce an approximate tangential solution, which cast be useful in many
oceanographic applications (e.g., computation of the offshore transport of nutrients associated with coastal
upwelling). It should be reemphasized that there is no direct method for computing the tangential component of
motion from sequences of image data.

3.2.3 Ice Floe Identification and Principal Curves

Overview of Banfield and Raftery Algorithm

Knowledge of the spatial distribution, size, and shape of ice floes is critical to understanding physical
processes in polar regions and the potential role of these processes in studies of global warming. Moreover, in
high-latitude zones, shipping, naval operations, fishing, and the successful deployment of offshore structures are
all strongly influenced by the distribution of the polar ice pack. Banfield and Raftery (1989) have developed an
automated procedure for identifying ice floes in Landsat data. Automated procedures are needed for several
operational reasons: (1) to handle the huge volume of data; (2) to eliminate intercalibration problems associated
with subjective analyses; and (3) to improve on the poor performance records of human analysts working under
the adverse weather conditions often associated with polar operations. The Banfield and Raftery method uses
principal curves (Hastie and Stuetzle, 1989), an erosion propagation algorithm, and a method for clustering about
principal curves to automatically identify the floes. Only the major elements of the method are reviewed here:
the interested reader is referred to Banfield and Raftery (1989) for details of the procedure.

Hastie and Stuetzle (1989) developed the concept of a principal curve. A principal curve can be thought of
as a smooth one-dimensional curve that passes through the middle of an m-dimensional data set. It is
nonparametric, and its shape is suggested by the data; it thus provides a nonlinear summary
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of the data (Banfield and Raftery, 1989). A one-dimensional curve in m-space is an m-vector consisting of m
functions of a single variable λ, called coordinate functions. The variable λ parameterizes the curve and provides
an ordering along it; λ often is the arc length along the curve. Let  be a continuous random vector.
Then f(λ) is a principal curve if

where

Given the distribution of , Hastie and Stuetzle (1989) proposed the following algorithm for finding f:

where fi is the ith iterate. If the distribution of  is unknown, then an estimate of f can be obtained from the
data set {xi} by estimating . Hastie and Stuetzle (1989) obtain this estimate by scatterplot
smoothing.

Banfield and Raftery (1989) noted that scatterplot smoothers generally produce curves that are biased
toward the center of curvature. They modified the Hastie and Stuetzle (1989) principal curve estimation
algorithm to reduce bias and variance by using projections of the data rather than the data itself to model the
principal curves when the distribution is unknown.

Next, Banfield and Raftery (1989) used an erosion-propagation (EP) algorithm to select potential edge
pixels and to provide an initial grouping of the edge pixels into floe outlines. The EP algorithm operates on a
binary image. Hence, the Landsat data must be binarized by thresholding prior to EP analysis. Banfield and
Raftery (1989) justified this procedure by noting that the marginal distribution of pixel intensities in the high-
resolution polar Landsat data is highly bimodal. They further noted that the final result is relatively insensitive to
the precise value of the threshold chosen. The erosion part of the EP algorithm identifies potential edge elements
by using standard concepts from mathematical morphology (Serra, 1982), while the propagation part keeps track
of the floe to which an edge pixel belongs by locally propagating the information about the edge elements into
the interior of the floe as it is eroded. The algorithm is applied iteratively to the binarized image.
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Banfield and Raftery (1989) noted that the EP algorithm tends to subdivide floes. Therefore, they developed
a method, based on clustering about the closed principal curves, for determining which of the floes identified by
the EP algorithm should be merged. This final component of the overall procedure to identify ice floes in polar
Landsat data is hierarchical and agglomerative.

Example

Shown in Plate 3.5a is a polar Landsat image. This image is 200 × 200 pixels, where each pixel is an 80-m
square. The entire image represents a 15 × 15 km area. Ice floes appear as the gray features against the darker
background. Ice floe outlines for this image, obtained using the Banfield and Raftery (1989) algorithm, are
shown in Plate 3.5b. The algorithm accurately identifies the distribution, size, and shape of the floes on space
scales of 200-300 m and larger.

3.3 STORAGE AND IMAGE REPRESENTATION

A typical AVHRR image consists of five channels of matrix data. The matrix size typically is in the range
of 4,000 lines by 2,000 samples. Generally, the 10-bit sample is stored as a 16-bit integer with the upper 6 bits of
each sample filled with zeros. All of these factors work out to about 80 to 100 megabytes (Mb) of archived data
for a typical single scene. Use of satellite data sets in the analysis of problems related to global-scale climate
processes may require the analysis of literally thousands of such images. Thus, there is a need to have efficient
storage and economical data structures for proper and efficient representation of the image data.

3.3.1 Storage Considerations

The primary archive of satellite data is generally the raw digitized telemetry stream directly received from
the satellite. For multispectral images, the data are usually band interleaved rather than band sequential, usually
contain embedded calibration information, and often include other data needed for proper Earth location of the
scene. This data structure is inherently one-dimensional and has little resemblance to the two-dimensional image
data structures normally associated with satellite images. (Note, however, that
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the more familiar two-dimensional satellite images are subsequently constructed from this telemetry stream
using some set of mathematical transformations.) These data generally are called "level 1" data and are mandated
for primary archives because higher-level data (e.g., the two-dimensional images) often are produced by
irreversible transformations. Moreover, level 1 data usually consist of 10-bit (e.g., AVHRR, CZCS) or less (e.g.,
DMSP) data strings packed into zero-filled 16-bit integer format for convenience.

Data compression techniques and optical disc storage technology clearly are required if the data storage
issue is to be adequately addressed. (Data compression is the process of reducing the number of bits required to
store a given amount of information without loss of information.) For example, tests with a recent compression
algorithm using Lempel-Ziv-Welch (LZW) coding (Welch, 1984) conservatively show that the average 80-Mb
scene can be compressed to 32 Mb. This represents a 60% reduction in size from the original data set. Some
scenes may be compressed by as much as 75% with LZW coding.

The LZW compression algorithm has two main competitors currently in common use: Huffman coding and
run length coding (RLC). The Huffman coding algorithm is not well suited to satellite data: preliminary tests
indicate that only a 14-20% reduction in size is achievable (Jain, 1989). Furthermore, it is much slower than the
LZW algorithm. The RLC algorithm was originally designed to vectorize bit maps. It is designed to work on
strings of bits which are all 1s or 0s (Jain, 1989). This makes it impractical for satellite data, which tends to vary
too much (i.e., the strings of uniform 1s or Os are too short). While the upper 6 bits of each 16-bit sample can be
coded efficiently with the RLC algorithm, the remaining 10 bits pose a serious problem for RLC methods.
Preliminary tests show that the estimated size reduction obtained from RLC algorithms will be in the 10-25%
range. The speed of the RLC is comparable to that of LZW. These considerations show that the LZW
compression algorithm is best suited to the proposed task.

Preliminary tests also indicate that decompressing a typical satellite pass so that it can be used for analysis
can take as much as 20 minutes per pass. This time factor depends on the speed of the disc and processing unit.
No compression algorithm can get around this problem; increased access time is the trade-off for decreased
space usage.

Data compression techniques are also needed for the two-dimensional higher level satellite images.
Unfortunately, most two-dimensional algorithms either achieve speed by creating distortion in the data or
achieve lack
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of distortion by requiring excessively long execution times. Considerable research is needed to develop efficient
two-dimensional compression/decompression algorithms which do not distort the data.

3.3.2 Image Representation

The data structure selected to represent the spatial data in an image will have a critical effect on the
implementation and final performance of the analysis algorithm. The quadtree and octree are hierarchical data
structures often used to represent spatial data. The term quadtree is used to describe a class of hierarchical data
structures whose common property is that they are based on the principle of recursive decomposition of space
(Samet, 1989). They can be differentiated on the following bases: (1) the principle used to determine the
decomposition process, (2) the resolution (variable or constant), and (3) the type of data they are used to
represent. The prime motivation for the development of the quadtree is the need to reduce the amount of space
necessary to store data through the use of aggregation of homogeneous blocks (Samet, 1989). An important by-
product of this aggregation is the reduction in execution time of an analysis process. Quadtrees have proved to be
useful data structures for dithering algorithms, computing geometric properties of images, implementation of
linear image transformations, development of hierarchical hidden-surface algorithms, and ray tracing. The
quadtree is only one of several digital data structures useful in spatial statistics and digital image analysis.

The constraints on and the need for the large-scale use of remotely sensed images in studies of global
change is clear. Research is required in areas of both data storage and image representation if optimal use of
remotely sensed data by the earth sciences community is to be achieved.

3.4 SPECIAL CONSIDERATIONS

Remote sensing of the environment with earth-observing satellites poses some additional considerations
beyond those normally encountered in laboratory-based applications of digital image analysis. In the laboratory,
both illumination and viewing geometry can be controlled. Moreover, the imaging detector is close to the object
being detected, and any interfering influence between imaging detector and object can be minimized. Finally,
one generally has a good notion of what constitutes the detected object. In contrast, earth observing satellites
typically fly 800-900 km above the surface of the

3 OCEANOGRAPHIC AND ATMOSPHERIC APPLICATIONS OF SPATIAL STATISTICS AND DIGITAL IMAGE ANALYSIS 61

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


earth. Viewing geometry and illumination are not controlled and can vary greatly from orbit to orbit. The
800-900 km layer of atmosphere between target and detector acts as a filter that varies spatially and temporally,
often partially corrupting image quality. There is the need to accurately project the image taken 900 km above
the Earth onto a flat map projection suitable to the particular application under study. Thus atmospheric
correction algorithms (e.g., Curran and Dungan, 1989; Kaufman, 1988; Gratzki and Gerstl, 1989; Simpson and
Humphrey, 1990), sensor calibration algorithms (e.g., Gordon et al., 1983; Eckstein and Simpson, 1990a), and
earth location algorithms (e.g., Brush, 1985; Goshtasby et al., 1986; Jezching and Jain, 1989) are all pre-
processing steps essential prior to meaningful mathematical analysis.

3.5 SUMMARY

Remote sensing provides the only practical way to obtain the large-scale synoptic data sets necessary to
address major problems of global significance in earth science that are fundamentally cross-disciplinary in
nature. The magnitude of the data set, however, may preclude meaningful understanding unless it can be distilled
and synthesized into organized patterns of variance that can be meaningfully related to the underlying governing
physics, chemistry, and biology of global-scale cycles and processes. Spatial statistics and mathematical methods
of digital image analysis provide mechanisms for such a synthesis. The examples cited herein included principal
component analyses, which are useful for image segmentation and for determining spatial patterns of variance in
large data sets; edge detection; pattern matching; optical flow methods, which are useful for determining fields
of motion from sequences of image data; and principal curves, which are useful for determining the spatial
distribution, size, and shape of ice floes observed from spacecraft data. Atmospheric correction algorithms,
sensor calibration algorithms, and earth location algorithms generally are required as pre-processes to digital
image analysis of remotely-sensed images. Each of these pre-processing areas contains challenging mathematical
problems which will have to be solved before earth sciences can benefit from the full potential of remote-sensing
technology.
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Appendix to Chapter 3

Listed below are definitions and explanations for abbreviations commonly used in remote sensing.
AVHRR— The Advanced Very High Resolution Radiometer on the National Oceanic and Atmospheric

Administration's polar-orbiting weather satellite. It measures cloud cover and infrared sea
surface temperature.

DFT— Discrete Fourier transform.

EOF— Empirical orthogonal function.

EOS— Earth Observing System. A proposed National Aeronautics and Space Administration program
for earth observing systems to be launched between 1997 and 2007.

FFT— Fast Fourier transform.

GOES— Geostationary Operational Environmental Satellite. An operational weather satellite used to
measure cloud cover. Estimates of solar radiation often are computed from GOES data.

LOG— Laplacian of the Gaussian operator.

LZW— Lempel-Ziv-Welch coding used in data compression algorithms.

MN— Minimum norm solution.

MU— The Marr-Ullman solution for the normal component of velocity.

OF— Optical flow method of computation.

RLC— Run length coding used in data compression algorithms.

SST— Sea surface temperature.
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4

Spatial Statistics in Environmental Science

Peter Guttorp
University of Washington

4.1 INTRODUCTION

During the last 15 years much attention has been focused on environmental problems, such as tree and lake
death from acidic precipitation, global warming due to increased carbon dioxide concentration, and a possible
reduction of the ozone layer in the stratosphere. For example, the problem of long-term trends in atmospheric
deposition was the subject of a recent report of the National Research Council (1986). Many statistical problems
are emerging from research in the environmental sciences. This chapter addresses the estimation of spatial
covariance, with an application to a solar radiation network. Also discussed briefly are some aspects of
monitoring network design and the usefulness of point process models in developing global climate models.

4.2 ESTIMATING SPATIAL COVARIANCE

The fundamental problem of environmetrics is that the observable processes of interest are highly variable.
Noise typically overwhelms the signal. For example, when studying wet deposition of sulfate or nitrate at a
location, the variability of rainfall constitutes a large fraction of the observed variability (Pollack et al., 1989).
Statistically precise methods for signal extraction are vital for policymakers.

SPATIAL STATISTICS IN ENVIRONMENTAL SCIENCE 71

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


In order to assess the severity of an environmental insult, the researcher typically has access to monitoring
data from a relatively sparse network of stations, while assessment of the mean level (averaged both temporally
and spatially) is needed over unobserved locations. Thus it is necessary to use spatial interpolation methods. The
most common such method, namely kriging, is discussed in Chapter 5 of this report. A Bayesian nonparametric
method for interpolation, called regularization, has been developed by Zidek and coworkers (Weerahandi and
Zidek, 1988; Ma et al., 1986) with environmental applications in mind. Common to these methods is the
necessity to determine the spatial covariance.

The development of nonparametric procedures for interpolating observed spatial covariances of a random
function sampled at a finite number of locations has lagged well behind the development of interpolation
methods for the expected value of the underlying function. The kriging and regularization methods mentioned
above depend explicitly on the spatial covariance or variogram functions. Most approaches to modeling spatial
covariance structure have been parametric and have assumed isotropy and/or stationarity. The best-known
models are parametric forms for the variogram originating in Matheron's theory of regionalized variables. The
common assumption of a spatially stationary variogram in kriging analyses was called the ''intrinsic dispersion
law'' by Matheron. Switzer and Loader (1989) propose a less parametrically oriented method to fit empirical
dispersion or covariances. Since the empirical site-pair covariances may themselves be subject to sampling
variability, some degree of parametric modeling is required, which at the same time respects the apparent
heterogeneity in the covariance field. Basically, a parametric covariance model is forced on the available
empirical covariances, and modified covariance estimates are obtained by shrinking toward the parametric
covariances.

A nonparametric approach to global estimation of the spatial covariance structure of a random function Z(x,
t) observed repeatedly at a finite number of sampling stations xi, i = 1, 2, . . ., N, in the plane has been developed
by Sampson and Guttorp (1990). The true covariance structure is assumed to be neither isotropic nor stationary,
but rather a smooth function of the geographic coordinates of station pairs (xi, xj). Using a variant of
multidimensional scaling (MDS), a two-dimensional representation for the sampling stations is computed for
which the spatial dispersions Var(Y(xi) - Y(xj)) are approximated by a monotone function of interpoint distances.
That is, in terms of this second two-dimensional representation, the spatial covari
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Figure 4.1:
The 12-station solar radiation monitoring network in Lower Mainland, British Columbia, Canada. Reprinted, by
permission, from Hay (1984). Copyright © 1984 by Pergamon Press.

ance structure as represented by the spatial dispersions is stationary and isotropic. (These variances are
usually fitted by parametric models for the variogram.) Thinplate splines are applied to compute a smooth
mapping of the geographic representation of the sampling stations onto the MDS representation. Biorthogonal
grids, introduced by Bookstein (1978) in the field of morphometrics, can be used to depict the mapping. This
mapping yields a nonparametric method for estimating Var(Y (xa) - Y (xb)) for any two unsampled locations xa

and xb in the geographic plane, and a graphical representation of the global spatial covariance structure. The
resulting nonparametric models for spatial covariance are constrained to be positive-definite—or, in the
terminology of geostatistics, the variogram models are conditionally non-negative-definite. This is obtained by
fitting a mixture of covariance functions of Gaussian type in the MDS step of the algorithm.
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Figure 4.2:
Daily solar radiation totals for Vancouver International Airport (site 4): (a) raw; (b) transformed.

4.2.1 Example: Spatial Variation in Solar Radiation

We present here a preliminary analysis of data collected from a solar radiation monitoring network in
southwestern British Columbia, Canada (Hay, 1984), with a view toward determining the feasibility of solar
power generation in British Columbia. This example manifests a somewhat extreme but easily understood form
of nonstationarity in the spatial covariance structure of the solar radiation field. Figure 4.1, taken from Hay
(1983), displays the locations of the 12 monitoring stations.

The data consist of daily solar radiation totals (MJ m2day-1) for the years 1980-83. Figure 4.2 plots the data
for the monitoring station at Vancouver International Airport. Note the relatively sharp upper bound on the
maximum solar radiation as a function of season. Sivkov (1971, Chap. 7) explains how and why the maximum
solar radiation (observed on cloudless days) varies approximately as a sine function with minimum at the vernal
equinox. A reasonable stochastic model for observations at one location is thus
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where observations are taken daily (t = 1,2, . . ., 365), i,t is a random variable taking values on the interval
(0, 1] to express atmospheric attenuation effects, and  represents a mean zero measurement error effect.
Cloudiness is the principal factor determining t. As the first step in our analysis, we estimate the parameters a
and β, which define the maximum expected solar radiation as a function of day of year. We then scale all the
data as a percentage of the estimated seasonally adjusted maximum possible solar radiation. Thus we attempt to
focus on analyzing the spatial structure of t. These data have a concentration of values near the maximum of
100%, and so we compute covariances among monitoring stations using a logit transformation of the percentage-
of-maximum data. These transformations removed the major aspect of seasonality associated with the orientation
of the earth with respect to the sun. However, the spatial covariance structure retains seasonal structure because
of variation in the atmospheric processes. We therefore analyze the spatial structure of the data separately by
season. Here we present only the results for the combined spring and summer quarters (vernal equinox, March
22, through autumnal equinox, September 22).

Interstation correlations are very high for these data, and the dispersions are closely related to geographic
distances among the stations. Figure 4.3 shows the distribution of monitoring stations in the D-plane as
determined by MDS applied to the matrix of dispersions. The most obvious deviation between the two planar
representations is in the relative location of station 1, Grouse Mountain. The Grouse Mountain station is at an
elevation of 1128 meters while all other stations lie below 130 meters. This orographic feature explains the
relatively high dispersions (low covariances) between station 1 and all the others as reflected in the scaling in
Figure 4.3.

4.3 NETWORK DESIGN

The purpose of a monitoring network is to detect potential changes in key environmental parameters. The
designer of a long-term monitoring network cannot fully foresee all of the benefits that may be derived from the
network by its future users. Environmental engineers, resource developers, biologists, human health agents, and
so on, will need the data for a variety of purposes, some of which will not even have been identified. In addition
to the hypothesis testing mentioned above, there is a need for inference about changes in areal averages, and
about the areal maximum of such changes. The network may be regarded simply as an information gathering
device.
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Figure 4.3:
Transformation of the G-plane configuration of solar radiation monitoring stations (left) into the D-plane
configuration (right).

There are objectives where the choice of design may not be critical. Switzer (1979) argues that for
estimating areal averages, the search for a design that minimizes mean squared estimation error is unnecessary,
since the criterion is relatively insensitive to design changes among sensible designs. The optimal design is very
model-dependent, and the mathematics are invariably difficult. He argues that designs intended for this purpose
might better be chosen on a priori grounds, avoiding clustering and with regard to topography and subregions of
greater variability. Unfortunately, the situation is not always so simple. In impact detection, for example, the
choice of the design is critical.

Kriging has its attendant theory of design, based on minimizing mean squared estimation error (Cressie et
al., 1990). For impact design, this criterion may not be the most natural. Rather, one wants to maximize the
power of the test.

In general, the appropriate design criterion is as uncertain as the objective itself (see Rodriguez-Iturbe,
1974, for a discussion). Caselton and Zidek
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(1984) argue that a reasonable design criterion will be based on an index of the information transmitted. A
particular set of monitoring stations is good if it provides a lot of information (in the sense of Shannon) about
unmonitored sites (see §4.3.2).

4.3.1 Impact Design

Suppose we need to assess the effect of a potential impact taking place at a known time. Typical examples
are changes in environmental requirements, closure or startup of potential pollution sources, and environmental
disasters. The null hypothesis is that of constant mean before and after the change. Suppose that it is feasible to
make observations at any point on the grid of potential monitoring sites before and after the known time of
potential change. According to an emerging body of evidence, it is very difficult to detect even fairly large
changes in ambient levels with high probability. For example, Hirsch and Gilroy (1985) use a certain
nonparametric testing procedure, a sulfate deposition model fitted to data from New York state, and simulated
sulfate deposition experiments with step changes of various magnitudes, including 20%. They show that with
one monitoring station, 90% power requires 15 years of post-change records with 5 years of pre-change records.
Using 8 stations, one still needs 2 years of post-change records, and adding more stations does not yield
appreciable reductions. Much of the difficulty is the result of the large component of meteorological variability
in deposition. In the work of Vong et al. (1988), a design based on meteorological criteria was used to reduce
this variability, which yielded unambiguous evidence of the local deposition effect of a copper smelter.

Regard a design D as a set of labels designating the sampling sites. The region of interest is overlain with an
imaginary grid of potential sites from which D is to be chosen. An impact is regarded as a random field Z,
coveting the whole region. At site i, Zi is the size of the change owing to development and other uncontrolled
factors. Only Zi with i in D will in fact be measured (with error) once D is specified.

Suppose that K replicate measurements of Zi are taken at each site in D. Their variability is assumed
constant over i, and indicates the precision of the process of measurement. Changes will be measured against this
variance. A strategy (suggested, e.g., by Green, 1979) can be used to reduce the impact of temporal effects. Sites
outside areas of likely impact are admitted as possible quasi-controls. These do increase the power of tests, even
though they, strictly speaking, are not controls. The null hypothesis (again following
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Green, 1979) is that of no time-space interaction. Assuming the standard two-way fixed effects ANOVA model,
the F-statistic has power depending on the noncentrality parameter which can be estimated by

where ZD is the average of the observations. In some special cases it is possible to maximize E(δ2). Suppose
that the area of potential impact can be divided into a collection of homogeneous zones (this has to be done using
expert knowledge). Then the problem of maximizing the expected non-centrality parameter is reduced to that of
finding the optimal sampling fractions, which is a quadratic integer programming problem (Schumacher and
Zidek, 1989). Simulated annealing is being explored as an alternative approach to the optimization (Sacks and
Schiller, 1988).

4.3.2 Information Transmission Network Design

The future benefits that may be derived from a network cannot all be specified in advance. Even when a
network is designed with a particular objective in mind, it is quite common that the answer to very different
questions must be elicited from the data once the network is operational. Caselton and Zidek (1984) suggest
circumventing these difficulties by an approach that may be suboptimal in specific cases but has overall merits
for these types of networks.

We let Z denote a random field of measurable quantities indexed by potential site labels i. We decompose Z
into the gauged sites  and the ungauged sites U. The choice of D will be made to maximize
the amount of information in G about U. Here the information measure is taken to be

, Shannon's index of information transmission, where  is the
conditional density of U given G, and f(U) the a priori density of U.

A simple special case is when the random field is multivariate normal, when ,
where I is the identity matrix, and R the diagonal matrix whose elements are the squared canonical correlation
coefficients between U and G. These can be obtained from estimates of the spatial correlations, for example,
using the method of Sampson and Guttorp mentioned in the previous section.

For particular patterns of the covariance matrix of Z, derived from models of acidic deposition (such as that
used by Vong et al., 1988), it is possi
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ble to develop workable approximations to the canonical correlations and to solve the design problem in terms of
signal-to-noise ratios at gauged and ungauged sites, respectively. The analysis suggests the importance of
replicate measurements at gauged sites (Guttorp et al., 1987, section 3.3).

Figure 4.4:
The MAP3S monitoring network.

Example: Finding the Least Informative Station in a Network

The Multistate Atmospheric Power Product Pollution Study/Precipitation Chemistry Network (MAP3S/
PCN) of nine monitoring stations (Figure 4.4) in the northeastern United States was initiated in 1976 with the
objective of creating a long-term, high-quality data base for the development of regional transport and deposition
models. There is substantial seasonal variability in the data, and we concentrate here on log deposition of H+,
using four-week totals for January through April. Guttorp et al. (1991) has further details. In order to decide
which station carries the least information in the network, we need to compute the information in the network
leaving out each station in turn. Thus the station left out is considered ungauged, and all the other
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stations are gauged. For each station left out, we compute I(U,G) from the other stations in the network. The
analysis of canonical correlations (which for one ungauged site simplifies to the multiple correlation coefficient)
indicates that the three stations in Illinois, Ohio, and Pennsylvania each have significantly higher multiple
correlations with the remainder of the network than have any other stations. The results are listed in Table 4.1,
where it is seen that Illinois, Ill., is the least informative station in the network, in the sense of being best
predicted by the other stations. In other words, the gauged stations have the highest information about the
(presumed) ungauged station at Illinois.

TABLE 4.1: Multiple Correlation Coefficients

Station(U) I(U, G) standard error
Lewes, Del. .26 .08
Illinois, Ill. .66 .10
Ithaca, N.Y. .49 .09
Whiteface, N.Y. .40 .09
Brookhaven, N.Y. .42 .09
Oxford, Ohio .58 .10
Penn State, Pa. .57 .10
Virginia, Va. .31 .08
Oak Ridge, Tenn. .29 .08

It is worth noting that the stations at Oxford, Ohio, and Penn State, Pennsylvania, are not significantly
different from the Illinois station. On the other hand, the geographically extreme stations in Delaware, Virginia,
and Tennessee are all poorly predicted, and are therefore highly informative stations.

4.4 MODELING PRECIPITATION USING SPACE-TIME POINT PROCESSES

An environmental problem of enormous potential impact is the global warming due to increased CO2

concentration in the atmosphere. Much effort has been extended to develop realistic models of global climate in
order to be able to assess the potential impact of changes in atmospheric gasses on dif
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ferent aspects of weather patterns. In order to do this, hydrologists have found it useful to employ stochastic
models of precipitation, which is an important factor in climate change, and also itself affected by climate
change. Such models have also found important applications in assessing the risk of flash floods and in design of
dams.

A realistic stochastic model of rainfall must take into account the physical structure and organization of
storms, such as the description of cyclonic storms in Hobbs and Locatelli (1978). In essence, the storm system
contains mesoscale rainbands, which contain smaller mesoscale regions, or precipitation cores, which are
characterized by higher rainfall rates. These cores originate in generating cells aloft (in warm frontal bands) or
within layers of potentially unstable air (in cold frontal bands). This description was used by Waymire et al.
(1984) and by Kavvas and Herd (1985) to construct appropriate stochastic models, following the work of Le
Cam (1961). In what follows, we essentially follow the Waymire et al. description.

The essence of the Waymire et at. (1984) model is the following stochastic representation of the rainfall
intensity ξ at time t and location z:

where gη is a dispersion function, representing the rainfall intensity from a given cell born at ( )
depending on the random variable η, and X( ) counts the rain cells alive in an infinitesimal neighborhood
of ( ). Thus X is a point process that has the structure of a cluster process (see Daley and Vere-Jones, 1988,
and the discussion in chapter 7 of this report). From this representation, it is easy to write down formulae for the
mean and covariance of the random field ξ. In order to get useful results, one needs to make a few more
assumptions. If it is reasonable to assume that the dispersion of a rain cell is independent of the occurrence of
rain cells, then the expected value can be written

where  is the kth order product moment density for the point process X, measuring the joint probability
density of k events. It may be reasonable to assume that spatial and temporal features are separable, in the sense
that
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and

With these assumptions, it is easy to see that

where [f1 * f2] is the convolution of f1 with f2.
Similar computations yield that

If, in addition, , the covariance simplifies to J2.
Most processes of interest can be written as a function of the intensity process ξ. For example, the dry area

in a region A during the time interval (t1,t2) can be expressed as

where 1(B) is the indicator function of the set B, and  is the limit of detectability. Of course, the process ξ
itself cannot be observed; we only observe time integrals of ξ at given points.

The detailed structure of the parameter functions discussed here is currently the emphasis of intense
research in the hydrological community. A discussion of some of these features is given in Guttorp (1988).
Recent advances in satellite and radar imagery enables the identification of some of the major features of the
model, and thus can both suggest functional forms for some of the parameter functions and permit testing the
goodness of fit of the model. The problem of parameter identification from time-averaged quantities is discussed
in Guttorp (1986) for the nonspatial case when only presence or absence of precipitation at a single station in
each time interval is recorded, and in Guttorp and Thompson (1990) for the case when counts of
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the number of events in each time interval are recorded. Generally, because of the intractable nature of the
likelihood function, estimation is usually based on the method of moments. Further discussion of problems
involved in spatial and temporal averaging of precipitation data and the attendant problems of parameter
estimation can be found, e.g., in Rodriguez-Iturbe et al. (1974), Valdes et al. (1985), Rodriguez-Iturbe and
Eagleson (1987), Sivapalan and Wood (1987), and Phelan (1991).
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5

Geostatistical Analysis of Spatial Data

Noel Cressie
Iowa State University

5.1 INTRODUCTION

All data have (more or less) precise spatial and temporal labels associated with them. That is, a
measurement is obtained from a particular location at a particular time, although that information may be lost by
omission or made less precise by aggregation. For most of this chapter, it is assumed that only the data's spatial
labels are important—hence the term spatial data.

As a discipline, spatial statistics has components of all the classical areas of statistics, such as design,
statistical methods (including data analysis and diagnostics), stochastic modeling, and statistical inference.
Importantly, the spatial labels form an integral part of a spatial statistical analysis. Geostatistics is the area of
spatial statistics that is concerned mostly with prediction of unknown values at given locations (or of
aggregations over given regions). Typically, the prediction is based on univariate and bivariate distributions of
the spatial values, and these distributions (or appropriate moments of them) are estimated from an initial analysis
of the data.

The prefix ''geo'' in geostatistics originally implied statistics pertaining to the earth (Matheron, 1963; see
also Hart, 1954, who used the term differently from Matheron, in a geographical context). However, more
recently, geostatistics has been used to solve problems in agricultural engineering, atmospheric science, ecology,
forestry, hydrology, meteorology, remote sensing, etc. Although it is Matheron's development of the area within
mining
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that is best known, a Soviet meteorologist, L. S. Gandin, independently developed a framework for inference that
is virtually identical (Gandin, 1963); he chose the term "objective analysis" instead of "geostatistics."

Section 5.2 presents the basic ideas behind a geostatistical analysis, including a brief discussion of splines
and conditional simulation. The first part of §5.3 gives several applications of geostatistics, and the second part
discusses recent advances and future directions.

5.2 THEORY AND METHODS OF GEOSTATISTICS

Geostatistics is mostly concerned with spatial prediction, but there are other important areas, such as model
selection, effect of aggregation, and spatial sampling design, that offer fruitful open problems; see §5.3.2. The
emphasis in this section will be on a spatial-prediction method known as kriging. Matheron (1963) coined the
term in honor of D. G. Krige, a South African mining engineer (see Cressie, 1990, for an account of the origins
of kriging).

5.2.1 The Variogram

First, a measure of the (second-order) spatial dependence exhibited by the spatial data is needed. A model-
based parameter (which is a function) known as the variogram is defined here; its estimate provides such a
measure. Statisticians are used to dealing with the autocovariance function. It is demonstrated here that the class
of processes with a variogram contains the class of processes with an autocovariance function, and that kriging
can be carried out on a wider class of processes than the one traditionally used in statistics.

Let  be a real-valued stochastic process defined on a domain D of the d-
dimensional space Rd, and suppose that differences of variables lagged h-apart vary in a way that depends only
on h. Specifically, suppose

typically the spatial index s is two -or three-dimensional (i.e., d = 2 or 3). The quantity 2γ(·), which is a
function only of the difference between the spatial locations s and s + h, has been called the variogram by
Matheron (1963), although earlier appearances in the scientific literature can be found. It has been called a
structure function by Yaglom (1957) in

GEOSTATISTICAL ANALYSIS OF SPATIAL DATA 88

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


probability and by Gandin (1963) in meteorology, and a mean-squared difference by Jowett (1952) in time
series. Kolmogorov (1941) introduced it in physics to study the local structure of turbulence in a fluid.
Nevertheless, it has been Matheroh's mining terminology that has persisted. The variogram must satisfy the
conditional negative semi-definiteness condition,  for any finite number of spatial
locations  and real numbers  satisfying  When 2γ(h)
can be written as , for , the variogram is said to be isotropic.

Variogram models that depend only on a few parameters  can be used as summaries of the spatial
dependence and as an important component of optimal linear prediction (kriging). Three basic isotropic models,
given here in terms of the semivariogram (half the variogram), are:

Linear model (valid in Rd, )

Spherical model (valid in R1, R2, and Rs)

Exponential model (valid in Rd, )

Another semivariogram model is the rational quadratic model (valid in Rd, ):
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A semivariogram model that exhibits negative correlations caused by periodicity of the process is the wave
(or hole-effect) model (valid in R1, R2, and R3):

A further condition that a variogram model must satisfy is (Matheron, 1971)

In fact, the power semivariogram model,

is a valid semivariogram model in Rd, .
When the process Z is anisotropic (i.e., dependence between Z(s) and Z(s + h) is a function of both the

magnitude and the direction of h), the variogram is no longer purely a function of distance between two spatial
locations. Anisotropies are caused by the underlying physical process evolving differentially in space.
Sometimes the anisotropy can be corrected by a linear transformation of the lag vector h. That is,

where A is a d × d matrix and  is a function of only one variable.
Replacing (5.1) with the stronger assumption

and specifying the mean function to be constant, i.e.,

defines the class of second-order (or wide-sense) stationary processes in D, with covariance function C(·).
Time series analysts often assume (5.2) and work with the quantity . Conditions (5.1) and
(5.3) define
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the class of intrinsically stationary processes, which is now shown to contain the class of second-order stationary
processes.

Assuming only (5.2),

that is, the semivariogram is related very simply to the covariance function. An example of a process for
which 2γ(·) exists but C(·) does not is a one-dimensional standard Wiener process . Here,

, but cov(W(t), W(u)) = min(t, u), which is not a function of |t-u|. Thus, the
class of intrinsically stationary processes strictly contains the class of second-order stationary processes.

Now consider estimation of the variogram from data . Suppose these are
observations on an intrinsically stationary process (i.e., a process that satisfies (5.1) and (5.3)), taken at the n
spatial locations  Because of (5.3), var(Z(s + h) - Z(s)) = E(Z(s + h)-Z(s))2. Hence, the
method-of-moments estimator of the variogram 2λ(h) is

where the average in (5.5) is taken over , and  is the number of
distinct elements in N(h). For irregularly spaced data, N(h) is usually modified to ,
where T(h) is a tolerance region of Rd surrounding h. Other estimators, more robust than (5.5), are given in
Cressie and Hawkins (1980) and Cressie (1991, sec. 2.4). Parametric models, 2λ(·; ), can be fit to the estimator
(5.5) by various means; as a compromise between efficiency and simplicity, Cressie (1985) advocates
minimizing a weighted sum of squares

with respect to variogram model parameters . The sequence h(1),..., h(K) denotes the "lags" at which an
estimator (5.5) was obtained, and which satisfy range and replication conditions such as those given by Journel
and Huijbregts (1978, p. 194, eq. III.42). Zimmerman and Zimmerman (1991) summarize and compare several
methods of variogram-parameter estimation based on simulated Gaussian data. They find that the weighted-least-
squares approach usually performs well, and never does poorly, against such competitors as maximum likelihood
estimation (both ordinary and restricted) and minimum norm quadratic unbiased estimation.

GEOSTATISTICAL ANALYSIS OF SPATIAL DATA 91

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

θ

θ

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


5.2.2 Kriging

For the purposes of this section, assume that the variogram is known; in practice, variogram parameters are
estimated from the spatial data. Suppose it is desired to predict Z(s0) at some unsampled spatial location so using
a linear function of the data :

It is sensible to look for coefficients  for which (5.6) is uniformly unbiased and which
minimize the mean-squared prediction error  More generally, one could try to minimize

 with respect to predictor p(Z), where L is a loss function. For example, the loss function
proposed by Zellner (1986),

allows overprediction to incur a different loss than underprediction. Minimizing mean-squared prediction
error results from using

which is the squared-error loss function. In all that is to follow, squared-error loss is used.
The uniform unbiasedness condition imposed on (5.6) is simply , for all

, which is equivalent to

Now, assuming (5.7), the mean-squared prediction error can be written in two ways. If the process is second-
order stationary,

or, if the process is intrinsically stationary (a weaker assumption),
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Using differential calculus and the method of Lagrange multipliers, optimal coefficients
 can be found that minimize (5.9) subject to (5.7); they are

and the minimized value of (5.9) (kriging variance) is

In (5.10) and (5.11), , and γ is the n × n symmetric
matrix with (i,j)th element γ(si-sj).

The kriging predictor given by (5.6) and (5.10) is appropriate if the process Z contains no measurement
error. If measurement error is present, then a "noiseless version" of Z should be predicted; Cressie (1988) has
details on when and how this should be implemented.

Thus far, kriging has been derived under the assumption of a constant mean. More realistically, assume

where E(Z(s)) = µ(s) for  and δ(·) is a zero-mean, intrinsically stationary stochastic process with var
(   In (5.12) the "large-scale variation" µ(•)
and the "small-scale variation" δ(·) are modeled as deterministic and stochastic processes, respectively, but with
no unique way of identifying either of them. What is one person's mean structure could be another person's
correlation structure. Often this problem is resolved in a substantive application by relying on scientific or
habitual reasons for determining the mean structure.

Suppose , a linear combination of variables that could include trend-surface terms or other
explanatory variables thought to influence the behavior of the large-scale variation. Thus,

where  are unknown parameters and δ(·) satisfies (5.1) and (5.3) with zero mean.
Although the model has changed, the problem of predicting Z(s0) using an unbiased linear predictor (5.6)
remains. The uniform unbiasedness condition is now equivalent to the condition
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where  and X is an n × (p+ 1) matrix whose (i,j)th element is xj-1(s i). Then,
provided (5.7) is implied by (5.14), minimizing the mean-squared prediction error subject to (5.14) yields the
universal kriging predictor

where

the (universal) kriging variance is

Another way to write the equations (5.14) and (5.15) is

where v1 (an n × 1 vector) and v2 (a (p + 1) × 1 vector) solve

Equations (5.18) and (5.19) are known as the dual-kriging equations, since the predictor is now expressed as
a linear combination of the elements of ( ). From (5.19), it is clear that spline smoothing is equivalent in
form to universal kriging (see Watson, 1984, where the relationship between the two prediction techniques is
reviewed). Kriging has the advantage that in practice the data are first used to estimate the variogram, so
adapting to the quality and quantity of spatial dependence in the data. Furthermore, kriging produces a mean-
squared prediction error, given by (5.17), that quantifies the degree of uncertainty in the predictor. Cressie
(1989b) presents these two faces of spatial prediction along with 12 others, including disjunctive kriging and
inverse-distance-squared weighting.

5.2.3 Conditional Simulation of Spatial Data

Simulation of spatial data  with given means  and
covariances  can be carried out in a number of ways, depending on the size of N
and the sparseness of N, the N x N symmetric matrix whose (i,j)th element is C(si,sj). One way
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is to use the Cholesky decomposition , where LN is a lower-triangular N x N matrix (e.g., Golub and Van Loan,
1983, pp. 86-90). Then  can be simulated by

where , and  is an N x I vector of simulated independent and identically
distributed random variables, each with zero mean and unit variance. Other methods, including polynomial
approximations, Fourier transforms, and turning bands, are presented and compared in Cressie (1991, sec. 3.6).

Now consider the simulation of values of  conditional on observed values Zn. Call this
conditionally simulated process , and suppose  is an unconditionally
simulated process with the same first and second moments as  For example, (5.20) might be
used to simulate , where ,

Consider conditional simulation at an arbitrary location Sn+l in D. Now write

and notice that the two terms of the decomposition

are uncorrelated. Hence, the conditional simulation

has the same first two moments, unconditionally, as the process  and W(si) = Z(si), i =
1, . . ., n. That is, unconditional simulation of sample paths of V yields, through (5.22), conditionally simulated
sample paths of W.

It is apparent from (5.20) and (5.21) that when the  are Gaussian, so too is the process
. However, this may not reflect the reality of the conditional process when the original

process  is "far from" Gaussian, even though the first two moments match and the two
processes agree at the data locations. There is clearly a danger in using conditional simulation uncritically.
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5.3 APPLICATIONS AND RESEARCH FRONTIERS

A geostatistical analysis of spatial data has a "nonparametric" flavor to it, in that inferences are based on
properties of univariate and bivariate distributions of Z(s) and Z(u), which are estimated from the data. In other
words, assumptions are few, although often it helps to transform the data so that they are Gaussian-like. In
contrast, Markov-random field models, or simultaneous spatial autoregressive models, have a very rigid structure
that is not so well adapted to problems of spatial prediction (kriging). Section 5.3.1 shows how geostatistics has
considerable flexibility in applications across diverse scientific disciplines.

5.3.1 Applications

The strength of geostatistics over more classical statistical approaches is that it recognizes spatial variability
at both the "large scale" and the "small scale," or in statistical parlance, it models both spatial trend and spatial
correlation. Trend-surface methods include only large-scale variation by assuming independent errors. Watson
(1972) eloquently compares the two approaches and points out that most geological problems have a small-scale
variation, typically exhibiting strong positive correlation between data at nearby spatial locations. The books by
David (1977), Journel and Huijbregts (1978), and Clark (1979) are all aimed at applications of geostatistics in
the mining industry.

The geostatistical method has also found favor among soil scientists who seek to map soil properties of a
field from a small number of soil samples at known locations throughout the field; soil pH in water, soil
electrical conductivity, exchangeable potassium in the soil, and soil-water infiltration are some of the variables
that could be sampled and mapped.

Water erosion is of great concern to agriculturalists, since rich topsoil can be carried away in runoff water.
The greater the soil-water infiltration, the less the runoff, resulting in less soil erosion and less stream pollution
by pesticides and fertilizers. Also, greater infiltration implies better soil structure, which is more conducive to
crop growth. Cressie and Horton (1987) describe how double-ring infiltrometers were placed at regular locations
in a field that had received four tillage treatments, moldboard, paraplow, chisel, and no-till. From these data, the
spatial relationships were characterized; Gotway and Cressie (1990) used the resulting stochastic models to
estimate efficiently the tillage effects and to build a spatial analysis of variance table,

GEOSTATISTICAL ANALYSIS OF SPATIAL DATA 96

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


from which tillage differences can be tested.
Kriging can be applied in geophysical problems that require accurate mapping of the ocean floor. Data are

slopes or depths and a variety of assumptions are made about the large-scale and small-scale variations defined
by (5.12) (e.g., Shaw and Smith, 1987; Smith and Jordan, 1988; Gilbert, 1989; Malinverno, 1989). This area of
investigation would benefit from geostatistical analyses that use the data initially to fit an appropriate variogram
model and then draw kriging maps based on the fitted variogram.

Applications of geostatistics abound in other areas, such as rainfall precipitation (e.g., Ord and Rees, 1979),
atmospheric science (e.g., Thiebaux and Pedder, 1987), acid deposition (e.g., Bilonick, 1985), and groundwater
flow (e.g., Clark et al., 1989). Examples from groundwater flow and acid deposition will now be used to
illustrate the geostatistical method described in §5.2.

Flow of Groundwater From A Proposed Nuclear Waste Site

In 1986 three high-level nuclear waste sites were proposed in the United States (in Nevada, Texas, and
Washington), thus prompting study of the soil and water-bearing properties of their surrounding regions. The
chosen site will probably contain more than 68,000 high-level waste canisters placed about 30 feet apart in holes
or trenches surrounded by salt, at a depth of 2,000 feet. However, leaks could occur, or the radioactive heat could
cause the tiny quantities of water in the salt to migrate toward the heat until eventually each canister would be
surrounded by about 6 gallons of water. The chemical reaction of salt and water would create hydrochloric acid
that could slowly corrode the canisters. Eventually, the nuclear wastes could reach the aquifer and sometime later
contaminate the drinking water.

Therefore, the types of questions one might ask are: If a nuclear waste site were to be designated for, say,
Deaf Smith County, Texas, what are the risk parameters for radionuclides contaminating the groundwater?
Where would they flow? How long would they take to get there? Here the direction-of-flow question will be
addressed; kriging will be used to draw a spatial map of potentiometric heads throughout the area of interest.

Potentiometric heads in the West Texas/New Mexico region are shown in Figure 5.1, and are given by
Harper and Furr (1986). They were measured by drilling a narrow pipe into the aquifer and letting the water find
its own level in the pipe. Measurements are given in feet above sea level.

An anisotropic variogram model was fit to the data; in each of two
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orthogonal directions, values of  = ( 1, 2, 3) in

Figure 5.1:
Locations and levels of piezometric-head data in West Texas/New Mexico. Amarillo is located close to the ''1527''
well in Potter Country. Reprinted, by permission, from Cressie (1989a).
Copyright 1989 by American Statistical Association.

were estimated. Restrictions on the parameters, in order that 2γ(·; ) be a valid variogram, are
, and .

From the fitted variogram, kriging predictors  given by (5.6) and (5.10) and kriging
standard errors  given by (5.11) were obtained; see Cressie (1989a). Figure 5.2 shows the
predicted surface, from which it can be concluded that contaminated groundwater from Deaf Smith County,
Texas, would flow directly "downhill" toward
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Figure 5.2:
Three dimensional view of kriging surface , from the northeast corner of D. Reprinted, by
permission, from Cressie (1989a).
Copyright © 1989 by American Statistical Association.
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Amarillo, Texas. However, Amarillans need not be concerned; a decision was made in 1987 by the U.S.
Congress to locate the nation's high-level nuclear waste dump site in Nevada, probably at Yucca Mountain.

Acid Deposition and Network Design

It is generally accepted that an important factor in the relatively recent increase of acid deposition is the
emission of industrial by-products into the atmosphere; the consequences for aquatic and terrestrial ecosystems
are potentially disastrous. Most fish populations in freshwater lakes are very sensitive to changes in pH (EIFAC,
1969). More fundamentally, such changes could also adversely affect most other aquatic organisms and plants,
resulting in a disruption of the food chain. Acid deposition has also been closely connected with forest decline
(Pitelka and Raynal, 1989) in both Europe and the United States.

In the United States, acid deposition results mainly from the atmospheric alteration of sulfur and nitrogen
air pollutants produced by industrial processes, combustion, and transportation sources. Total acid deposition
includes acid compounds in both wet and dry form. Dry deposition is the removal of gaseous pollutants,
aerosols, and large particles from the air by direct contact with the earth (NAPAP, 1988). Since dry deposition is
difficult to monitor, and attempts at any such monitoring are relatively new, we focus on wet deposition here.

Wet deposition, or acid precipitation as it is commonly called, is defined as the hydrogen ion concentration
in all forms of water that condenses from the atmosphere and falls to the ground. Measurement of the total
annual amount of hydrogen ion is the end result of a very complicated process beginning with the release of
pollutants into the atmosphere. They might remain there for up to several days and, depending on a variety of
meteorological conditions (e.g., cold fronts or wind currents), they may be transported large distances. While in
the atmosphere, the pollutants are chemically altered, then redeposited on the ground via rain, snow, or fog.

A model for the spatial distribution of total yearly hydrogen ion (H+), measured on the Utility Acid
Precipitation Study Program (UAPSP) network in 1982 and 1983, was developed by Cressie et al. (1990). We
present their results for the 1982 data, including implications of the fitted model for network design.

Figure 5.3 is a map of the eastern half of the United States, showing the 19 UAPSP monitoring sites. Their
latitudes, longitudes, and annual acid
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Figure 5.3:
Monitoring sites of the UAPSP network for the years 1982 and 1983. The square denotes an optimally located
additional site. Reprinted, by permission, from Cressie et al. (1990). Copyright © 1990 by Elsevier Science
Publishers, Physical Sciences and Engineering Division.

Figure 5.4:
Median-polish surface obtained from the 1982 data. Units on the vertical axes are in µmoles H+/cm2. Reprinted, by
permission, from Cressie et al. (1990). Copyright © 1990 by Elsevier Science Publishers, Physical Sciences and
Engineering Division.
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depositions (in µmole H+/cm2) for 1982 (and 1983) are presented in Cressie et al. (1990). By grouping
nearby sites, a 4 × 3 table of acid-deposition data was constructed. The table was then median-polished (e.g.,
Emerson and Hoaglin, 1983), from which a crude picture of the large-scale variation was obtained; see Figure 5.4.

In the east-west direction there appears to be a positive linear trend, reflecting higher acid-deposition levels
in the east. However, in the north-south direction, the trend is quadratic, with higher levels in the central region
and lower levels in the extreme north and extreme south.

The surface in Figure 5.4 was subtracted from the original data to obtain residuals,
. Using great-arc distances to define distances between sites, an isotropic (robust)

variogram estimator was computed, to which a spherical variogram model was fit by weighted least squares
(§5.2.1). The fitted parameters were , ,
and . Figure 5.5 gives a graphical representation of the results.

Optimal spatial prediction (ordinary kriging) can be implemented on the residual process  through
equations (5.6), (5.10), and (5.11). A predicted surface of acid-deposition levels can then be obtained by adding
back this kriging surface (of the residual process) to the median-polish surface shown in Figure 5.4. This is
called median-polish kriging by Cressie (1986). The mean-squared errors of prediction (median-polish-kriging
variances)  are given by (5.11) and will now be used to choose the optimal
location of a new site.

Let  denote the existing network and let  denote 
potential new sites from which one will be chosen. Define , i = n + 1,...,n + m to be
augmented networks. Then S+i is preferred if it predicts best the remaining m - 1 sites in SP (on the average).

Specifically, let  denote the kriging variance for predicting the acid-deposition level at so using
the augmented network, where i = n + 1,..., n + m. For illustration, define the objective function

Then the site in SP that achieves {V(sj) : j = n + 1,..., n + m} will be declared the optimal site to add. (Other
criteria are considered in Cressie et al., 1990.)
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Figure 5.5:
Empirical variograms (robust) for median-polished residuals. The superimposed dashed line indicates the weighted-
least-squares fit. Units on the vertical axes are in (µmoles H+/cm2)2; units on the horizontal axes are in miles.
Reprinted, by permission, from Cressie et al. (1990). Copyright © 1990 by Elsevier Science Publishers, Physical
Sciences and Engineering Division.

Eleven potential sites (Minneapolis, Minnesota; Des Moines, Iowa; Jefferson City, Missouri; Madison,
Wisconsin; Springfield, Illinois; Altoona, Pennsylvania; Charlottesville, Virginia; Charleston, West Virginia;
Baltimore, Maryland; Trenton, New Jersey; and Knoxville, Tennessee) were chosen to improve geographic
coverage of the existing network (of 19 sites). From among these eleven sites, Baltimore (marked with a square
on Figure 5.3) was chosen as the optimal site to add. Its associated average kriging variance, given by (5.23),
was 2.56( µmoles H+/cm2)2, compared to Minneapolis's 2.59 (the second smallest value); Charlottesville had the
largest value of 2.77.

5.3.2 Research Frontiers

Change of Support

The change-of-support problem remains a major challenge to geostatisticians. Although data come as Z = (Z
(s1),...,Z(sn))', inference may be required for . Kriging adapts very easily to ac
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commodate the change from point support So to block support B. For example, in (5.10) and (5.11),  is
modified to , and in (5.11)  has the extra term

. But in mining applications and emission compliance, for example, the quantity of
greatest interest is the conditional distribution . Both disjunctive kriging (Matheron, 1976)
and indicator kriging (Journel, 1983) attempt to answer this question based on bivariate distributional properties
of the (possibly transformed) process. The problem is important enough to pursue beyond these initial approaches.

Multivariate Spatial Data

Prediction of a value Z(s0) based on data Z and observations on other processes is known as cokriging. The
appropriate generalization of the variogram (5.1) is the cross variogram

where Y(u) and Z(v) are normalized to have the same units. Cokriging equations for predicting Z(s0) from Z
and Y can be obtained in terms of , , and  (Clark et al., 1989). However, there is a dearth of
models for (5.24); the basic requirement for a valid model is that its parameters can be estimated from the partial
realization (Z', Y') of the bivariate process.

Variogram Model Fitting and its Effect on Inferences

The variogram (5.1) has the property of conditional negative-definiteness. Based on a nonparametric
estimator , say, current practice is to fit a parametric model , which is guaranteed to be
conditionally negative-definite. Is there a way to find a nonparametric fit to  from the set of all
conditionally negative-definite functions? If it can be found, its description is not likely to be very parsimonious.
Variogram-model choice should probably balance the closeness of its fit to the data, with its predictive power.
For temporal data, Rissanen (1984, 1987) takes such an approach; however, his being able to sequence the
observations is important, since the accumulated prediction errors form an integral part of his method.
Development of a spatial version is an area worth investigating. Now, having chosen a model , what
effect does the estimation of  have on inferences for Z(s0)? Zimmerman and Cressie (1991) have some initial
results, but considerable further research is needed to resolve this important problem.
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6

Spatial Statistics in the Analysis of Agricultural Field
Experiments

Julian Besag
University of Washington1

6.1 INTRODUCTION

The main purpose of agricultural field experiments is to compare the effectiveness of different treatments
(e.g., fertilizers) on a particular crop variety or to make comparisons between different varieties of the same
crop. Accuracy is paramount, but valid assessment of error is also important. A typical experimental layout
consists of a linear or two-dimensional array of contiguous rectangular strips of land, called plots, each of which
is devoted to a single treatment or variety. Plots are usually long and narrow (e.g., 20 m × 2 m), partly as a trade-
off between ease of management and compactness of the experiment.

In a linear layout, the longer sides are chosen to abut one another, so as to minimize the impact of fertility
gradients across plots (see Figure 6.1). The most common measurement is that of plot yield at harvest, which in
an ideal world would provide a direct assessment of the corresponding treatment or variety effect. However,
yield is influenced by external factors such as weather and plot fertility. It can often be assumed that weather has
a uniform effect, in which case comparisons remain valid under more general conditions; otherwise, several
experiments may be required. On the other hand, variation in fertility over the experimental region is usually
substantial

1 Now at University of Newcastle upon Tyne.
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and if ignored can lead to quite erroneous comparisons. Proper design and analysis of field experiments aims to
minimize such problems. By the term design, here we mean, somewhat narrowly, the rule by which treatments
are allocated to plots (henceforth we include the possibility that treatments are in fact different varieties).

Clearly, the task of controlling for variation in fertility is inherently spatial and is the focus of this chapter.
In §6.2, we discuss general background, largely from a historical perspective, and in §6.3, we consider some
recent progress and possible future directions at a more technical level. First, however, it should be noted that
there are other types of field experiments that are not strictly covered by the above description. For example,
interest may center on a measurement other than yield, such as resistance to disease or quality of product. Also
there are experiments that are multisite or multistage or that involve mixtures, spacings, intercropping,
competition, interference, and so on. Thus some experiments involve spatial considerations rather different from
those on which we concentrate in this chapter; for example, in assessing resistance of different treatments to a
particular pest, the main problem may concern patchiness of infestation over the experimental region.
Nevertheless, we hope that in focusing on a single important topic, the richness of the subject as a whole will not
be lost.

6.2 GENERAL BACKGROUND

Methods of controlling for variation in fertility across the experimental region have a long history. Perhaps
the first was the use of check plots (e.g., Wiancko, 1914); that is, plots interspersed regularly at frequent intervals
throughout the experiment and containing a standard treatment. The yields from these plots can be used to
calculate a local fertility index for each experimental plot and to adjust its yield accordingly; the assumption is
that variations in adjacent plots are relatively small. Check plots are still employed in early generation selection
trials where it is required to choose say 10% from many hundreds of varieties for further assessment. This
selection is done at a stage where only a single plot is available to each variety because of restrictions of
management, space, and the quantity of seed available. Besag and Kempton (1986) give an example involving
1560 different lines of winter wheat. However, for general use, check plots are rather crude, demand additional
space, labor, and expense, and are somewhat self-defeating in that experimental plots become even more widely
dispersed
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over the field. Furthermore, there is no obvious means of judging the reliability of estimates. This is also true of
systematic designs, such as the Knut Vik square, in which several plots, regularly dispersed over the
experimental region, are devoted to each treatment. In this case, control for fertility is implicit rather than
explicit; each treatment set of plots should be subject to approximately the same variation. Systematic designs
also have a long history (e.g., Beaven, 1909) and still find favor in some Nordic countries. Two other
possibilities are (1) the use of soil analysis in each plot to construct a fertility index, although this appears to
have little if any support in practice, and (2) the incorporation of data from previous experiments, although this
may be awkward operationally and requires the generally dubious assumption that fertility gradients remain
approximately static from year to year.

The method of control that has now become standard in most countries was first proposed by R. A. Fisher
in the 1920s. Fisher's triumph was to construct an entirely self-contained inferential framework that is valid
whatever the pattern of fertility might be, subject only to an assumption of treatment additivity; that is, it is
assumed that the relative effect of any particular treatment would be the same on any plot. The methodology
relies on three key ingredients: replication, blocking, and randomization. Replication means that each treatment
appears several times, usually with equal frequency, in the experiment; this generally improves accuracy and
provides a basis for its assessment. Blocking implies that there are restrictions on the allocation of treatments to
plots, which are imposed to counteract suspected fertility gradients. The intention is that fertility should be
approximately constant within blocks, so that corresponding differences in plot yields are meaningful; this
further improves the accuracy of treatment comparisons. Finally, randomization requires that treatments are
allocated to plots entirely at random within the constraints of the blocking structure; it is this step that ensures the
unbiasedness of treatment comparisons (contrasts) and the validity of the associated standard errors within the
inferential framework.

Since this framework is not at all obvious, we provide some brief discussion in the particular context of the
simplest common example, namely, the randomized complete blocks design, for which blocks and replicates
coincide. Each plot yield is assumed to be the sum of three components, a fixed block effect, a treatment effect,
and a plot effect. The natural means of introducing randomness into the model is to suppose that the plot effects
represent a realization of a spatial stochastic process. The question, which is addressed

SPATIAL STATISTICS IN THE ANALYSIS OF AGRICULTURAL FIELD EXPERIMENTS 111

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


in §6.3, is, what process? Fisher brilliantly circumvented this problem by assuming plot effects to be fixed and
by introducing randomness solely through the act of allocating treatments to plots. In other words, it is the very
act of randomization that alone induces a probability distribution in the yields, and hence a basis for inference.
For details see Kempthorne (1952, Ch. 8) but it turns out that the calculation of treatment estimates and
associated standard errors coincides exactly with an ordinary least-squares analysis of the corresponding linear
model assuming a fixed layout and uncorrelated random plot effects. For this reason, it is sometimes assumed
that the latter formulation underpins the Fisherian analysis, whereas the two models are quite distinct, with the
first addressing a fixed field with a randomly chosen layout and the second a random field with a fixed layout.
Of course, in the second, an assumption of uncorrelated or equicorrelated plot effects within blocks is untenable
if fertility gradients exist, as is generally the case unless the number of treatments (i.e., blocksize) is very small.
Finally, note that the ''usual'' construction of confidence intervals based on the t-distribution can be shown to be
approximately valid under randomization.

Thus, the main problem in adopting a randomized complete blocks design is not in the validity of the
analysis (although one might challenge the relevance of the conceptual framework) but in its lack of sensitivity.
A graph of estimated plot effects against their locations in the experiment will almost inevitably display
substantial spatial structure; to ignore this is extremely wasteful. The classical remedy has been to develop much
more sophisticated designs that employ a local blocking structure within which it can be more reasonably
assumed that fertility is effectively constant. The most efficient designs, such as completely balanced lattice
squares, are rarely practicable because of restrictions on the number of treatments and replicates. This difficulty
has been met by the introduction of compromise designs, based on partially balanced incomplete blocks, and
these are now used quite widely, especially in variety trials (Patterson and Hunter, 1983). However, a new
problem arises with sophisticated designs, for there no longer exists a proper justification for the use of Gaussian-
theory confidence intervals, unless additional or different assumptions are made in the statistical formulation.
Furthermore, despite the obvious merits of sophisticated designs, a large proportion of experiments in the world
employs nothing more complicated than randomized complete blocks, whether for reasons of tradition or ease of
management. Thus it is important that methods of analysis be available that adopt explicit spatial models for
fertility, if only as a means of salvaging badly designed experiments (Bartlett, 1978, 1988). Of course, it
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would be unrealistic to expect a spatial model to provide more than a crude representation of a true fertility
process, but this is probably unimportant, since (1) it is the replicated treatment effects rather than the individual
plot fertilities that are of primary concern and (2) the purpose of the model is essentially one of interpolation
rather than extrapolation. There is an interesting contrast here with the usual requirements in time series analysis.

In fact, the idea of extracting information from neighboring experimental plots as a means of controlling for
variation is not at all new and was first proposed in the 1920s by J. S. Papadakis, a distinguished Greek
agronomist. Unfortunately, his entirely empirical approach received very little attention by others; for some
historical reflections, see Bartlett (1988). Nevertheless, Papadakis himself continued to use and develop his
method over several decades (see Papadakis, 1984), and it is instructive to consider one particular version below.

Thus, let y denote the vector of observed yields, with plots indexed in some convenient manner, and suppose

where  denotes treatment effects, T is the corresponding full-rank treatment design matrix, x represents
the (fixed) fertility effects measured about zero, and z is residual error. If x* denotes a current assessment of x
and is presumed to be correct, the corresponding ordinary least-squares estimate of  is

This provides a reassessment  of x but leads to circularity in the absence of some form of
constraints on the parameter space. Papadakis resolved this difficulty by using as the new estimate of x

where H is a matrix that reflects anticipated similarity in fertility between neighboring plots. For example,
in a two-dimensional layout, the fertility in any particular plot might be estimated by the average of the residuals
in the four adjacent plots, with an appropriate modification at the boundary of the experiment. Papadakis
initiated (6.2) with x* = 0 and then iterated between (6.2) and (6.3), either for a prescribed number of cycles or
until convergence. Here we concentrate exclusively on the latter option, referred to as the iterated Papadakis
procedure. It follows that the final estimate 
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satisfies

so that

Thus an alternative viewpoint is that  is the generalized least-squares estimate of  when z is negligible
and x is interpreted as a realization from a spatial stochastic process with (possibly generalized) inverse
covariance matrix proportional to I - H, assuming this is symmetric positive (semi-) definite.

The implication is that Papadakis' empirical procedure may have a separate interpretation as a formal model-
based approach to fertility adjustment. We investigate this and consider generalizations in §6.3. Of course, at this
stage, there is no guarantee that  has any particular merit, or that the I - H induced by typical Papadakis
adjustment holds appeal as inverse co-variance matrices in a random field formulation. Finally, note that, where
in our discussion I - H is singular, estimates of treatment contrasts rather than  itself will be uniquely
determined.

6.3 SOME RECENT PROGRESS AND FUTURE DIRECTIONS

6.3.1 Aims

It has already been noted that, in most field experiments, plots are long and narrow. It follows that, even
when the layout itself is two-dimensional, internal control for fertility variation is usually profitable only in the
direction of the shorter plot axis. Thus, in §6.3.2, we concentrate on one-dimensional adjustment. In particular,
we first discuss the role of simple stochastic models in experiments that only involve a single linear array
(column) of plots; the results extend immediately to trials that in effect employ several separate columns. Then,
in §6.3.3, we tackle the less common but nevertheless important situation in which genuine two-dimensional
adjustment is necessary; this is a topic that requires considerable further research. Finally, in §6.3.4, we briefly
discuss some other approaches and some outstanding problems.

In §§6.3.2 and 6.3.3, we assume a formulation that is in accordance with equation (6.1), where now y, x, and
z are interpreted as realizations of spatial stochastic processes Y, X, and Z; thus,
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where Y is the vector of random plot yields,  represents fixed treatment effects, and T is the design matrix
for the experiment. We further suppose that the components of Z are uncorrelated, with zero means and common
variance ω, and that Z and X are uncorrelated; Z takes account of residual errors and is often negligible in
practice when compared with the variation in the fertility process X.

6.3.2 One-Dimensional Adjustment

In discussing specification of the fertility process X for layouts that consist of a single column of n plots, it
proves convenient initially to consider an ostensibly infinite column, with plots labelled i = 0,±1,..., according to
their positions with respect to a reference plot 0. Let Xi denote the random fertility in plot i, measured about zero.
The simplest specification of the Xi's that departs from independence is the classical first-order stationary
autoregression in which the lag k autocorrelation is , where . The
corresponding autocorrelation generating function is

In the present context, the above unilateral model is more naturally formulated as a bilateral autoregression,
with

where  and . The equivalence is confirmed by noting that (6.7) implies that the
corresponding autocorrelations ρk satisfy

and hence that . The duality between the unilateral and bilateral formulations does not generally
extend to higher dimensions and rests on the factorization h(u)h(u-1) of the denominator in (6.6), where h(u) = 1 -
λu; see §6.3.4 for some further comments.

Of course, in reality, neither X nor Z is observed but only Y over a finite column of plots, i = 1,2,..., n, say. If
α = ω/2  and β were known, then estimation of  could proceed by generalized least squares. Otherwise,
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several methods of estimating ω, , and β are available. For example, one might assume additionally that X and Z
are Gaussian and apply standard maximum-likelihood estimation (cf. Tiao and Ali, 1971, in a different context)
or the residual maximum likelihood (REML) variation (Patterson and Thompson, 1971). What is important here
is that in practice it is common that the estimate of α is zero or close to zero and that of β is very close to its
maximum possible value, . It is therefore instructive to consider both α = 0 and  in more detail. In each
case, we again begin with an infinite line of plots.

First suppose that α = 0 with β known and let H denote the doubly-infinite matrix with (i, j) element

Then it is easily checked that the inverse covariance matrix (i.e., precision matrix) for Y is proportional to I -
H. It follows that the generalized least squares estimate  of  agrees with the iterated Papadakis estimate in
(6.4) for which fertility in plot i is estimated at each stage by β × {sum of the residuals in the two adjacent plots}.
This provides a useful connection between the present model-based approach and that espoused empirically by
Papadakis. Furthermore, the duality between bilateral modeling and Papadakis' method is perfectly general,
provided H in (6.3) is symmetric positive (semi-) definite, and extends not only to more complicated one-
dimensional adjustment but also to higher dimensions (cf. §6.3.3). Of course, for real experiments with finite
numbers of plots, it holds only as an approximation because of edge effects.

Second, suppose that  for fixed α. Though the distribution of X itself degenerates, the differences Xi -
Xj remain well behaved with zero means and with variances

as  Equivalently, first differences Xi - Xi+1 are, in the limit, uncorrelated and have equal variance 2 ,
so that X can be thought of as a random walk. It is also of interest that, in the limit , the conditional
expectation formulation (6.7) remains valid, even though the marginal mean of Xi is undefined and the marginal
variance is infinite. This is the most
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basic example of an intrinsic autoregression (Künsch, 1987) and provides a stochastic version of simple linear
interpolation; see also §6.3.3. The degeneracy is unimportant in practice because it is only comparisons of
treatment effects that are being assessed. This becomes apparent algebraically if we return to the actual
experiment. Thus, let Ui = Yi - Yi+1, i = 1,...,n - 1, or, in vector notation, U = ∆Y, where ∆ is the n -1 by n matrix
taking first differences of the Yi's. It is convenient at this point to single out the overall level  of the experiment.
Suppose  is a p-vector; then perhaps after reparameterization, we can write

where 1 is an n-vector of 1's, δ is a p - 1 vector of (relative) treatment effects, and D is an n by p -1 design
matrix of rank p - 1. Since any treatment contrast , where aT1 = 0, can be written in terms of δ, it is
sufficient to concentrate on the estimation of δ. The mean and variance-covariance structures of U are given by

where F = ∆D, Q = I + aDDT, and I is now the (n-1) × (n-1) identity. Note the absence of end-plot problems
and the retention of information on treatment contrasts in the reduction of the data to n - 1 first differences.

Finally, let  denote the generalized least-squares estimate of δ, so that

where u is the observed value of U.
Two special cases of (6.11) merit attention. At one extreme,  is the ordinary least-squares estimate of δ

based on u; at the other,  is the ordinary least-squares estimate of δ based on y (cf. Besag and Kempton,
1986). Thus, for any intermediate value of α,  provides a compromise between the ordinary least-squares
estimates of δ based on u and on y, respectively; this resembles the combination of intra-and interblock
information in the classical analysis of incomplete block designs but here using the notion of a moving block of
size two.

The above discussion indicates that there is little point in retaining a flexible value of β and that 
should be adopted from the outset. In practice, it is still often found that the estimate of α is essentially zero,
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TABLE 6.1: Layout and Yields (t/ha) for 62 Varieties of Winter Wheat

Replicate 1 Replicate 2 Replicate 3
Variety Yield Variety Yield Variety Yield
10 7.32 58 7.52 32 7.29
50 6.34 31 7.50 14 6.70
18 7.44 40 6.61 23 7.57
58 8.54 41 7.00 51 7.38
42 7.26 4 5.59 33 7.71
26 7.50 22 6.01 2 6.78
2 6.92 13 7.52 60 8.44
34 8.46 51 7.07 45 7.61
56 7.22 27 7.63 48 6.93
32 8.22 18 7.28 9 7.23
16 7.15 8 6.32 36 6.76
8 6.90 45 7.43 5 6.19
24 7.48 55 7.31 27 7.86
48 7.02 62 8.36 18 7.82
40 8.16 36 7.04 54 6.69
41 7.92 9 7.23 34 8.35
9 7.56 56 8.16 25 8.35
33 8.57 28 6.86 24 7.69
49 8.57 46 8.21 52 8.25
1 7.35 19 8.54 3 7.77
25 8.85 10 7.56 15 4.38
57 8.06 37 7.41 61 8.31
17 8.10 1 7.35 46 8.45
45 8.64 44 8.50 11 8.30
61 8.41 26 9.01 42 7.43
13 8.95 17 8.60 7 9.51
37 7.39 54 7.25 38 6.87
5 7.30 61 8.39 20 8.69
29 8.31 35 8.45 57 7.69
53 8.87 16 7.70 56 7.84
21 7.83 7 9.46 29 7.96
20 8.45 48 7.28 6 7.75
36 7.07 57 7.71 19 7.98
52 8.00 3 7.46 55 7.82
44 8.28 30 7.63 28 6.58
4 7.48 50 6.32 37 7 51
60 8.69 21 7.29 10 7.31
28 6.88 12 8.29 41 7.90
12 8.17 39 7.09 35 8.60
62 7.99 49 8.30 62 8.22
14 7.48 2 7.49 16 7.55
54 7.17 20 8.94 53 8.52
22 7.67 11 8.09 26 8.58
6 7.60 29 7.99 47 7.15
38 7.40 47 8.05 4 8.37
46 8.55 38 7.38 17 7.89
30 7.50 32 9.00 59 9.16
39 7.75 52 9.24 13 9.04
15 4.82 59 9.60 1 7.72
55 8.40 33 9.13 40 8.15
31 9.02 42 8.20 31 8.98
47 7.57 14 7.90 50 7.10
23 9.12 23 9.26 44 8.20
7 9.96 5 7.80 22 8.20
11 8.51 15 6.28 58 8.92
19 8.55 43 8.95 39 7.68
59 9.14 53 8.96 8 6.78
3 7.70 25 9.32 21 7.67
43 8.43 24 8.24 49 8.57
27 7.98 34 9.15 12 8.14
51 7.66 60 9.40 43 7.95
35 8.24 6 8.17 30 7.67
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especially if due allowance for outliers and jumps in fertility is made (cf. §6.3.4); this leads to a very simple
estimation procedure. Although design is not a consideration here, it is worth noting that if plots 1 and n contain
the same treatment,  is a linear combination of the n - 2 second differences yi-1 - 2 yi + yi+1 and is therefore
invariant to linear trends in fertility and approximately so to locally linear trends (which are of greater concern).
Incidentally, it also turns out that  is featured in several other proposals for fertility adjustment and provides an
agreeable unity between ostensibly different approaches; again see §6.3.4.

The general analysis with  extends immediately to several (effectively) independent columns of
plots. The single parameter  is replaced by a vector of separate column effects and, subject to the usual
necessity of such terms, there is again no loss of information on treatment contrasts by the reduction of the data
to first differences within columns. For further details, including determination of standard errors, the analysis of
a factorial experiment on triticale, and an assessment of accuracy and precision, see Besag and Kempton (1986).

Here we illustrate first-differences analysis on an official United Kingdom trial for winter wheat, carried out
by the East of Scotland College of Agriculture and involving final assessment of 62 different varieties. The
layout of the experiment, in three physically separated complete replicates, and the corresponding yields (t/ha)
are listed in Table 6.1. The yields are graphed against plot position in Figure 6.1 (top); there is clear evidence of
modest fertility gradients within replicates. First-differences analysis (i.e., with ) produces the estimate α
= 1.76 and the decomposition of yields into relative variety effects, fertility effects, and residuals shown in the
bottom three panels of Figure 6.1. The standard errors of pairwise differences between varieties range from .202
to .238 with a mean of .223, compared with the value .418 for a complete block analysis. Thus, there is
substantial improvement in precision and presumably in accuracy of variety estimates; for objective methods of
assessment, see the penultimate paragraph of §6.3.4. Moreover, fertility gradients are often more pronounced
than in this particular experiment (see, for example, the associated trials analyzed by Green et al., 1985),
particularly in countries that do not have the temperate climate of the United Kingdom.

In fact, because of the importance of the above trial, the within-replicate layout conformed to a generalized
lattice design. This confers no particular benefit to the first-differences analysis, except perhaps to reduce the
range

SPATIAL STATISTICS IN THE ANALYSIS OF AGRICULTURAL FIELD EXPERIMENTS 119

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


of the standard errors, but enables classical incomplete-blocks analysis to be carried out. The corresponding
standard error of a varietal difference, kindly supplied by Professor H. D. Patterson, is .235. The fairly close
agreement with spatial statistical analysis seems typical but of course the latter does not require a sophisticated
design and applies equally to the simple layouts encountered more commonly in practice.

Figure 6.1:
Raw yields and subsequent first-differences decomposition for 62 varieties of winter wheat.

6.3.3 Two-Dimensional Formulation

In this section, we seek to generalize the previous one-dimensional formulation. Thus, we again adopt
equation (6.5) but now identify plots by integer
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pairs of Cartesian coordinates i = (i1, i2). Practical aspects are not developed to the same extent in two
dimensions, the main problem being that edge effects are much more important than in one dimension (Guyon,
1982; Dahlhaus and Künsch, 1987) and must not be ignored, although their effects are sometimes
overemphasized.

The generalization of equation (6.7) to a two-dimensional model is given by

where ; we assume neither β1 nor β2 is zero. It follows that the autocorrelations ρk satisfy

for  and that the corresponding generating function is

which cannot be reproduced by any finite unilateral autoregression. Formulae exist for the low-order
autocorrelations but generally the ρk's are best calculated by recursive algorithms (these can be quite delicate) or
approximated using Bessel functions; for details, see Besag (1981). Equation (6.12) can be easily extended to
include more distant plot fertilities, with appropriate modification to (6.13) and (6.14); see Rosanov (1967) or
Besag (1974), though (6.12) itself dates back to Lévy (1948). If Z is negligible (i.e., α = 0), the equivalent
iterated Papadakis adjustment (6.3) for any particular bilateral autoregression can be written down immediately.

Given a partial realization of X in (6.12) over a finite region, the parameters β1, β2, and  can be estimated
by matching the theoretical variance and first-order autocovariances with the edge-corrected (i.e., unbiased)
empirical values (Besag, 1974; Guyon, 1982). This generalizes to arbitrary bilateral autoregressions and, if X is
Gaussian, is equivalent to asymptotic maximum-likelihood estimation. However, here we are concerned with
observation on Y in (6.5) rather than on X. The incorporation of treatment effects  is straightforward but that of
random error Z is more problematical, primarily because of edge effects. When Z is ignored, it is generally found
that the estimate of β1 + β2 is very close to . One means of including Z is to make
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toroidal assumptions, identifying opposite edges of the field (Besag, 1977). Although this device is of minimal
direct practical relevance, one might reasonably expect that it should depress the estimates of β1 and β2, and yet
the above behavior seems to be reproduced. Thus, we might well abandon the stationarity assumption and rather
adopt (6.12) with ; that is, on the infinite lattice, an intrinsic bilateral autoregression of class zero
(Künsch, 1987). Such a formulation is of course entirely consistent with the one-dimensional development in
§6.3.2; again, we may expect that Z will often be negligible, which if assumed from the start would lead to
entirely straightforward estimation, although we do not wish to exclude the possibility of a non-zero α.

Certainly the problems of estimation are not insuperable but they require further research, especially as
regards standard errors for treatment contrasts; these must retain approximate validity somewhat outside the
narrow confines of the model itself. We briefly consider the assessment of different methods in §6.3.4, but here
we conclude with some remarks concerning the structure of intrinsic autoregressions. Thus, suppose β1 = β and

 in (6.12). In the absence of stationarity, we need a new measure of covariation and the obvious
choice is the semivariogram (of chapter 5), defined by

It follows that v0 = 0 and, from (6.12),

where  if k = (0, 0) and is otherwise zero. It can be shown (Künsch, 1987) that the asymptotic growth
of the semivariogram is logarithmic. Although explicit results are not generally available, it may be noted that,
when , v1,0 = v0,1 = ,

(cf. Besag, 1981), and the semivariogram can be easily evaluated for all lags. On the other hand,  of
course reverts to the model of §6.3.2 for independent columns of plots. At first sight, it might appear that the
value of β should simply be determined by plot shape, assuming isotropy of the underlying fertility process, but
in practice, fertility patterns are also induced by the management of the experiment.
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6.3.4 Other Approaches and Further Research

Several other methods of analysis for agricultural field experiments, adopting explicit spatial assumptions,
have been proposed in the literature; see, for example, Wilkinson at al. (1983), Green et al . (1985), Williams
(1986), Gleason and Cullis (1987), and Martin (1989). Here we briefly consider two, the first based on a time-
series formulation, the second on a data-analytic approach.

We have already noted, in §6.3.1, the equivalence between first-order unilateral and bilateral
autoregressions in one dimension. This extends to models of arbitrary order. Thus, for trials that only require one-
dimensional adjustment, Martin (1989) proposes that classical time-series methodology should be used to select
and fit an appropriate model in advance. He then extends this approach to two-dimensional adjustment by
considering only the class of processes that, after row or column differencing, are separable; that is, are
stationary and have interplot autocorrelations ρk satisfying

Separability leads to a considerable simplification in the computation of parameter estimates, though the
advantage is diminished with the inclusion of superimposed random error; see Martin (1989) for details. At first
sight, the Manhattan metric of (6.15) is unappealing but could be appropriate when fertility patterns are largely
the product of cultivation practice and may in any case provide an adequate approximation. Model selection
based on very limited data is perhaps the major handicap of the approach, though this aspect could be
abandoned. As with other methods, there is a need for further research, including practical investigation.

For a data-analytic viewpoint, we consider the approach proposed by Green et al. (1985); this also supplies
further insight into Papadakis' and most other methods. Equation (6.1) again provides the starting point.
However, equations (6.2) and (6.3) are generalized to

where S and T may be linear or nonlinear operators; S is a smoother of fertility and other extraneous
variation, whilst T allows (e.g., robust/resistant) alternatives to be substituted for the ordinary least-squares
estimate (6.2). Here we concentrate on adjustment along a single column of n plots, in which case the basic
choices of S and T are made as follows. First it is assumed that fertility variation is approximately locally linear,
so that second
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differences ∆2x are small, where ∆2 is the n - 2 by n matrix taking second differences. Then x and  are estimated
by least-squares smoothing ; that is, x* and  minimize

with the effect that smoothness of the fitted fertility pattern is offset against the residual variation, according
to the value of the ''tuning constant'' α. Hence x* and  satisfy (6.16) with T as in (6.2) and

As might be anticipated, (6.16) determines estimates of treatment contrasts rather than  itself; see below.
Green et al. (1985) suggest several data-analytic prescriptions for the choice of α, including cross validation, and
illustrate their methodology on data from three different trials. The analyses also include approximate standard
errors for treatment contrasts and graphs of estimated treatment, fertility, and residual effects across each of the
experimental areas. As with other methods of fertility adjustment that involve a tuning parameter, the exact value
of α does not seem to be critical.

It is of interest that an alternative derivation of (6.17) is available through the random field formulation
(6.5), with the assumption that second differences in X are uncorrelated and have equal variance 2 . The
generalized least-squares estimate of δ in (6.9), based on second differences of the yi's, is then given by (6.11)
but with ∆ replaced by ∆2 in the definitions of F, Q, and U. The equivalence follows since (6.17) implies that

where A+ denotes any generalized inverse of A. Note that, since (6.18) also holds if ∆2 is replaced by ∆
throughout, the above argument can be inverted to provide a least-squares smoothing interpretation of the first-
differences analysis in §6.3.2. In fact, the generalized equations (6.16) are of very wide applicability. For
example, they include, on the one hand, the estimates obtained from a classical analysis of an incomplete block
design and, on the other, those obtained from the "NN" methodology of Wilkinson et al. (1983); for a
comprehensive discussion, see Green (1985). Incidentally, NN analysis over a finite region provides an example
where a random field formulation is not strictly available: S, though linear, is not completely symmetric because
of border plots. However, there are close asymptotic links between NN analysis and that based on first
differences.

A very important aspect of any model-based statistical procedure is its robustness to departures from the
underlying assumptions. Our initial optimism concerning the adequacy of a fairly crude fertility model is
supported
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in practice by the general similarity between treatment estimates obtained from different spatial formulations and
by close agreement with classical results when sophisticated design and analysis, such as balanced lattice
squares, has been used. Furthermore, there is frequent disparity between spatial and conventional estimates when
a poor design, such as randomized complete blocks, has been employed, so that fertility adjustment seems to be
worthwhile. We briefly discuss quantitative assessment below but it may also be desirable to modify a model-
based procedure to accommodate gross anomalies, particularly those caused by measurement errors or by abrupt
jumps in fertility, which may be the product of a change in underlying geological structure, for example.
Papadakis (1984) reviews his previous work on this topic and Besag and Seheult (1989) summarize a closely
related approach geared to first-differences analysis. In the context of (6.16), the two types of anomaly might be
catered for by nonlinear resistant versions of T and S respectively.

How can quantitative assessments be made? Perhaps the only rigorous method is to use data from
uniformity trials in which all plots receive common treatment. If a mock design is superimposed on such a trial,
any particular procedure can be used to estimate the relative "treatment" effects and, since these are known to be
zero, an assessment of accuracy can be made. Furthermore, the results are relevant to a real experiment under the
usual assumption of treatment additivity, provided the method of analysis also acts additively. Predicted standard
errors can also be compared with actual variability of estimates. Unfortunately, in a random field framework,
each trial provides but a single assessment and many sets of uniformity data are required for a proper evaluation.
Moreover, uniformity trials are rarely carried out these days, though, for an early catalog, see Cochran (1937).
An alternative is to carry out an assessment within a randomization framework (e.g., Besag and Kempton, 1986,
Appendix 2), although of course, this addresses a population for which the procedure was not designed.

Finally, what of Bayesian formulations? They are indeed conspicuous by their virtual absence from the
literature. The main difficulty is that of representing in probabilistic terms one's prior beliefs about fertility
variation. Thus, considerations are likely to be very similar to those arising in a random field formulation (6.5)
but inferential aspects may be more akin to recent developments in Bayesian image analysis.
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7

Spatial Statistics in Ecology

Peter Guttorp
University of Washington

7.1 INTRODUCTION

Ecological theory is essentially spatial in character. Many methods for analyzing spatial data have been
developed in an ecological context (Hertz, 1909; Greig-Smith, 1952; and Kershaw, 1957, are some important
early references). Methods from spatial statistics have recently seen an increasing use in this field. Perhaps the
most important data for quantitatively oriented plant ecologists are complete maps of the vegetation in an area at
different times. While the construction of such maps used to be an incredibly time-consuming fieldwork task,
modern digitization techniques enable an increased use of aerial photographs and satellite images. Here, as in
many other fields, there has recently been a substantial increase in both the quantity and volume of data
potentially available to the ecological modeler. Some overviews of the use of spatial methods in ecological
analysis are Ripley (1987) and Legendre and Fortin (1989).

Typically, a large number of factors interact in ecological processes, and the precise nature of these
interactions is the subject of study. For example, in the study of forest growth, a limiting factor is availability of
light (Ford and Diggle, 1981). The death of a large tree yields sudden possibilities for growth of plants that
would otherwise remain very small, and can completely change the competitive advantages between species. The
introduction of a new species may eliminate many previously successful competitors (Ford, 1975, Linhart,
1976). In order to evaluate forest resource management plans, it may prove important to develop adequate
stochastic models for species growth and competition. The interactions take place at different scales: the extent
of a tree crown limits the availability of light, decreasing the potential
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for other growth beneath the crown, whereas the availability of nutrients in the local region can increase growth
potential on a somewhat larger scale.

In this chapter, we concentrate on one approach to stochastic modeling of ecological communities, namely,
spatial point processes. Models for animal communities often need to include movement explicitly. The theory
of branching diffusions (Dawson and Ivanoff, 1978, Kulperger, 1979) can sometimes be applied to such
situations. There is a plethora of predator-prey models in the applied probability literature, although so far most
of them are not specifically spatial in nature. There is a need for more work on spatially nonhomogeneous
competition models.

Section 7.2 introduces the general concepts of point processes, discusses nonparametric estimation of
second order parameters, and presents some particular models that have found use in the literature. Section 7.3
contains an outline of a point process approach to modeling single species forest growth. It must be emphasized
here that the efforts to date of using stochastic models (in particular point process models) and their attendant
statistical analysis to aid ecological understanding has had only very limited success. This is due partly to
oversimplifications (such as using only homogeneous models or studying only one species rather than the
interactions of several), partly to lack of high-quality data, and partly to the difficulty in interpreting interactions
at vastly different scales. More work is also needed on how to combine inference from the individual pieces that
together make up a model of a complex system.

7.2 POINT PROCESSES

A point process is a process of locations of events, taking place in some space X. Each event may have
associated with it a mark, taking place in some mark space Y. For example, an event may be a tree, and the mark
may be the species of the tree, its crown length, crown angle, height, and diameter. An excellent description of
point process theory is Daley and Vere-Jones (1988, especially ch. 7). The random variable N(A) counts the
number of events in the set . A marked point process is a point process on X × Y with the additional
property that the marginal process of locations N(A × Y),  is itself a point process.

A case of particular interest is a multivariate point process, where Y = {1, . . ., m} for some finite integer m.
Harkhess and Isham (1983) study a bivariate point process (i.e., m = 2) of ant nests for the species Cataglyphis
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bicolor and Messor wasmanni. Their main interest is in assessing whether the locations of Cataglyphis nests are
dependent upon those of the Messor ants. This is suggested on biological grounds, since Cataglyphis ants eat
dead insects, mainly Messor ants, whereas the latter collect seeds for food. An example of a trivariate point
process is the data collected by Gerrard (1969) and analyzed by Besag (1977), Diggle (1983, sec. 7.1), and
others, which contains locations of hickory, oak, and maple trees in Lansing Woods, Michigan. Of interest here
is the interactions between the species. We return to these examples below.

An important class of point processes consists of those whose distribution is invariant under translations;
these are called stationary or homogeneous. Those in the subclass of isotropic processes have distributions that
additionally are invariant under rotation. The assumptions of homogeneity and isotropy are perhaps made more
often than the various applications warrant.

Time series analysis has benefitted much from studying second order properties. These can be estimated
nonparametrically, and for a Gaussian series completely determine the probabilistic structure of the series. But
even in non-Gaussian cases, second-order parameter functions such as the spectrum or the correlogram convey
interesting information. In the case of point processes, second-order parameters are perhaps less informative
(Baddeley and Silverman, 1984), but are still an important aspect of the analysis of a point pattern. Diggle (1983,
ch. 5; see also Ripley, 1988, ch. 3) presents second-order parameter estimation, and Brillinger (1978) discusses
the relation between time series and point process analysis.

In what follows, we concentrate on the spatial case where X = R2. The second-order product density of a
point process is defined by

For a stationary process,  depends only on the vector x - y, and if the process is also isotropic, it further
depends only on the length t = |x - y|. A common variant of  for stationary isotropic processes is (Ripley, 1976)

where  is the rate of the process. The parameter function K(t) measures the expected relative rate of events
within distance t of an arbitrary event. For example, in a Poisson process (§7.2.1 below) we have
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and for a Poisson cluster process of Neyman-Scott type (§7.2.2)

where S is the number of points in a cluster, H2 is the cdf of the vector difference between two points in the
same cluster, and ρc is the rate of the cluster process.

Bartlett (1964) stressed the inferential importance of the distribution of nearest-neighbor distances (which is
equivalent to the K-function introduced above). Ripley (1976) proposed to estimate K(t) from points x1, . . ., xn in
a set A by

where uij = |xi-xj| and wij is the proportion of the area of the sphere of radius uij about xi inside A. This
nonparametric estimator can be used to fit a parametric model by minimizing the distance between the estimate
and the parametric form of the function. When comparing to a Poisson process, it is a common practice to use a
square root transformation to stabilize the variance of the plotted function. Harkness and Isham (1983) found that
this plot for Messor nests (Figure 7.1) lay below the envelope for simulated values from a Poisson process for
distances below 50 feet, indicating an inhibition between nests, presumably due to the foraging practices of these
ants (similar findings for other ant species are reported by Lerings and Franks, 1982). On the other hand, the
Cataglyphis nests were consistent with spatial randomness.

Further analysis indicated a tendency for Cataglyphis nests to be located at or near the mean foraging path
for a Messor nest (Figure 7.2). Harrison and Gentry (1981) discussed biological and statistical aspects of
foraging paths for a single species. The study area consisted of about half scrub and half field, and the
Cataglyphis nests were located mostly in the field region. Stationarity over the entire study region did not seem
to be a reasonable assumption for these nests, and Harkness and Isham separated out the field region in their
study.

In the case of anisotropic stationary point processes one can estimate  directly using the obvious
empirical counterpart; essentially a histogram estimator (cf. Brillinger, 1978; Ohser and Stoyan, 1981). Standard
error for the estimators can often be developed under the Poisson hypothesis (Baddeley, 1980), whereas for more
complicated processes, one may have to use Monte Carlo methods to assess the variability (see the examples in
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Besag and Diggle, 1977). Bootstrap and other resampling methods have been proposed in the ecological
literature by Solow (1989).

Figure 7.1:
 for the Messor nests, calculated at 5-ft intervals, together with the envelope of 19 curves from simulated

Poisson data. Reprinted, by permission, from Harkness and Isham (1983). Copyright © 1983 by the Royal
Statistical Society.

For multivariate processes a cross intensity can be defined. The corresponding K-function is

where  is the rate of points of type i, and  is the cross-intensity function defined by

Corresponding quantities can be defined for more general marked point processes, and their estimation is
discussed by Hanisch and Stoyan (1979).
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Figure 7.2:
Mean foraging path for seven Messor nests. The solid dots correspond to Cataglyphis nests, and the open dots
denote Messor nests. The field is between 330 and 340 ft wide. Reprinted, by permission, from Harkness and Isham
(1983). Copyright © 1983 by the Royal Statistical Society.

7.2.1 The Poisson Process

The simplest model for point processes is the completely random, or Poisson process. To define it, assume
that there is a finite measure &Lambda;, such that for all finite families of disjoint intervals A1, . . ., Ak we have

In particular, the counts in disjoint sets are independent, and hence one cannot improve the prediction of the
number of points in a set from information about numbers of points in, say, surrounding sets. This is what
constitutes the complete randomness of the Poisson process.

There are many equivalent ways of describing the distribution of point processes. For example, one may be
able to specify the zero probability function

or the probability generating functional (pgfl)

defined for all real measurable functions h with  such that 1 - h
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vanishes outside a bounded set. The pgfl of a Poisson process is

The Poisson process is often taken as a null hypothesis, to be rejected in favor of some more structured
ecologically relevant process. This was common practice in the nineteenth century (Darwin, 1881, Hensen,
1884) and is still a very common hypothesis in ecological models. Besag and Diggle (1977) discuss how to
assess such a pattern (as well as more complex ones) using Monte Carlo testing, which enables a researcher to
test specific hypotheses by simulating the assumed process, and then to check whether the observed statistic of
interest is extreme among the simulations. Among other examples, the authors applied this to the locations of 65
Japanese black pine saplings (Numata, 1961; cf. Bartlett, 1964). More specifically, they. used Monte Carlo
testing on a X2-statistic comparing observed intertree distances to what would be expected under spatial
randomness. The observed X2-statistic, which would have been deemed significant were the intertree distances
independent, was in fact found consistent with a Poisson process. Much confusion has arisen in the ecological
literature (and elsewhere) from a failure to appreciate the statistical dependence present in inter-event distances
of a Poisson process.

A more detailed analysis of spatial patterns of ponderosa pines was performed by Getis and Franklin (1987)
who found that, while the overall pattern of locations was consistent with spatial randomness, nearest neighbor
distances for individual trees showed evidence of clustering on relatively large scales (about 20 m), and
inhibition (presumably due to competition) on smaller scales (about 6 m). Here the mapping was done from
aerial photographs, and the smallest resolvable distance was 2.4 m.

7.2.2 Cluster Processes

The concepts of clustering and regularity are important ecological concepts, describing deviations from the
completely random process. On an intuitive level, clustering describes the phenomenon of an ecological niche, or
local regions with higher than average density, separated by regions of low density, while regularity indicates a
tendency towards spacing between individuals.

A cluster point process is a two-tiered process, defined in a conditional fashion. Given a point process Nc of
cluster centers, one associates with each of its events a secondary point process Ns(·|x), centered at an event
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at x. The cluster process is the superposition of these secondary processes. Formally,

Usually the secondary processes are assumed independent, in which case the pgfl takes the simple form

where Gc is the pgfl of the process of cluster centers and Gs(·|x ) is the pgfl of a secondary process centered
at x. A necessary and sufficient condition for the existence of a cluster process is that

A special case which has found many applications is the Poisson cluster process, where Nc is a Poisson
process. The pgfl for a Poisson cluster process is

It is easily shown that the Poisson cluster process is overdispersed with respect to a Poisson process with
the same mean measure, i.e., that the cluster process shows greater variability in the number of events in a set.
This overdispersion has often been taken as a definition of clustering in both ecological and engineering
literature. However, it is easy to construct clustering processes (where Nc is non-Poisson) which are
underdispersed relative to a Poisson process. For example, the findings (described above) of Getis and Franklin
(1987), as well as the similar earlier results of Besag (1977), may be described by a duster process (on larger
scales) driven by a primary process that is more regular (on small scales) than a Poisson process.

The most common Poisson duster process is the Neyman-Scott process, in which a random number of
points are laid out in an i.i.d. fashion around the duster center. This model was introduced by Neyman (1939) to
describe the dispersion of larvae in a field. It has since found important applications in astronomy to describe the
distribution of clusters of galaxies (Neyman and Scott, 1959; Peebles, 1980), and in hydrology, where it has been
used to describe precipitation (Kavvas and Delleur, 1981, Rodriguez-Iturbe et al., 1984; cf. ch. 4).
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7.2.3 The Cox Process

The doubly stochastic Poisson process (often called a Cox process) arises when the mean measure  of a
Poisson process is taken as a realization of a nonnegative stochastic process. A detailed discussion can be found
in Grandell (1976) and Karr (1986). The pgfl of a Cox process is

where L  is the Laplace functional of the stochastic process (random measure) . It follows that Var N (A)
= E N (A)+ Var ( (A)), so that a Cox process is also overdispersed relative to a Poisson process.

As an example, consider the shot noise process, used by Vere-Jones and Davies (1966) to model earthquake
sequences (including aftershocks). It is a Cox process with  given by

where  are the locations of events in a temporal Poisson process of constant rate ν, which triggers stresses
of random amplitude Yi , assumed i.i.d. These can give rise to major earthquakes. The intensity then decays
according to some nonnegative integrable function ƒ on [0, ), possibly yielding aftershocks. Consequently,

where (t) = E exp(-tY). Comparing this to the Poisson duster process pgfl given above, we see that it is of
the same form. Hence, the shot noise process (so named since the moments agree with the moments derived by
Campbell, 1909, for shot noise in vacuum tubes) is a Poisson duster process (in fact, a Neyman-Scott process),
and the two different mechanisms for constructing the process are indistinguishable from data. However, from an
ecological point of view the two mechanisms are very different, and need to be distinguished from each other. In
order to do so, more complex descriptions (perhaps involving more factors or species) axe required.

Although the Cox process is overdispersed (clustered) relative to a Poisson process, a multivariate version
can be constructed to model extreme inhibition between patterns. Let N = (N1, N2) be a bivariate point process
driven by a bivariate nonnegative stationary stochastic process (x), such
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that given , the two components N1 and N2 are independent Poisson processes, but 1(x) + 2(x) = ν, where ν is
a positive constant. Then (Diggle, 1983, sec. 6.6.2)

where c22(u) is the covariance density for 2(x). Consequently,

A plot of a nonparametric estimate of the left-hand side of this equation against a similar estimate of the
right-hand side may indicate the adequacy of this model.

Diggle (1983, sec. 7.7) applied this model to the Lansing Woods data. As demonstrated by Besag (1977),
there is a strong negative dependence between maples and hickories. The diagnostic plot mentioned above
indicates that the fit of the competing Cox model is reasonable. However, the superposition of maples and
hickories, which under this model should exhibit spatial randomness, does not follow a Poisson process. When
adding the oaks, the Poisson fit for the superposition is adequate (although there still is some indication of
clustering in the superposition process, possibly due to the other kinds of trees that are left out of the analysis).
The oaks exhibit much less overdispersion than the other two species. A nonparametric estimate of (local)
intensity confirms that a compensatory mechanism may be operating, but does on the other hand cast some doubt
over the stationarity assumption. On the whole, this analysis, while providing a nice description of the observed
spatial pattern, fails to produce an ecological explanation of it.

7.2.4 Markovian Point Processes

Markovian models, which are defined through a local dependence structure, have found much use in
biology. In the spatial context, Markovian point processes were introduced by Strauss (1975) and by Ripley and
Kelly (1977). A point process on a finite region A is Markov of range δ if the conditional density of a point at x,
given all the points in A \ {x}, only depends on the points in the sphere of radius δ around x (excluding x itself).
Call two points neighbors if their distance is less than δ, and define a clique as a set of mutual neighbors. It is
convenient to describe the distribution of a
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point process in terms of its likelihood ratio (Radon-Nikodym derivative) with respect to a unit rate Poisson
process. In general this can be written

Ripley and Kelly proved that if a process is Markovian, it must have all of the g-functions identically 1,
except when the arguments constitute a clique. This generalizes to other neighborhood systems, not necessarily
distance-based.

The simplest nontrivial conditionally specified point process (also called a Gibbs point process) is one in
which only pairwise interactions are allowed. Then

The functions 2 are called point pair potentials. This name comes from statistical mechanics, where models
of this sort are used to describe the potential energy of a set of particles. The process is Markovian of range if 2

(x,y) = 0 whenever |x - y| > δ. If the point process is stationary, 2 depends only on the distance between its
arguments, and l is a constant. Writing 2(x, y) = V (|x - y|), we can specify the type of interaction by specifying
V. These models are most commonly used to model repulsive interactions, leading to what is often called a
regular point pattern (Strauss, 1975, Ogata and Tanemura, 1984). Examples include , the Poisson
process; , a soft core repulsive model; V(r) = (σ/r)k, an intermediate case; and

 if , and 0 otherwise, a hard core rejection model (where no points are closer than σ).
Bartlett (1975, sec. 3.2.2) applied a simple inhibitory model to the spatial distribution of gulls' nests. The

idea was to regard the distribution of nests as following a Poisson process, but to allow for the association with
each point of a random cutoff, within which radius no other nests can be found. This combined the hard-core
rejection model above with features of the Cox process of §7.2.3.

It is difficult to estimate the parameters of Markovian point process models, mainly because the normalizing
constant in the likelihood is very hard to evaluate. The two most common approaches are to use approximations
developed in statistical physics for the normalizing constant (Ogata and Tanemura, 1984, discuss some of these
approximations; see also Ripley, 1988, ch. 4, and recent work using stochastic approximation techniques by
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Moyeed and Baddeley, 1989), or to use Besag's method of pseudolikelihood (Besag 1975, 1977; some recent
theoretical results are in Jensen and Møller, 1989, and Särkkä, 1989).

7.3 A SPATIO-TEMPORAL POINT PROCESS MODEL FOR TREE GROWTH

Most situations where spatial point process models can be useful include a temporal aspect. In this section,
we discuss a possible approach to modeling tree growth in a pristine forest, with a view toward use for
regenerative policies in national parks following major natural disasters. The intent of this section is to indicate
how a physically based model may be used to suggest facets of a stochastic model of forest growth. This is
different from the statistical (or descriptive) models that have been the main emphasis in the past for such efforts.

In order to construct such a model, it seems reasonable to separate out the occurrence of new growth, the
process of growth itself, and the process of tree death, as suggested by Rathbun and Cressie (1989). We will call
the three components the birth, growth, and death processes. For simplicity, we will only consider a single
species and will use a discrete time scale of, say, a year. We separate trees into adult individuals that are well
established and juveniles that are struggling to succeed. Foresters tend to make this classification based on
simple measurements such as base diameter. It is assumed that the forest under study is mapped completely (with
regard to the species of interest) at regular intervals. Sterner et al. (1986) developed models similar to those
discussed below for the interaction of four tropical tree species.

The birth process, at any given time t, will be constructed conditional upon the location of mature adults.
Potential sites for new juveniles are obtained from a cluster process of Neyman-Scott type with cluster centers
given by the mature adult locations. This represents the spread of seeds from the adult trees. The germination of
seeds, or more precisely, germination and subsequent establishment of a juvenile plant, is modeled by thinning
the potential sites, i.e., by deletion of each cluster point independently, with probability depending on the
configuration of adults around the seedling. If the nearest adult is far away, so the seedling is in a relatively open
area, it would have a comparatively high probability of germination, whereas if the seedling is located next to an
adult, this probability would be low.

SPATIAL STATISTICS IN ECOLOGY 140

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


The growth process takes into account the amount of sunlight available to a tree by using data on crown
angle and height. This process determines the development of marks from year to year, rather than the points
themselves.

The death process needs to have several factors. The process of locations is thinned using a probability
proportional to size (and thereby, approximately, to age). In addition, competition between juveniles affects their
survival probabilities. The effect of large windstorms can be thought of as a constant force (this would usually
have a preferred direction) whose mortality effect on a given tree depends on its size and on the configuration
and sizes of its neighbors. Large isolated trees have the highest mortality from windstorms, whereas sheltered
trees in the middle of a tight cluster have the smallest. Major disasters, such as fires, can be modeled using
dependent thinning, where nearby trees have a very high probability of death, conditional upon a given tree to
have succumbed to fire. Each year the probability of a major disaster is very small. It can be estimated from tree-
ring data. The probability of death from storms is comparatively higher, and may vary from year to year, based
on meteorological factors.

The combination of these forces yields an anisotropic process, for which one can determine, at least
qualitatively, the behavior of second-order intensities. Since many of the subprocesses axe observable, it is
possible to assess these aspects of the model using data. The combination of the subprocesses into a complex
mechanism and the detailed fitting and inference yields many challenging theoretical problems. The main use for
this type of model is to assess effects of changes in the driving forces of the ecological process, and evaluate
various possible reseeding policies. It is straightforward to include modest amounts of harvesting in the model,
which can then be used to assess various recruitment policies. For assessment purposes, computer simulation is
likely to be necessary.

7.4 CONCLUSION AND FURTHER DIRECTIONS

The use of point process models in ecology to date has perhaps not reaped the expected benefits. While the
models sometimes have managed to describe a complex data set in a relatively compact form, there have been
very few instances where data-analytic findings have found proper explanation in ecological/biological terms.
With the increased quality of aerial maps, the requisite data for certain types of vegetation ecology studies will
be made more readily available, and the quality of the analysis should improve.
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The interaction between statisticians and subject area scientists is always the key to relating data-analytic
findings to scientific explanations. Increased awareness in the ecological community of the methods made
available by improved methods of spatial statistical analysis will undoubtedly benefit both statisticians and
ecologists. There is a substantial need for more theoretical research into statistical inference based on interacting
components of complex systems, and into the comparison of model data (be it the result of simulation,
mathematical, or stochastic anaylsis) to ''ground truth'' measurements.
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8

Spatial Signal-Processing in Radars and Sonars

T. T. Kadota
AT&T Bell Laboratories

8.1 INTRODUCTION

Radars and sonars are used for detecting and tracking targets. The surveillance radars and sonars typically
employ arrays of sensors (or radiators) placed on the ground or in the ocean. A planar array is used for sonar to
detect seismic explosions and for radar to track distant flying objects, and a linear array is used for sonar to
detect distant underwater objects. The data thus obtained are in the form of a set of time-series that are related by
the spatial configuration of the array. The task of the radar and sonar systems is to process these data to detect
the signal transmitted from a target and estimate the signal parameters related to the target location and velocity.
Typically, the data contain noise and interfering signals besides the target signal, and the "signal-processing"
(processing of these data) requires suppression of the noise and interference and enhancement of the signal.

The literature on spatial signal-processing is enormous: the IEEE Transactions on Acoustic, Speech and
Signal Processing, the IEEE Transactions on Aerospace Electronics, and the Journal of the American Statistical
Association, just to name a few. Covering the entire area and providing an adequate survey is beyond the scope
of this report. Instead, by using a simple example, we give a list of how statistical decision and estimation theory
is used on this form of multidimensional data to derive a signal-processing algorithm and indicate how to extend
the basic approach to more complex problems in reality.
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8.2 DETECTION AND ESTIMATION PROBLEM

The example we have chosen is the signal-processing of underwater acoustic data for detecting a narrow-
band signal transmitted from a distant source and determining the direction of its arrival. The signal detection
problem is traditionally cast as a problem of testing a null hypothesis H0 (signal absent) against an alternative
hypothesis H1 (signal present) as follows (Helstrom, 1986):

where T is an observation time interval, drj(t) is the (incremental) acoustic data recorded at the jth sensor at
time t, sj(t) is the acoustic signal received at the jth sensor at time t, dwj(t) is the (incremental) background noise
at the jth sensor at time t (assumed to be white Gaussian, independent from sensor to sensor), and zj(t ) is the
interference (or additional noise) at the jth sensor at time t. We assume that the background noise w and the
interference z are mutually independent.

Adopting the Neyman-Pearson formulation, we obtain the likelihood ratio between the two hypotheses H0

and H1 (i.e., the Radon-Nikodym derivative between the two probability measures induced by the random fields
of (8.1)). It can be expressed as

where

and Ez denotes the expectation with respect to the probability distribution of the z process and the inner
product and the norm are defined by
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Figure 8.1:
Linear array of uniformly spaced sensors.

8.3 USING LINEAR ARRAYS OF UNIFORMLY SPACED SENSORS

The most widely studied case is the one with a linear array of equally spaced sensors (see Figure 8.1) and a
narrow-band planewave signal with a known carrier frequency, which may be represented by

where Re denotes the real part of what follows,  is the complex signal envelope
function, and

= the carrier (angular) frequency such that ,
= (j-1)d cos /c
= the time delay of the signal planewave arrival at the jth sensor relative to the first,

d = the distance between two adjacent sensors,
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c = the velocity of sound propagation,
= the assumed direction of the signal planewave arrival, and

Then, in the absence of the interference z, the logarithm of the likelihood ratio becomes

where  is the envelope function of the narrow-band representation of the data, namely,

Suppose a planewave arrives in the direction of 0. Then the signal part of the data-dependent term, the first
term of (8.5), is proportional to

where a( ) = (a1( ), . . ., aJ( )) is the direction (or steering) column vector in the -direction and † denotes
the complex conjugate transpose. Equation (8.6) is in the form of a "main beam" centered at  and "side lobes"
on each side of the main beam as 0 varies from - π/2 to π/2. Hence, the processing (of the data r) described by
(8.6) is called "beam forming" (Steinberg, 1976). On the other hand, if the actual direction of the planewave
arrival 0 is fixed and the assumed direction  is varied, (8.6) attains the maximum at  = 0, namely, when the
beam is steered at the signal source. Thus, detection of the planewave signal and estimation of its direction of
arrival are done by varying  (steering the beam) from-π/2 to π/2 to find the maximum of (8.6) and comparing it
to a preassigned threshold determined by the false-alarm probability (according to the Neyman-Pearson
criterion) (Helstrom, 1986). Instead of steering a single main beam, one can place many beams to fill the angular
sector (-π/2, π/2) by providing many direction vectors a( m), m = 1, . . ., M. Then by comparing the magnitude of
(8.6) for each m, instead of varying , we effectively accomplish the same task of detection and estimation.

In the presence of the interference z, some modification to the beam-forming is necessary. For any
interference to be effective against the signal, it must have energy at or near the carrier frequency (otherwise, it
can be
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simply filtered out). For the sake of simplicity, suppose we have one sinusoidal interference arriving in the '
direction with a Gaussian distributed amplitude, namely,

where the second equality defines  and u is a complex Gaussian variable with mean 0 and variance β2.
This represents a planewave arriving through a multipath medium causing the Rayleigh fading. By carrying out
the expectation with respect to z in (8.2) (i.e., with respect to u), the data-dependent term of the log likelihood
ratio becomes

where

and  is the conditional expectation of  given  under H0, and R = β2a( ')a(β')† . The first member
of (8.8) has an obvious interpretation: the optimum processing is to make the least-mean-square-error estimate of
the interference and subtract the estimate from the data before the beamforming. The second member, on the
other hand, shows how the conventional beamformer is to be modified due to the presence of the interference.
By recalling that a( ') is the steering vector in the direction of the interference, the modified beamformer has a
considerably reduced output in the direction of the interference, thus acquiring the term, null-steering (Steinberg,
1976; Gabriel, 1976; Friedlander and Porat, 1989).

In practice, the interfering source is not known a priori and its covariance matrix R must be estimated. The
estimation may be done beforehand or simultaneously with the detection operation, assuming that the direction
of the signal arrival is known (which is the case with the fixed multibeam scheme). This simultaneous method is
referred to as the adaptive beam-forming and is implemented by attaching a variable gain (or weight) and a
variable time-delay (which are adjusted as data are obtained) to the output of each sensor. Of course, such an
adjustment must be done rapidly so that accurate signal detection and direction-of-arrival estimation can be
accomplished. The iterative methods of adjusting and their convergence characteristics have been extensively
studied. Monzingo and Miller (1980)
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is one of the comprehensive textbooks on the subject. A benchmark paper series edited by Haykin (1980) has
many important papers, including those of Gabriel, Applebaum, Widrow, Griffiths, and Owsley.

8.4 USING GENERAL ARRAYS OF SENSORS

The results presented above can be generalized as follows (Kadota and Romain, 1977): first, instead of a
linear array of equally spaced sensors, we can consider a general three-dimensional array (or configuration) with
the coordinates (ξj, ηj, ζj), j = 1, . . ., J. Then the planewave arriving in the ( , )-direction, where  and  are
the elevation and the azimuthal angles, incurs at the jth sensor the phase shift expressed by

Next, instead of a single planewave, we consider a signal consisting of K planewaves, each having a
different frequency , and each arriving in M different directions ( m, m), m = 1, . . ., M.
For convenience, we assume that  is an integral multiple of 2π for every k. Also, rather than a ''slowly
varying'' envelope function se(t), we consider a complex Gaussian variable (independent of time) as the
amplitude of each planewave. Thus, the signal at the jth sensor is now given by

where , are complex, zero-mean, Gaussian variables with

We allow some ρ's to be zero since not all frequency components have all M arrival directions. The
interference is now generalized to

where , are complex, zero-mean, Gaussian variables. That is, for each j, vj(t) is a
discretized version of the spectral representation
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of a general stationary noise. Then the data-dependent part of the log-likelihood ratio takes the following
quadratic form in the data:

where

with the ((k-1)J + j,(k'-1)J + j')th elements of  and  given respectively by the real and the imaginary parts
of

and

The J sensors constitute spatial samplers of the available (acoustic) data and their configuration specifies
the pattern of spatial sampling. This sampling pattern is incorporated into the covariance matrices S and V to
influence the detection statistic (8.12) which specifies the data-processing algorithm. Although the linear array
(with or without the equal spacing) is the most common configuration, due primarily to the ease of
implementation, the sampling pattern can be considered as a factor with respect to which the detection and
estimation performance can be optimized. In fact, we show next an interesting example of this application.

So far, we have assumed that the sensor positions are rigidly fixed and their coordinates are known a priori.
Although this is the case with the phased-array radars and seismographic sensors, for underwater-acoustic
sensors the exact positions in the ocean are difficult to determine and calibration of the array becomes necessary.
One way to deal with this problem
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is to model the deviation (or fluctuation) of the sensor position (from the presumed value) as an additional noise
and incorporate into the optimum processor (for detection and estimation) the sensitivity of the performance to
this noise. For example, the array gain (the output signal-to-noise ratio of an array processor for a given direction
of signal arrival) may be maximized under the constraint that the array-gain sensitivity to the sensor-position
noise be kept below a given level (Cox el al., 1987). An alternative is to devise the sensor configuration so as to
make these test statistics immune to the sensor-position fluctuation. The ESPRIT (Estimation of Signal
Parameters by Rotational Invariance Techniques) method (Roy and Kailath, 1989) forms pairs of sensors to
create an array of doublets such that it consists of two identical subarrays where one is a translate of the other.
Suppose the signal consists of M planewaves with complex, zero-mean, Gaussian amplitudes, having the same
frequency  arriving from M directions (0, m), m = 1, . . ., M. We further assume for simplicity that the
interference is absent. Suppose we have already detected the signal and our goal is to estimate the M arrival
directions m, m = 1, . . ., M, which are specified relative to the axis of the doublet (the displacement vector).
Denote the data from the two subarrays of sensors by two (J/2)-vectors x and y, assuming J to be even,

Then

where A, U, and  are J × M, M × M, and M × M matrices respectively and specified by

where ∆ is the distance between the two paired sensors. Assuming U to be nonsingular, we observe that the
determinant of
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vanishes if and only if

This fact can be used to estimate m, m = 1, . . ., M, as follows: regard Rxx and Rxy as measured covariance
matrices. For example, we might subdivide the observation interval T into N equal subintervals ((n - 1)T/N, nT/
N), n = 1, . . ., N, where , replace the integration limits in (8.13) by (n - 1)T/N and nT/N, n =
1, . . ., N, and denote the integrals by xj(n) and yj(n), j = 1, . . ., J; n = 1, . . ., N. Then, put

Now substitute these empirical matrices into the left-hand side of (8.14) and find M minima of the absolute
value of the determinant as γ moves on the unit circle centered at the origin of the complex plane. Substitute the
M γ-values corresponding to these minima and solve for m, m = 1, . . ., M.

Observe that the knowledge of the sensor positions incorporated into A and of the signal powers ρmm' is not
required. Thus, this method of estimating the signal arrival directions is free of the costly array calibration. The
price to be paid for this is that the two subarrays must be identical, with one being a translate of the other.

8.5 FUTURE RESEARCH CONSIDERATIONS

The assumption that both the signal and the interference plus noise be Gaussian fields is primarily for
mathematical convenience since the problem then is completely treatable by linear operators in Hilbert spaces,
and Gaussian fields axe the simplest class of the second-order random fields. However, there are evidences,
especially in the case of the ocean acoustics, that the probability distributions of the interference fields
considerably deviate from the Gaussian distribution (Middleton, 1987). Some simple analytical examples, such
as the "contaminated Gaussian" distribution (Martin and Schwartz, 1971), have been proposed for the one-
dimensional i.i.d. time series. Although the non-Gaussian interference makes the analytical solution to the
optimum processing problem infeasible, some suboptimum processing methods are explored in special cases
(Monzingo and Miller, 1980). Since it
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is unrealistic to completely specify the probability distribution of the interference, a robust method, such as the
min-max solution (Huber, 1981), has been sought. The results so far are restricted to the one-dimensional time
series having independent identical distributions (Kassam and Poor, 1985), and generalization to the higher
dimensional case with dependent distributions should be sought. Another area of investigation is the case where
the interference is a nonstationary and inhomogeneous random field, such as a transient disturbance. In this case,
one might use a semideterministic criterion rather than the totally probabilistic Neyman-Pearson criterion, and
estimate (maximum likelihood) the interference z in (8.2) rather than average with respect to its probability
distribution. One practical problem in dealing with multidimensional data is computational complexity. Even if
there is an explicit algorithm for the optimum signal-processing, the complexity may be too prohibitive to justify
its use. Thus, a trade-off between the detection-estimation performance and the computational complexity, or the
cost of processing the data, must be considered. Study of this trade-off is another area of useful research in the
future.
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9

Stochastic Modeling in Physical Chemistry

Peter Clifford and N. J. B. Green
Oxford University

9.1 INTRODUCTION

How can corrosion be controlled in the cooling system of a nuclear reactor? What is the most efficient
design for a solar cell? How do you build an artificial enzyme? These are just some of the important practical
questions that lie behind the prolific research activity taking place in physical chemistry departments around the
world.

As a branch of science, physical chemistry is defined not so much by the circumscription of its subject
matter as by its method of approach, applicable to a wide diversity of problems arising from physics and
chemistry on the one hand to biology and materials science on the other. From a statistician's perspective, a
familiar thread within the densely woven fabric of physical theory, mathematical development, and experimental
technique is the constant concern with finding simple and expedient models, frequently of a stochastic nature
(van Kampen, 1981; Wax, 1954). Thus, although physical theory may in principle provide a complete
microscopic description of the problem at hand, in practice the intractability of the mathematical development
prevents useful predictions from being made. A classic illustration from physics is that of modeling the motion
of a dust particle on the surface of a raindrop. The dust particle moves as a result of collisions with the water
molecules. A typical raindrop will contain 1020 molecules whose deterministic equations of motion can be
formulated as a Hamiltonian system. The solution of the equations is clearly impracticable. The motion of
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the dust particle is therefore unresolved. However, a stochastic approximation can be derived, namely, Einstein's
theory of Brownian motion, which provides good agreement with experimental observation. It should be noted
that although the model fits the data on an observational scale, the trajectories of theoretical Brownian motion
contradict physical laws, since infinite acceleration is required.

When chemistry is introduced, things become more complicated. Consider, for example, the effect of a
pulse of radiation on the water droplet. Radiation creates chemically reactive species distributed throughout the
droplet. Chemical reactions occur when reactive species approach each other as a result of molecular motion. As
in the case of Brownian motion it is natural to look for a stochastic approximation to the reaction process, but
here we must track the motion of a large number of atomically small reactive species. One approach is to use the
heuristics of statistical mechanics, pioneered by Gibbs, to provide joint distributions for molecular positions and
velocities. The progress of chemical events following radiation can then be treated as a stochastic process, but on
an enormous state space. The stochastic behavior can be viewed as a manifestation of the chaotic character of the
solutions of the nonlinear equations of motion. The skill of the physical chemist is to derive and validate
parsimonious approximations of the reaction process while attempting to fit experimental data. There are
therefore close analogies between the activities of physical chemists and the role of statisticians in applied
science, in that the physical chemist must construct models that on the one hand are reasonably faithful to the
laws of physics (the client) and on the other are amenable to mathematical manipulation and eventual
experimental verification.

9.2 DIFFUSION CONTROLLED REACTION

A classical theoretical problem in the analysis of the reaction rates in solutions is the modeling of diffusion
controlled reactions. In these reactions, molecules of non-zero size diffuse and react instantaneously if they
encounter one another. In a typical experiment, very reactive particles are produced randomly in space and
essentially instantaneously by, for example, using a pulse of light. These particles diffuse and react with other
species already in solution. The number or concentration of the reactive particles is observed in real time, by, for
example, optical absorption methods. Computer simulations of liquids can provide insight into the reaction
process, but the
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results are necessarily subject to statistical error. A great deal of theoretical work has been devoted to deriving
and validating good analytical approximations; see for example Balding and Green (1989) in the one-
dimensional case. The original theory, owing to Smoluchowski (1917) fixed the coordinate system on a single
particle and made the implicit approximation that all other particles diffuse independently in this frame of
reference (Noyes, 1961). We will refer to this as the independent pairs (IP) approximation. While this is probably
a good approximation for a central, slowly moving molecule surrounded by faster moving molecules (e.g.,
colloid coagulation), it is certainly not true for the converse problem (fast central molecule in a sea of static
traps). In three dimensions the Smoluchowski theory gives the same result for both cases, namely, the survival
probability of the central particle is

where cs is the density of traps,

a is the encounter radius, and D is the diffusion coefficient of the mobile molecule(s).
For the latter case, where the Smoluchowski theory might be expected to break down because the

intermolecular distances are highly correlated, the survival probability is related to the volume of the Wiener
sausage, swept out by the diffusing molecule in the course of its trajectory. This is because the molecule will
survive to time t if and only if there is no trap in the volume swept out, Va(t), and if the traps are distributed
according to a Poisson point process with intensity cs, the survival probability of a given trajectory is exp[-Va(t)
cs].

The observed survival probability will be the expectation of this random variable

Donsker and Varadhan (1975) have obtained precise asymptotic results for expectations of this kind. They
show

where d is the dimension and kd is a positive constant. This is very different from the simple exponential
decay at long times predicted by the
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Smoluchowski theory. Since there is no obvious analytic way to assess the time scale on which the asymptotic
behavior will be found, we have developed a simulation technique for this purpose. Early simulation results
indicate much better agreement with the Smoluchowski theory than with the Donsker-Varadhan result. The
reasons for this observation are not clear at present. See Figure 9.1.

Figure 9.1:
Survival probability Ω; for a particle diffusing in a sea of static traps. Comparison of Monte Carlo simulation

 , Donsker-Varadhan asymptotics (- - · - -), and the IP approximation (—).

9.2.1 Radiation Spurs

Diffusion controlled reactions are the fastest reactions that occur in solution. Experimental observations of
the rate of reaction contain information about the initial spatial distribution of the reactive species. A substantial
amount of research has been devoted to the analysis of radiation tracks. If radiation interacts weakly with the
liquid (e.g., fast β-particles), the track consists of small isolated spurs, which are clusters of highly reactive
particles; the spurs subsequently relax by diffusion and within each spur the particles react with each other on
encounter.

The problems of describing reactions in clusters can be illustrated by reference to a number of model
systems with simplified chemistry.
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The Two-Species Spur

The simplest system contains two types of particles, A and B, which react on encounter to form products
AA, AB, or BB. The particles are identical in all but name and have identical spatial distributions. The classical
method of dealing with such a system is to make a continuum approximation. The two spatially dependent
concentrations (which are identical) obey macroscopic continuum equations of the form

where the first terms on the right-hand sides represent diffusive spreading of the concentration profiles, and
the remaining terms represent local depletion by reaction; the rate coefficients k are given by Smoluchowski's
theory (cf. equation (9.1)). Although these equations are perfectly satisfactory when applied to macroscopic
problems, they are not appropriate when dealing with the small number of particles in a spur of finite extent.
There are two reasons for this: (1) the small number of particles in the spur ought to be treated as a discrete
variable, and (2) the Smoluchowski rate constant is appropriate for a particle initially surrounded by a
homogeneous Poisson field of reactants as opposed to the highly clustered distribution in a spur. The necessity
for a correct stochastic theory is easily demonstrated in this simple system. If there are initially NA particles of
type A and NB particles of type B, then simple probabilistic arguments permit us to show that the

TABLE 9.1: Typical Product Yield Ratios

NA NB AA AB BB
1 1 0 1 0
2 2 1 4 1
3 3 1 3 1
4 4 3 8 3
10 10 9 20 9

1 2 1
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expected product yields, for all times, are in the ratio

Typical ratios are given in Table 9.1. The continuum approximation always predicts a ratio of 1:2:1 since it
corresponds to the case of infinitely many particles. The independent pairs approximation can be used to provide
a stochastic theory of spur kinetics. If the state of the spur at time t is labelled with M, N where M is the number
of A particles and N is the number of B particles, then PMN (t), the probability of being in state M, N, satisfies the
following forward equations:

where the  are the reaction rates for isolated pairs of particles whose initial spatial separation is
equivalent to that in a cluster. These equations can be solved analytically in special cases, for example, when the
particles are identical. In general, though, they must be solved numerically. Comparisons between this
approximation, the continuum approximation, and the full Monte Carlo simulation of sample trajectories are
given in Figure 9.2, taken from Clifford et al., (1987a). It is evident that the stochastic independent pair (IP)
model is in very good agreement with the simulations.

The Ionic System

The two species system can be generalized by including long-range forces between the particles, such as the
Coulombic force between ions. Such forces act attractively between A and B particles, but like particles repel
each other. The form of the  is modified because the survival probability of a pair depends on the force
between the particles. The  must now be calculated approximately if the forces are weak (Clifford et al.,
1987b) or numerically if they are strong (Green et al., 1989). The introduction of forces would be expected to
make the IP approximation worse, because of complicated interactions in the many-body system. Comparisons
of the IP approximation and the results of full simulations of sample trajectories are shown in Figure 9.3. It is
seen that even when the forces are so strong that
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the AA and BB encounters are effectively impossible, the IP approximation is still remarkably accurate.

Figure 9.2:
Kinetics of two species spur. Initial configuration spherical Gaussian. Monte Carlo simulation  ; IP
approximation (—); continuum approximation (- - · - -). Reprinted, by permission, from Clifford et al. (1987a).
Copyright © 1987 by the Royal Statistical Society.

The Scavenging System

The simplest such system is

where the species A is clustered in a spur, whereas the species S exists in large numbers uniformly
distributed over an extended volume. There is competition between intraspur recombination, the AA interaction,
and scavenging, the AS interaction. The relative abundance of the ultimate yields of AA and AS provides
information about the scavenging process. In the IP model the forward equation becomes
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Figure 9.3:
(a) Ionic reactions in high permittivity solvents. Average number of reactions in a spur containing two ion-pairs: A
+, B-. Monte Carlo simulation  , simulation using the IP approximation (—), and continuum theory (- - -).
Reprinted, by permission, from Clifford et al. (1987b). Copyright © 1987 by the American Chemical Society. (b)
Ionic reactions in low permittivity solvents. Average number of surviving pairs in a spur containing two ion-pairs:
A +, B-. Left panel: homogeneous dispersion; right panel: heterogeneous dispersion. Monte Carlo simulation

 and simulation using the IP approximation (—). Reprinted, by permission, from Green et al. (1989).
Copyright © 1989 by the American Chemical Society.
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where  is given by the Smoluchowski theory (cf. equation (9.1)) and N is the number of A particles
remaining. The continuum approximation gives the equation

Typical results are shown in Figure 9.4. Again, the continuum model fails to reproduce the results of a full
Monte Carlo simulation, and the IP approximation is superior.

9.3 COMPUTER SIMULATION OF LIQUIDS

Although a full description of a liquid system must be quantum mechanical, almost all liquids (except those
containing very small molecules such as helium) can be described adequately using a completely classical
deterministic model (McQuarrie, 1976). If we tag and follow one molecule in a computer simulation of such a
deterministic system, its motion appears random. If several molecules are followed, their spatial configuration
evolves as a spatial point process, marked by the individual velocities. What we would like to do is to find
stochastic rules that indicate where the molecules will be, and how fast they will be traveling, as time goes on.
For example, in radiation chemistry, where the effect of radiation is to create reactive species distributed
throughout the liquid, we are interested in the time taken for such species to encounter and react with each other.

9.3.1 Some History

In physics and chemistry, classical liquids are simulated by one of two techniques. The first relies on the
laws of mechanics to provide the equations of motion of a finite system of interacting molecules (Goldstein,
1980). This is known as the molecular dynamics approach. The second technique makes use of statistical
arguments that were originally given by Gibbs. This is generally called the Monte Carlo approach. A rigorous
and detailed account of the statistical treatment of mechanics can be found in Ruelle (1969). The book Computer
Simulation of Liquids by Allen and Tildesley (1987) contains a comprehensive history of simulation
methodology from the first computer experiments through to the latest ideas. Numerical simulation is the
technique most widely used in recent years to study the properties
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of liquids. It is now an extremely large research area in both physics and chemistry, with many hundreds of
research groups involved.

Figure 9.4:
Average number of reactions in a spur containing four radicals A, A, A, A with scavenging by S molecules. Initial
distribution spherical Gaussian. IP approximation (—); continuum theory (- - -). Reprinted, by permission, from
Clifford et al. (1987a). Copyright © 1987 by the Royal Statistical Society.

The classical mechanics of a system of N structureless molecules is specified by a Hamiltonian H, which is
the sum of the kinetic and potential energy of the system: H(r, p) = K(p) + V(r). Hamilton's equations of motion
are (Goldstein, 1980):

where p and r are the vectors of momenta and positions of the molecules. The kinetic energy is given by

where mi is the mass of molecule i and pi is the magnitude of its momentum. The potential energy V(r)
depends on the positions and orientations of the
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particles. It is usually sufficient to assume that V only depends on the interactions of particles in pairs, and to use
a spherical average of the pair potential, although the pair potential may have to be modified to correct for higher
order effects. In the absence of an external field, the potential energy then becomes

where rij is the distance between particles i and j.
The computer simulation of liquids and gases was initiated by Metropolis et al. (1953), who used Monte

Carlo methods to simulate the Gibbs equilibrium distribution of molecular configurations. Their aim was to
derive values for stationary (i.e., equilibrium) physical properties such as expected energy and expected pressure.
Early work was concerned with the case of a hard sphere potential,  for  and 
otherwise.

In order to obtain dynamic properties, Alder and Wainwright (1959) developed a method by which the
simultaneous equations of motion for many molecules are solved numerically. They illustrated their method by
simulations using both hard sphere and square well potentials. Their paper is the first example of molecular
dynamics simulation. Simulations using a realistic potential were made by Rahman (1964).

In particular, Rahman estimated the pair-correlation function

where  is the time averaged number of molecules at a distance between  and  from a
given molecule, and N/V is the average density of molecules. He showed that the system has spatial structure that
decays slowly over time.

9.3.2 Sampling From Configuration Space

Let us consider a system of N molecules in three-dimensional space, subject to a potential as previously
described. We can think of the simultaneous positions and momenta, or equivalently positions and velocities, as
coordinates in 6N-dimensional space, X. We denote a point in this space by x. We call X the state space and refer
to x as a state; in the physics literature, X is called the phase space. Let F be a function of x. We refer to F(x) as
an instantaneous evaluation of the property F. For example, K(p) in equation (9.4) is an instantaneous evaluation
of kinetic energy.
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A large system can be thought of as the union of many smaller systems. At any instant of time, each small
system will have a particular state. A macroscopic property of the large system is an average of the property
evaluated over the subsystems. There are two basic ways in which the state space can be explored. The first is to
build a dynamic description of molecular motion that will move through the state space according to acceptable
physical principles. This is the approach of molecular dynamics. As noted earlier (§9.3.1), the equations of
motion are those considered by Hamilton in classical mechanics. The required average is then taken over a
succession of times for a single small system; arguing that if the time period is sufficiently large a representative
sample of configurations will be obtained.

The second method of sampling states relies on the validity of Gibbs's probabilistic analysis of large
mechanical systems. The method involves Monte Carlo simulations. The state of each small system is treated as
a random variable drawn from the Gibbs distribution, which is constructed to have maximum entropy subject to
certain constraints, giving an explicit form for the density of the distribution. The task of sampling the state space
for this method is reduced to that of choosing a random sample, xl, x2,. . . ,xn, from a specified density

. In typical applications the form of the density lends itself to sampling by the Metropolis method.
The required estimate of the macroscopic property is then given by . Since
this can be interpreted as an average taken over a number of subsystems, it is usually referred to as a space-
average.

Both Monte Carlo and molecular dynamics simulations can be used to sample from the equilibrium
distribution of a many-particle system. In principle it is therefore possible to test empirically whether Gibbs's
theory agrees with the results of molecular dynamics simulation. In practice, simulations must be run for a large
number of time steps until equilibrium is attained. The development of tests for spatial point patterns is an active
research area in statistics (Diggle, 1983; Ripley, 1987; Besag and Clifford, 1989). One of our aims is to link
methods used by probabilists and statisticians in the study of spatial processes with methods used by physicists
and chemists in their study of liquids.

9.3.3 A Typical Computer Experiment

Lynden-Bell et al. (1986) investigated the behavior of carbon tetrafluoride CF4 near its triple point by
carrying out a Molecular Dynamics simulation of 256 molecules in a cubic box with periodic boundary
conditions, using a variant of the Lennard-Jones potential. They were interested in the struc
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ture of the velocity autocorrelation function, i.e., the empirical correlation between the velocity of a molecule in
a particular direction and its velocity in the same direction at some time in the future. For typical liquids, the
velocity autocorrelation is strongly positive at short lags, since molecules tend to continue with the same
velocity, negative at moderate lags, since molecules eventually bounce off their neighbors, and then slowly
approach zero as the lag tends to infinity.

In order to explain certain anomalies in the behavior of the velocity autocorrelation function, Lynden-Bell et
al. conjectured the existence of ''local cages'' of molecular configurations. A molecule is said to be in a local cage
if its motion is restricted by the proximity of neighboring molecules. They first estimated the density of cos

, where  is the angle between the velocity of a molecule at time t, and the velocity of the same
molecule at the later time . They observe that at moderate values of  the estimated density is
approximately uniform. Plotting the height of the estimated density as a function of time , they notice that the
shape of the curve closely follows that of the velocity autocorrelation function. Stratifying the molecular
trajectories by initial kinetic energy, Lynden-Bell et al. then repeat their analysis, but for initially fast and slow
molecules separately. The results are different for the two groups. The structure is the same, but the magnitude of
the effect is much higher for fast molecules. They suggest that high-energy molecules rattle back and forth in
cages, while slower molecules diffuse. Lynden-Bell et al. finish by looking at the velocity autocorrelation
function for the two stratified groups of molecules. They show that the velocity autocorrelation function of
slower molecules has, surprisingly, a more pronounced negative portion than that of the faster molecules.

In the simplest statistical mechanical model of a liquid, molecules have independent velocities chosen from
the Maxwell-Boltzmann distribution, i.e., multivariate normal. In Atkinson et al. (1990), it is shown that, with
the possible exception of the last result, all the results of Lynden-Bell et al. are consistent with a simple
description in which each molecule moves along a random trajectory in such a way that the velocity components
in three fixed orthogonal directions axe independent Gaussian processes. It is not necessary to propose the
existence of local cages.

To see this, notice that cos( ) is essentially a correlation coefficient for three pairs of velocity components.
With the Gaussian assumptions above, the density of R = cos( ) is then given by
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Figure 9.5:
Histogram of cos( ) after various time lags: (a) simulated (Lynden-Bell et al., 1986) and (b) calculated from
equation (9.6). The curves are displaced, as in Lynden-Bell et al.; in each case the horizontal dashed line represents
a uniform density. Reprinted, by permission, from Lynden-Bell et al. (1986). Copyright © 1986 by Taylor and
Francis, Ltd.

where  is the theoretical counterpart of the empirical velocity autocorrelation. In the discussion of
their results, Lynden-Bell et al. observe that at moderate lags the distribution of R is nearly uniform. If R has a
uniform distribution, then the molecule is equally likely to be moving in any direction at this time lag, regardless
of its initial velocity. The authors also observe that, at longer time lags, the distribution of R becomes skewed,
indicating that the particle's velocity is opposite to the original direction. Lynden-Bell et al. consider these results
to be paradoxical, however, this is precisely what is predicted by the form of the theoretical density. More
importantly, the theoretical predictions give good qualitative fits to the computer-simulated results. See Figure 9.5.

To throw further light on the causes of the nearly uniform distribution of R at the time lag for which the
velocity autocorrelation function is zero,
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Lynden-Bell et al. stratified the trajectories of molecules by their kinetic energy at time zero. Their idea, as noted
earlier, was that the observed effect was due to a balance between high-energy molecules rattling back and forth
in local cages, while low-energy molecules were diffusing through the whole space.

Figure 9.6:
Time-dependence of the probability density of cos( ) at  = 0º, 90 º, and 180º, conditioned on initial kinetic energy.
(a) Molecular dynamics simulation (Lynden-Bell et al., 1986) and (b) calculated from equation (9.7). The
continuous lines refer to the 7.2% of particles with the highest kinetic energy, and the dashed lines to the 12% with
the lowest energy. Reprinted, by permission, from Lynden-Bell et al. (1986). Copyright © 1986 by Taylor and
Francis, Ltd.

Taking v to be the velocity of a molecule at time t = 0, and writing |v| = α, the conditional density of R given
α obtained under the Gaussian assumptions is

As is shown in Figure 9.6, the fit with the data of Lynden-Bell et al. is again excellent.
The final observations of Lynden-Bell et al. are difficult to reproduce. We have tried unsuccessfully to

confirm these results using a molecular dynamics program. The program was run many times using different
numbers

STOCHASTIC MODELING IN PHYSICAL CHEMISTRY 173

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Φ Φ

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


of molecules (32, 108, 256) and a variety of different computers (Vax mainframe, MassComp workstation, Sun
workstation). Comparisons of double and single precision calculations were made, and the effect of optimizing
compilers was also examined. Different computers, different precision, and the use of an optimizing compiler all
substantially changed the configurations and velocities of the molecules. At lags for which the velocity
autocorrelation is positive, there was however, a consistent effect with the slow molecules having a slightly
greater positive autocorrelation at a fixed time lag than the fast molecules. This is not consistent with the simple
hypothesis of Gaussian velocity components.

9.4 DISCUSSION AND FUTURE DIRECTIONS

The main areas of investigation in physical chemistry can be classified as follows:

1.  physical properties of matter in equilibrium,
2.  dynamical and transport properties of matter,
3.  properties of atoms and molecules,
4.  statistical mechanics linking the above,
5.  energetics and dynamics of chemical reactions, and
6.  complex systems.

9.4.1 Physical Properties of Matter in Equilibrium

The properties of bulk matter are reasonably well understood on a qualitative level, and if the substance is
made up of simple molecules or atoms, such as the liquid inert gases, numerical simulations of small systems,
based on the known intermolecular forces and involving of the order of a thousand molecules, are quite
successful in reproducing the observed properties. Molecular dynamics simulations become more complicated
when the molecules are neither spherical nor rigid. A great deal of work is still in progress in this area. A typical
simulation is a realization of a chaotic spatial temporal process, involving the position and velocity of several
hundred molecules for perhaps 10,000 time steps. There are a number of outstanding statistical problems in the
design and analysis of these computer experiments. In particular, it is of interest to determine when a simulation
has
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reached equilibrium. This problem is complicated, in small systems, by the effects of phase transition.
An additional complication, which is receiving attention, is the inclusion of quantum mechanical effects in

liquids such as helium. The properties of polymers and biological compounds are also the subject of research
activity. Attention has turned in recent years to the study of interfaces between different phases of matter. Monte
Carlo and molecular dynamics simulations have concentrated on bubbles and droplets, and a number of
experimental techniques have been devised for studying the gas-solid, gas-liquid, and solid-liquid interfaces.
This work has relevance to the understanding of catalytic and electrochemical processes.

Recent advances in experimental metallurgy have enabled detailed analyses of the atomic structure of
metallic alloys to be carried out. Data are becoming available that record the position, subject to quantifiable
error, of up to 60% of the atoms in small three-dimensional regions of a given sample. The analysis of this
enormous data base, in particular the task of reconstructing the atomic lattice from partial observations, is a
challenging statistical problem, which can be approached by combining simulated annealing as an optimization
technique and realistic annealing as a description of the aging process in the atomic lattice.

9.4.2 Dynamical and Transport Properties of Matter

The transport properties of matter, such as viscosity, thermal conductivity, and diffusion, involve transfer of
energy or momentum from one molecule to another during a collision. The theoretical relationship between the
transport properties of gases and the intermolecular forces has been known for a long time. Recently, physical
chemists have attempted to tackle the inverse problem of estimating the intermolecular forces from detailed
experimental observations of the viscosity-temperature curve. There is increasing interest in this type of
statistical exercise, in particular there are unresolved questions of identifiability.

In solids and liquids, it has become clear that there is a wealth of information about the dynamics of the
molecules from light-scattering and neutron-scattering experiments, but the information is in a form that is
difficult to extract and interpret. One promising line in this respect is the use of computer simulations as
idealized experiments, both to develop tools for the analysis of data and to construct Monte Carlo estimates of
dynamical quantities. Applications to more complex systems include the study of the motion of polymers in
solution, with particular reference to enzyme activity.
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9.4.3 Properties of Atoms and Molecules

A great deal of physical chemistry is involved with investigating the properties of isolated atoms and small
molecules. Spectroscopy of these species, using radiation ranging from radio frequency through infrared and the
visible spectrum to X-rays, provides basic information about the energies of the accessible quantum states and
the symmetries of the corresponding wave-functions, molecular size and geometry, nuclear spin, dipole
moments, magnetic moments, polarizabilities, and so on. Spectroscopy can therefore be used to test the
predictions of the great variety of quantum mechanical approximations employed to calculate molecular
properties.

9.4.4 Statistical Mechanics

The fundamental molecular properties and their interactions as measured by spectroscopists are the data
required by statistical mechanics for the description of bulk matter. Statistical mechanics is the central unifying
theory of physical chemistry as it relates the properties of isolated molecules with the bulk. The reconciliation of
the statistical mechanical approach with modern theories of chaos in dynamical systems is a problem of
outstanding interest to mathematicians. Large deviation theory was used in early attempts to provide a
probabilistic interpretation. Recent work on infinite particle systems, has given insight into the phenomenon of
phase transition in the classical Gibbs distributions of statistical mechanics. Some of the important applications
have been covered in previous sections.

9.4.5 Dynamics of Chemical Reactions

Chemical reactions occur when molecules are transformed by the rearrangement of electrons and nuclei.
Physical chemistry concerns itself not only with the energetics of chemical reaction, but also with their rates and
with the distribution of energy in the products. Gas phase chemical reactions generally occur as a result of simple
collisions between isolated molecules. The classical theory of these processes has recently been revolutionized
by experiments in which molecules are produced in collimated mono-energetic beams, which allow many of the
parameters of the colliding particles (e.g., speed, quantum state, and orientation) to be fixed, and the energy and
angular distributions of the products to be analyzed, thus giving very detailed information about the collision
dynamics and the flow of energy between and within molecules.
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Classical descriptions of these dynamics have been proposed, which show regions of regular behavior and
regions of chaos. It is still not clear how such phenomena will transfer to quantum mechanical descriptions.
Reactions in solution are not understood in such a detailed way, although there are quantum mechanical theories
of electron transfer reactions and the like. An additional problem of reactions in liquids is that particles diffuse
slowly through the liquid and can only react on encounter. There are therefore two limiting cases of reaction:
diffusion control, where the rate depends only on the transport through the solution and the rate of encounter;
and activation control, where reactive encounters are rare, so that many encounters will take place before
reaction can occur. Theories of the former type of reaction have been developed for a long time, but are only
now being tested, by numerical solution of the associated stochastic differential equations. For activation-
controlled reactions more detailed modeling of the encounter complex is required.

9.4.6 Complex Systems

As well as the fundamental research described above, physical chemistry is involved with description of
more complex systems, particularly the evolution of these systems. Frequently, the problems of interest have
important spatial aspects that have to be taken into account.

Atmospheric Chemistry—Depletion of Ozone Layer

A realistic model must incorporate chemistry and transport in the atmosphere. It also requires an
understanding of interfaces such as those between the air and cloud droplets and ice crystals, which act as sinks
for active chemicals.

Combustion

Since the 1950s there has been a series of revolutionary changes in explosives technology, which has
resulted in safer but slower-reacting explosive products. In order to maintain product performance, much
attention must now be given to understanding the detonation process. The initiation and establishment of the
critical conditions for detonation have been subject to little detailed realistic investigation; although of course
there are obvious analogies with the stochastic theories of spatial epidemics. The necessary cooperative
interaction between small numbers of initiating sites suggests
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that a treatment based on macroscopic deterministic approximations may be inappropriate: the number of
reacting species being just too small for the averaging implicit in standard treatments. Here again, there is the
possibility of nonlinear kinetics producing oscillations and chaotic behavior.

Radiation Chemistry

When a liquid is exposed to ionizing radiation, reactive species are generated in an initially localized spatial
distribution. For low linear energy transfer (LET) radiation, isolated clusters, called spurs, are formed. A
significant proportion of the chemical reaction following radiation occurs on a short time scale, when the
localized distribution has not yet relaxed by diffusion. The chemical process can be treated successively using
stochastic methods. Currently, there is interest in extending these results to the products of higher LET radiation,
which are formed along linear tracks.

Surface Kinetics and Electrochemistry

The theory of surface kinetics seeks to explain effects such as etching, dissolution of crystals and the
formation of corrosion pits. Stochastic models of growth and dissolution have been studied. An interesting class
of problems concerns the description of flocculation processes, in which the growth of an aggregrate is limited
by diffusion from the surrounding medium.

Electrochemistry is concerned with the understanding of chemical effects produced at electrodes. Recent
debates about the feasibility of cold fusion, hinged on the estimation of the probability of favorable molecular
encounters at an electrode. Electrochemistry is clearly a branch of physical chemistry in which probabilistic
calculations play an important role.
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10

Stereology

Adrian Baddeley
Centre for Mathematics and Computer Science

10.1 INTRODUCTION

Stereology is a spatial version of sampling theory. It was initially developed in biology and materials
science as a quick way of analyzing three-dimensional solid materials (such as rock, living tissue, and metals)
from information visible on a two-dimensional plane section through the material. It now embraces all
geometrical sampling operations, such as clipping a two-dimensional image inside a window, taking one-
dimensional linear probes, or sampling a spatial pattern at the points of a rectangular grid. Applications include
anatomy, cell biology and pathology; materials science, mineralogy and metallurgy; botany, ecology and
forestry; geology and petrology; and image processing and computer graphics.

It is not the aim of stereology to reconstruct an entire three-dimensional object. Typically, only a few
sections or samples are taken, and their spatial position is not recorded. Further it is usually impossible to model
the three-dimensional structure explicitly. Instead, stereology uses simple nonparametric techniques to estimate
''geometrical parameters'' such as volume and surface area. Simplicity is the key word; the estimation relies only
on fundamental geometric facts and classical sampling theory. As a result, stereological methods are almost
"assumption free," and are applicable in many different sciences.

Applications and general concepts are described in §10.1. Section 10.2 is a more detailed statistical
treatment. Section 10.3 describes newer discoveries and research problems.
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10.2 CONCEPTS AND APPLICATIONS

10.2.1 Information from Lower-Dimensional Samples

In 1847 the French mineralogist Delesse published a revolutionary method for measuring the mineral
content in a sample of rock [22]. Instead of crushing the rock to separate the different minerals, one simply cuts a
plane section through it. Delesse had realized that the proportion by volume of a particular mineral can be
estimated from its proportion by area visible in the section.

Model the rock as a set  containing a subset , the mineral phase of interest. The objective
is to estimate the volume fraction

where V(·) denotes volume. Let T denote a plane in three dimensions, so that  is the plane section of
the rock, and  is that part of the section occupied by the mineral phase. Delesse's method estimates VV

from the area fraction

where A(·) denotes area in the two-dimensional section.
This is like a survey sampling problem: X represents the "population" and  the "sample" from which

we want to estimate a population parameter VV. Astoundingly, AA is an unbiased estimator,

(under the fight sampling conditions), without any assumptions about the shape of X and Y. This follows
from the basic geometrical fact that the volume of a three-dimensional object is the integral of the areas of its
two-dimensional plane slices. Here E denotes expectation with respect to a suitable random sampling design (not
the most obvious one); we give details in §10.2.

Delesse's method was later simplified [74] by placing a grid of parallel lines over the plane section, with the
aid of a transparent sheet. Then area fractions AA can be estimated from length fractions LL, i.e., the relative
lengths of the mineral phases on the line grid. This was simplified even further by Glagoleff [23] who showed
that if we superimpose a rectangular grid of points over the section plane, the area fraction AA can be estimated
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from the proportion Pp of grid points that "hit" (lie over) the mineral phase. In both cases the estimators are
unbiased.

Demonstrate this with a "party trick." Take a sheet of graph paper ruled with (say) thin lines every 1 mm
and thick lines every 5 mm. Cut out an arbitrary shape. Ask someone to determine the area of the cutout by
counting all the 1 mm squares. Meanwhile estimate the area stereologically by counting the 5 mm crossing
points that are visible on the paper, and multiplying by 25. The result will be unbiased, typically accurate to
about 5%, and is 25 times as fast to compute.

Similar tricks exist for estimating other geometrical quantities. The length of a plane curve can be estimated
from the number of crossing points between the curve and a grid of parallel lines. The surface area of a curved
surface in three-dimensional space can be estimated from the length of its trace on a plane section [82]. The
length of a curve in space can be estimated from the number of points where the curve hits a section plane.
Certain quantities related to curvature can also be estimated [9,21].

TABLE 10.1: Standard Notation for Geometrical Quantities
Space dimension n set X Letter Meaning
3 solid domain V volume

curved surface S (surface) area
space curve L curve length
finite set of objects N number of objects
curved surface M,K integral of mean curvature

2 plane domain A area
curve L,B curve length
finite set of points I,P number of points
finite set of objects N,Q number of objects
curve C total curvature

These methods are summarized in Table 10.2 with notation listed in Table 10.1. Each quantity in Table 10.2
is an unbiased estimator of the quantity to its left (following the arrow). The table is valid only under very strict
assumptions of "uniform sampling" (see §10.2) but with very minimal geometrical assumptions, because it relies
only on fundamental relationships between volume, area, and length.
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TABLE 10.2: Classical Stereological Formulas

Dimension of Space
3 2 1 0

Plate 10.1 (preceding page 71) shows an optical microscope image field from a plane section of the lung of
a gazelle (magnification ×1500). A stereological test grid has been superimposed on the image, consisting of 40
test points (circled) and line segments totalling 42 cm in length. Since 7 out of 40 test points hit the tissue (rather
than the empty airway), we estimate the volume fraction of tissue as . There are
16 positions where a line segment crosses the tissue-airway boundary, so the surface area of lung/air interface
per unit volume of lung is estimated at . Thus, a cubic
centimeter of gazelle lung contains about 1100 cm2 of lung/air interface.

10.2.2 Stereology is Classical Sampling Theory

Results like (10.1) were known as early as 1733 with the celebrated needle problem of Buffon [8] and its
successors in integral geometry and geometrical probability [84,30,48,75,76,80]. However, the first rigorous
statistical foundation was laid out only in 1976 by Miles and Davy [20,61,62].

Unbiased estimation, rather than maximum likelihood or minimum mean squared error estimation, is
emphasized for several reasons. The distribution of any statistic is difficult to compute because of geometrical
complications, and to do so requires severe assumptions about shape (e.g., assuming that X and Y are spheres).
One of the beauties of the estimators above is that they are known to be unbiased without geometrical
assumptions: they are effectively nonparametric moment estimators.

A simple test grid requires only a few decisions ("hit" or "not hit") on any image. This is convenient in
some applications where it is laborious or difficult to recognize boundaries or identify the objects of interest. Yet
it appears to throw away most of the information in the image. This is
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in fact desirable, for stereological experiments usually generate hundreds of images; it is not efficient
(statistically or economically) to analyze a single image in great detail. There is usually enough replication
(sections from different parts of the sampling material, windows from different parts of a section) to dramatically
reduce the overall sampling variance. In biological applications, the variance contributions associated with
variation between animals, and between parts of the same animal, are usually far greater than the variance due to
stereological sampling [17,24].

One of the main stereological discoveries of the 1980s was the pervasive importance of systematic
sampling. Recall that for a finite population of n individuals, ordered arbitrarily and numbered 1, . . ., n, a
systematic sample with inverse sampling fraction k is generated by choosing a random number m uniformly
distributed in {1, . . ., k} and taking the individuals numbered m, m + k, m + 2k, . . .. The sample has random
size, but can be said to consist of a fixed fraction of the population. The population total of some variable zi

associated with each individual,

can be estimated unbiasedly by taking k times the sample total,

see [11]. The approach is similar for a "continuous population": to estimate an integral , the
numerical integral

is an unbiased estimator of I when U is uniformly distributed over [0, ∆].
Stereological estimates based on grids of points, lines, and the like, are essentially systematic sampling

estimates. A point grid is a two-dimensional systematic sample of the continuous two-dimensional plane.
Estimators based on systematic samples are indeed quite efficient. The estimator of the area of a plane set

using a point grid is known to have asymptotic variance ~ La3 as , where a is the distance between grid
points and L is the perimeter length of the set. This is of order n-3/2 rather than n-1, where n is the expected
number of points counted. Negative correlation in systematic samples tends to make them more efficient than
independent random samples (depending on the structure of the sampling population).
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10.2.3 The Particle Problem

Now the bad news. Suppose that our sampling material contains identifiable individual objects—call them
"particles"—such as biological cells, crystal grains in a mineral, or holes in a porous rock. We want to regard
these particles as individuals forming a population, and make sampling inferences about them: number of
particles, average volume, and so on. Usually we cannot sample from this population directly; we have to take
plane sections.

It is impossible to estimate NV, the number of points or objects per unit volume, from plane sections in the
sense of Table 10.2. One indication of this is the mismatch of dimensions or units. For example, SV = S(mineral)/V
(rock) is in units length2/length3 = length -1; so are the other terms in the same row. Now NV is in units length -3,
and so we would naively expect not to be able to estimate it from lower-dimensional sections.

Notice that V, S, and L are "aggregate" quantities, defined as integrals over the object of interest, whereas N
is an "individual" quantity with no such interpretation in general. Miles [60] gives an elegant sketch proof
justifying the estimation of aggregate quantities as a straightforward exchange of integration and expectation.

The fundamental problem is that a plane section through a particle population is a biased sample of the
population. To see this, visualize the entire sampling material sliced thinly end-to-end by a series of parallel
planes. Randomly choose one of the slices with equal probability. The chance that a given particle is represented
on this slice depends on the number of slices through that particle, i.e., is proportional to the projected height of
the particle in the direction normal to the section planes. Hence the sampling design has a bias in favor of larger
particles.

There are essentially three responses to this problem. We can attempt to numerically "correct" our data for
the effect of the sampling bias; we can choose to measure different variables that axe more "natural" in this
sampling design; or we can change the sampling design so that it becomes unbiased.

In the correction approach to estimating NV, the two-dimensional quantity, we would naively think of using
is QA, the number of observed particle profiles per unit area of section. This is indeed related to NV through the
DeHoff-Rhines equation

(e.g., [88, p. 142]), where  is the mean projected height or mean caliper diameter (i.e., the average over all
particles Xi of the mean projected height
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H(Xi) defined in (10.12) below). Estimation of particle number is thus confounded by particle shape and size (or
involves a nuisance parameter associated with shape and size). Even in the happy case where all particles have
the same known shape, the distribution of sizes is usually unknown, and it is hard to estimate  from plane
sections.

In the second approach, we measure sample quantities only when they are three-dimensionally meaningful.
For example, if the objective is to study the proportion of "type X" cells in a given tissue, it is not useful to count
cells appearing on the section plane, since there is no direct relation between cell sections and cells. Instead, one
should measure the area fraction AA of type X cells on section, because this can be translated directly into an
estimate of the volume fraction VV of type X cells.

10.2.4 Unbiased Counting and Sampling

A better solution to the problems of sampling bias mentioned above is to avoid them altogether by devising
another, unbiased, sampling method.

One example is disector sampling [79,28,27]. A disector is a pair of parallel plane sections a fixed distance
apart; often these are two consecutive slices through the material. We count a particle only if it appears on one
section and not on the other. This gives each particle an equal probability of being sampled. The only
assumptions needed are (1) that no particle is small enough to fall between two section planes at this distance
and (2) that the experimenter can establish the identity of each particle, i.e., can tell whenever the same particle
has been sectioned on two different planes.

Sampling bias is present even in two dimensions. Figure 10.1a shows a sketch of a microscope field-of-
view with cell profiles visible. The object is to determine NA, the number of profiles per unit area. A frame F of
known area has been superimposed on the image. Naively one would just count all the objects that lie in or on
the frame F and divide by the area A(F). The features so counted axe shaded in Figure 10.1a.

This counting rule, dubbed plus-sampling by Miles [59], clearly produces a biased sample of profiles. If we
imagine the field-of-view to be placed at random on the microscope slide, the larger profiles have a greater
probability of being sampled. Hence the plus-sampled estimate of NA is biased: the expected number of profiles
counted is greater than NA × A(F).

An alternative is minus-sampling: count only those profiles that are completely inside the frame F ([59],
illustrated in Figure 10.1b). As the name suggests, this counting rule is negatively biased. Smaller profiles have a
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greater probability of being sampled and counted. Profiles that are actually larger than F will never be counted.

Figure 10.1:
Two biased counting rules for planar profiles: (a) plus-sampling, (b) minus-sampling.

A better suggestion is to count only fractionally the profiles that hit the boundary of the frame. Count
profile Xi with weight , i.e., the weight is the fraction of area of that profile that is within the
window. Using a mean-content formula for windows (§10.3.3), we can verify that the integral of this weight over
all translations of F is A(F), so that

is an unbiased estimator of NA.
An alternative which does not require area calculations is the associated point method [59]. Suppose that

for any profile X, a unique point v(X) is specified; for example, the centroid of X or the bottom left corner. It is
not necessary that v(X) be inside X; we assume only that v(X) is equivariant under translations, v(X + t) = v(X) + t
for all vector translations t (if X is shifted then the associated point shifts by the same amount). Then an unbiased
estimate of NA is to count the number of profiles whose associated points fall inside F, and divide by A(F). See
Figure 10.2a.
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Figure 10.2:
Two unbiased counting rules for planar profiles: (a) associated point rule, (b) tiling rule.

An even easier alternative suggested by Gundersen [25] employs the special frame illustrated in
Figure 10.2b. The solid line, around two sides of the frame and extending to infinity in two directions, is a
"forbidden line"; any profile that touches it is not counted. Otherwise any particle that intersects the sampling
frame, wholly or partially, possibly crossing the dotted boundary, is counted. The rationale for this rule is,
briefly, that if the infinite two-dimensional plane were tiled with copies of this sampling frame (like stacked
chairs), then any profile would be counted by exactly one of the frames.

Plate 10.2 (preceding page 71) shows the unbiased estimation of NV for nuclei in human renal glomerulus
using a combination of Gundersen's tiling rule and the disector. Two optical section planes (i.e., different
positions of the microscope focal plane) with a separation of 4 µm are shown. To the left is the top (look-up)
plane; to the right is the bottom (measuring) plane on which is superimposed a randomly translated tessellation
of rectangular counting frames. Nuclei seen clearly on the look-up plane are not counted; on the measuring
plane, three new nuclei have come into focus in the counting rectangle just below the center. The counting
rectangles have real area 527µm2, and so our estimate of NV is , or
roughly 1.4 × 106 nuclei per cubic millimeter of glomerulus.
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10.2.5 Spatial Interpretation and Inverse Problems

Its founders envisaged stereology as the spatial interpretation of sections, meaning not only quantitative
estimation but also more qualitative reasoning about three-dimensional geometry, including shape and topology.
But spatial reasoning is confused by sampling effects. A single three-dimensional object may appear on section
as several unconnected objects. A section of a three-dimensional object has smaller diameter than the object
itself; while the distance between two objects, or two surfaces (e.g., the thickness of a biological membrane)
appears greater on section than in three dimensions. A given three-dimensional object may look very different on
different section planes; different three-dimensional objects may fortuitously have identical plane sections.

As we have seen, plane sections and rectangular sampling windows generate biased samples of a particle
population, since larger particles have a greater probability of being "caught." Other more subtle biases are
caused by selecting a particular orientation for the section plane (for example, always slicing muscle tissue
transverse to the muscle fibres) or selecting sections where a particular feature is visible.

"Real" and "ideal" geometry also differ. Since physical slices of biological tissue have nonzero thickness,
the microscope image is actually a projection through a translucent slab of material onto the viewing plane. This
is the Holmes effect: images of sectioned objects are larger than they would be for an ideally thin plane section,
and some objects may be obscured by others.

The traditional response was "correction" based on an ideal model, for example, assuming the particles are
perfect spheres. Wicksell [94,95] showed that, for a population of spheres, both NV and the size distribution of
the spheres can be determined from sections: if F is the distribution function of sphere radii and G the
distribution of circle radii observed on section, then (under suitable sampling conditions [39,70,80]) G has
probability density

This is an integral equation of Abel type. It is invertible:

so that F can be uniquely recovered from G. Implicitly this includes the estimation of mean sphere radius µ
so that NV can also be determined.
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Similar equations have been encountered in the estimation of the thickness distribution of a biological membrane
[42] and the orientation distribution of a curved surface [16].

This is a typical inverse problem, in which an unknown distribution or function is related to an observable
function by an integral equation or other operator. The difficulty here is that the inversion of the equation is
numerically unstable. For example, the circle distribution G must always have a density. Thus, if we apply a
naive inversion procedure to the empirical distribution of circle radii obtained from observations of n circles, the
inverted F is not a distribution function [86]. Again, substituting r = 0 in the inversion formula shows that µ is
proportional to the harmonic mean of G; the estimate of µ will have poor sampling properties.

Part of the trouble is that we are attempting to estimate a whole function F nonparametrically without
constraints. An alternative is to model F parametrically and estimate the parameters from observations of G.
Nicholson [65,66,67] and Watson [85] also showed that some linear functionals of F, such as its moments, can
be estimated reliably from samples of G.

More sophisticated approaches to inverse problems are mentioned in chapter 2 of this report. In the
Wicksell context, statisticians have recently proposed kernel smoothing methods [81,14,32,37,83] and iterative
methods such as the EM algorithm combined with smoothing [78].

Apart from the considerable numerical hitches, some practical objections to the Wicksell approach are that
the geometrical model is unrealistic and untestable (cells are not perfect spheres); extra factors such as the
Holmes effect will distort the kernel ; the amount of data collected in stereological experiments will rarely
be sufficient to form a stable estimate of F.

By the 1970s there had been many dubious or even erroneous attempts to avoid section effects, and
theoretical stereologists evolved the narrower ''party line'' that it is only possible to reliably estimate certain
aggregate three-dimensional quantities such as volume and surface area. More recently, additions to the list of
fundamental formulas (Table 10.2) have made it possible to estimate parameters such as the mean squared
particle volume, without any assumptions about particle shape. The list of parameters that can be reliably
estimated—without shape assumptions—now includes some quantities related to curvature, orientation, and
"shape."
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10.2.6 Stochastic Models

Stereological inference and spatial interpretation are difficult because we simultaneously have not enough
data (important three-dimensional information is lacking) and too much data (the two-dimensional images are
not analyzed closely). Stochastic models can bridge this gap.

Explicit Models

At one extreme, we could build a probability model for the entire spatial structure X using random set
models from stochastic geometry [34,48,53, 77,80]. An explicit, parametric model would contain information
about the sizes, positions, shapes, relative arrangement, and topological relationships of components in X, which
could be estimated by comparatively familiar statistical methods. Explicit models in stochastic geometry are
mostly analogues of point processes, the Poisson, Cox, cluster, and Markovian categories described in chapter 7.
Some statistical theory is available for them [2,33,69,71,77], and they have proved to be excellent descriptions of
some simple structures such as rock fractures and crystalline materials [77]; but realistic models for the highly
organized structures of biology and ecology still elude us.

Stationary Models

"Nonparametric spatial modeling" is a less demanding approach where the random spatial process X is not
explicitly described, but is assumed to be stationary (certain distributions or moments are invariant under
translations and/or rotations). Then we can nonparametrically estimate the moments or distributions associated
with the process [80, chap. 4]. All the standard stereological results can be rederived in this context (see
[57,58,64]) since in fact it is a reformulation of the same sampling problem. The reformulation emphasizes how
little need be assumed about the spatial structure X, and suggests new estimators. For example, the locational
interaction (such as clumping or dispersion) between parts of a spatial structure can be described by the second-
order moment characteristics of the process, which can be estimated nonparametrically from sample data. The K
function for point processes [70], described in chapter 7, is one instance.
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Semiparametric Models

Commonly, only a part of a spatial structure X is of interest. If only that part is modeled, we have a
semiparametric statistical model. For example, the thickness of a curved tube could be modelled by a parametric
family of distributions for the radius, without specifying shape or location except to assume that the process is
stationary [4]. The distribution of directions in a structure (e.g., surface normal vectors, curve tangent vectors)
could be modeled by a parametric family of distributions on the unit sphere [16]. In a material consisting of
several phases or compartments, one can test whether the arrangement of phases is "random" or whether some
phases tend to be associated, by applying standard discrete data models [50].

Data Models

At the other extreme would be a statistical model for the stereological data obtained from a series of
samples Ti. For example, Cruz [13] proposed a proportional linear regression model for, say,  against

. This model has been criticized [43], and justifications must remain largely empirical, because it is
difficult to derive any distributional theory from probabilistic models of the structure or the sampling design.

10.3 STATISTICAL THEORY

Stereological methods can be applied with minimal knowledge of the three-dimensional structure under
study. However, the sampling rules must be strictly followed; the experimental protocol must generate a random
plane or probe with the correct distribution required by stereological theory. In this section, we describe that
theory, and show how simple design mistakes can lead to catastrophic errors.

10.3.1 What To Estimate

It was believed for many years that the normal human brain, alone among all organs, loses cells without
replacing them. This was established repeatedly from estimates of NV (cell number per unit volume) at different
ages. However, the quantity of real interest is the total cell number N, not NV. In 1985, Haug [35,36] pointed out
that, since younger tissues shrink more during fixation (chemical treatment prior to embedding and sectioning), the
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total brain volume after fixation was effectively an increasing function of age, and this could account for the
decrease in NV estimates. The situation is still unresolved because of other uncontrolled variables; but it may be
that the wrong scientific question was pursued for 20 years.

This emphasizes the distinction between a total quantity

and a relative quantity

where X is the containing set and Y is the "feature" of interest ( ).
Estimation of absolute and relative quantities is also different. We can convert estimates of β to βV and vice

versa, given an estimate of V(X); but statistical properties of the estimators are not preserved. For example, the
expectation of a ratio of random variables is not generally equal to the ratio of their expectations. Sampling
designs and estimators that are unbiased or optimal for estimating βV may not be appropriate for β and vice versa.

10.3.2 Inference

Statistical inference is called design-based if it relies on the randomness in the sampling design.
Expectations are averages over all possible outcomes of the sampling. In design-based stereology it is assumed
that the geometrical object X is fixed and the sampling probe T is random. Meanwhile, inference is called model-
based if it imagines the sampling population was generated by a stochastic model. Expectations are averages
over all hypothetical realizations of this model. In model-based stereology, it is assumed that X is (a bounded
sample from) a realization of a random process, and the sampling probe T is arbitrary, say fixed.

This is mainly an issue of correctly specifying the population to which we wish to extrapolate statistical
inferences. The design-based approach corresponds to finite population inference for survey samples [11] or
randomized design inference, while the model approach corresponds to superpopulation inference. Miles [60]
distinguishes three kinds of inference in stereology:

Restricted case: The specimen X is a nonrandom, bounded set that is the sole object of interest. For instance, a
whole organ from an experimental animal could be available for study. Typically we want to estimate the total
volume, surface area, etc., of the organ.
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Extended case: The specimen X available for examination is but a portion sampled from a much larger object W.
For instance, a rock sample is typically taken from a large outcrop of rock, and we wish to make inferences about
the latter. Either total gold volume or relative gold volume fraction might be of interest.
Random case: A stochastic process really exists that generates the internal structure of the sample. That is, the
specimen X is a fixed set, but the feature Y inside X is generated as  where Z is a "random set" or
"spatial stochastic process." For instance, a metallurgist will regard a small piece of steel cut from a bar, formed at a
known temperature, and so on, as a sample from the infinite hypothetical reservoir of steel that could be formed
under those same conditions. Quantities like total volume are meaningless here; we are mainly interested in
fractions per unit volume of steel.

In the restricted case, we are totally dependent on the randomness of the sampling probe T to guarantee
validity of the method; but apart from this we do not need to make any unverifiable assumptions.

In the extended case, it must typically be assumed that X was sampled "randomly" from W. For some
purposes, it is not valid to sample a rock outcrop by breaking off a piece with a hammer, since the breakage
surfaces will usually depend on the internal rock structure.

In the random case, Y must be independent of X; that is, the internal structure must not depend on the
external boundaries of the specimen. This would be inappropriate for objects such as biological organs, which
have many levels of internal organization.

10.3.3 Geometrical Identities

Unbiased estimation of properties of a set X from observations of the intersection  is possible thanks
to the mean-content formulas or section formulas of integral geometry [76,89], which have the general form

where α, β are geometrical quantities such as those listed in Table 10.1, and c = cab is a constant. Here µ is
a so-called "invariant measure" on the space of all possible probes T; basically, this is an appropriate
generalization of
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Lebesgue measure, and so the integral represents "uniform integration" over positions of T.
A simple example is the statement that the volume of a three-dimensional object is the integral of the areas

of its plane slices:

where Th is the plane {(x, y, z): x = h}. This is known as Cavalieri's principle. In simple terms, the volume
of an arbitrarily shaped potato can be determined by slicing the potato into infinitely thin parallel slices and
summing the areas of the slices. The slicing direction is fixed and arbitrary; we could also average over all
orientations, giving

where Tw,h denotes the plane with direction given by its unit normal vector w and displacement h from the
origin. This averaged version is no longer practicable for potatoes, since after slicing end-to-end in direction wl,
we have to reassemble the object and slice it end-to-end from another angle w2, and so on.

The basic mean content formulas in three dimensions are summarized in Table 10.3. In general, the
formulas involving plane sections or line probes require us to average over all orientations. For example, the
surface area S(Y) of a curved surface  can be determined from the lengths of plane sections,

but in this case there is no analogue of (10.6) for planes with fixed orientation. The surface area of a potato
cannot be determined from the boundary lengths of parallel slices, unless we are permitted to reassemble and
reslice the object many times. A better alternative for surface area is to use the mean content result in which T is
a one-dimensional line. Thus we would repeatedly impale the potato on an array of linear spikes, changing the
potato's orientation each time, and count the total number of points where the spikes penetrated the surface.

Other sampling probes can also be used. Instead of infinite two-dimensional planes, we can take bounded
sampling windows within a plane; the results here are similar except that the right-hand sides also involve the
area of the
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sampling window. Instead of a single plane Th in (10.4) we may take a stack of equally-spaced parallel planes

TABLE 10.3: Typical Mean Content Results (3 dimensions)

Object X Probe T Resulting Desired β Required α
Solid domain plane

line(s)
point(s)

plane domain(s)
linear domain(s)
point(s)

V
V
V

A
L
P

Surface plane
line

plane curve(s)
point(s)

S
S

L
I

Space curve plane point(s) L Q
Surface plane plane curve(s) M C

summing the contributions  in (10.4) gives

Note that the range of integration is now the bounded interval [0, s) because the stack of planes is uniquely
specified by its "starting position" .

To take stock of these results we note that

1.  They do not depend on the "shape" or position of the objects X, and are true under very minimal
regularity conditions;

2.  They are valid only when integration is performed "uniformly" over all positions of T (in most cases
this requires averaging over orientations); and

3.  They are statements about integrals or mean values only.

For some time, stereologists thought that opportunities for finding new mean value formulas were severely
restricted by (c). This turned out to be pessimistic, because many properties of a geometrical object can be
expressed as integrals. For example, some powers of volume V(X)m can be stereologically determined. Again,
the orientation distribution of a curved surface Y in R3 is the probability distribution of the unit normal vector at
a uniformly distributed random point on Y. This is a distribution Q on the unit sphere
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S2 defined by Q(U) = A(YU)/A(Y) for , where YU is the subset of
Y consisting of all points , where the unit normal w(y) lies in U. The observed orientation distribution

of a two-dimensional plane section  is related to Q by an integral equation reminiscent of Wicksell's
equation for particle size [16].

10.3.4 Design-Based Estimation

The design-based approach is analogous to sampling design for finite populations [11] but has interesting
geometrical complications. The set X is fixed (Miles's restricted or extended models); the probe T is generated by
a random sampling design. For example, T could be a single random plane (the analogue of simple random
sampling) or a stack of parallel planes (the analogue of systematic sampling). The choice whether to estimate
total or relative quantities (V(X) or VV) affects the choice of sampling design.

Thus we need to convert mean content formulas (10.3) into results of the form

where  are fixed sets, T is a random probe, and E denotes expectation with respect to the
distribution of T. In (10.8) cT is a constant associated with this distribution; in the other versions 
is a "geometrical constant." Usually  and  so that in (10.9 and 10.10) we are estimating βV from αA.

The stereological equivalent of a uniform random sample is a so-called isotropic uniformly random (IUR)
probe. Suppose we wish to generate a random probe T intersecting a set . The probe is said to be IUR
if it has constant probability density with respect to the invariant measure µ that features in (10.3):

STEREOLOGY 198

Ab
ou

t t
hi

s 
PD

F 
fil

e:
 T

hi
s 

ne
w

 d
ig

ita
l r

ep
re

se
nt

at
io

n 
of

 th
e 

or
ig

in
al

 w
or

k 
ha

s 
be

en
 re

co
m

po
se

d 
fro

m
 X

M
L 

fil
es

 c
re

at
ed

 fr
om

 th
e 

or
ig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 fr
om

 th
e 

or
ig

in
al

 ty
pe

se
tti

ng
 fi

le
s.

 P
ag

e 
br

ea
ks

 a
re

 tr
ue

to
 th

e 
or

ig
in

al
; l

in
e 

le
ng

th
s,

 w
or

d 
br

ea
ks

, h
ea

di
ng

 s
ty

le
s,

 a
nd

 o
th

er
 ty

pe
se

tti
ng

-s
pe

ci
fic

 fo
rm

at
tin

g,
 h

ow
ev

er
, c

an
no

t b
e 

re
ta

in
ed

, a
nd

 s
om

e 
ty

po
gr

ap
hi

c 
er

ro
rs

 m
ay

 h
av

e 
be

en
 a

cc
id

en
ta

lly
 in

se
rte

d.
 P

le
as

e
us

e 
th

e 
pr

in
t v

er
si

on
 o

f t
hi

s 
pu

bl
ic

at
io

n 
as

 th
e 

au
th

or
ita

tiv
e 

ve
rs

io
n 

fo
r a

ttr
ib

ut
io

n.

Copyright © National Academy of Sciences. All rights reserved.

Spatial Statistics and Digital Image Analysis 
http://www.nap.edu/catalog/1783.html

http://www.nap.edu/catalog/1783.html


Here, H(X) is the appropriate normalizing constant,

i.e., the total µ-measure of all positions of T that intersect X.
For example, if the "probe" T is just a single point, the invariant measure is Lebesgue (volume) measure, so

that H(X) = V(X), and an IUR point probe hitting X is just a random point uniformly distributed in X.
As a less trivial example, a straight line T in two dimensions is uniquely specified by its direction  and its

distance from the origin:

where . The invariant measure for lines turns out to be [48,76] 
i.e., Lebesgue measure on the ( ,p) coordinate space. Thus, an IUR line probe T hitting X is a line with

random coordinates  and p, such that the pair ( ,p) is uniformly distributed over the permissible range

In the special case where X is a disc of radius r centered at the origin, an IUR line through X is generated by
making  and p independent and uniformly distributed over [0,π) and [-r, r], respectively; hence the term IUR.
However, note that for a general set X the coordinates of an IUR line are not independent and their marginal
distributions are not uniform. A practical method of generating IUR lines through an arbitrary set X is to enclose
X by a larger disc , generate a sequence of IUR lines intersecting D, and take the first line that happens
to intersect X. This is just an application of the rejection method of Monte Carlo simulation.

The probability that an IUR line through X will hit  is H(Y)/H(X) with H as defined in (10.12). In
other words, the probability that an IUR line intersects a particular target is related to the mean projected height
of the target. This does not depend on the position of Y within X; so in a sense the IUR line is a uniform sample
through X.

Returning to the estimation problem, clearly we can derive (10.8) from (10.3) by taking T to be an IUR
probe hitting X, so that
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so we have an unbiased estimator of β(Y), provided we can determine the normalizing constant H(X).
However, a similar argument will not work for formulas (10.9) such as Delesse's principle. The problem is

that the expectation of a ratio of random variables in general does not equal the ratio of their expectations.
Historically there were many incorrect derivations of Delesse's principle; but the result is just not true for IUR
planes. Miles and Davy [20,61] showed that a solution is to take T with the weighted distribution with
probability density proportional to ,

where  must be nonnegative (e.g., A or L but not C). The normalizing constant is

Then, using EW to denote averages with respect to this weighted distribution, we have

This holds provided  whenever . Note that the proportionality constant
c is now a geometrical constant not dependent on T. Another, closely related, solution is to estimate the
numerator and denominator of (10.10) separately on a large number of replicated samples: in other words, when
replication is present, take the ratio of means, not the mean of the ratios.
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The problem encountered here was that plane sections and other stereological analogues of simple random
sampling actually do not yield fixed sample size. The sample mean is biased when the sample size is random.
We must instead use samples with probability proportional to size, or take replicated estimates and numerically
weight them in proportion to size.

Most stereological sampling designs do not have fixed sample size. Different plane sections of a bounded
three-dimensional object have different size and shape. Thus, simple random sampling does not generalize easily
to most stereological situations. There are some exceptions: a sampling window is a fixed-size sample, if the
object of interest always fills the entire window.

Of course, systematic sampling does generalize well to stereology, as we have seen. Stereological estimates
based on grids of points, lines, and the like, are essentially systematic sampling estimates. Cavalieri's principle
for a stack of planes (10.7) is just an application of (10.2) to the function  appearing in the
original Cavalieri formula (10.4).

The parameter space describing all positions of a grid or systematic sample is totally bounded, and the
invariant measure g can be integrated over the entire space. In (10.7) the position of a plane grid was specified by
a value . Thus an IUR grid is defined to have uniform probability density with respect to p over the
entire space, 

where the normalizing constant is now the total p measure of all positions of T, 
Typically, H depends only on the grid spacing. Thus, estimation of a population total according to (10.8) is

relatively easy when T is a systematic grid. An unbiased estimate of the volume of a potato can be obtained by
cutting it into thick slices by parallel planes at constant separation d, summing the areas of the slices, and
multiplying by d.

10.3.5 Model-Based Estimation

In model-based stereology we convert (10.3) into
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where Y is a random set  inside a fixed three-dimensional domain X. The probe T is now
arbitrary (say, fixed). This time E is present on both sides and denotes expectation with respect to the random
structure Y. Note the denominators axe constant.

The nonparametric modeling approach described in §10.1.5 is simply to assume that the random process Z
is statistically stationary and derive (10.14) by studying moments associated with Z. For example, here is a
sketch proof of the model-based Delesse formula,

Suppose the random process Z is such that for any  the indicator variable

is a well-defined random variable. Let

Then

by exchanging integration and expectation. Assume Z is first-order stationary in the sense that p(x) = p
does not depend on x. Then this integral is

By a similar argument

so that both sides of (10.15) axe equal to p, and the result is proved.
This example needed only a simple exchange of integration and expectation. For the other stereological

formulas, we need the integral geometric results (10.3), and first-order stationarity assumes (roughly) that certain
first moments associated with Z are invariant under translation and/or rotation. The formal apparatus is the
moment theory of stationary random measures [57,58,80].

Other, higher-order expectations can be calculated similarly. For example, the variance of AA can be
expressed in terms of the second-order characteristics of the process. We now need to assume Z is second-order
stationary,
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which in this case means that  depends only on y-x. The
resulting formula gives the variance as an integral in terms of r: this is equivalent to the basic variance result of
geostatistics (see chapter 5).

Characteristics of ''infinite order'' can be considered exactly as in the design-based case, for example, the
orientation distribution of a curved surface.

10.4 RECENT RESEARCH AND NEW DIRECTIONS

10.4.1 Variance of Systematic Sampling

Systematic sampling usually leads to more efficient estimation than simple random sampling with
comparable sample size. However, there are fewer general results about the variance under systematic sampling
because this depends on the "structure" of the population [11]. At worst, there could be a periodicity in the
population that matches the periodicity of the systematic sample, and the variance would be elevated. The classic
example is an army population where every tenth serial number is allocated to a sergeant. In stereology, such
cases do arise when a biological structure such as a corrugated sheet is sampled by a test grid with the same
spacing.

The estimator of the area of a plane set based on a point grid has recently been studied extensively
[15,29,45,51,54] using earlier results about the systematic sampling estimator (10.2) of an integral [52]. The
variance of (10.2) is

where g is the covariogram of f,

see [52] and chapter 5. For a wide class of applications,

as . The point-counting estimator of area of a plane set has been found [46,47,15,29] to have variance
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as , where L is the perimeter length of the set, this being a good approximation for a wide variety of
shapes.

10.4.2 Fractionator Sampling

A simple yet extremely powerful application of systematic sampling is the fractionator technique [26].
Suppose we wish to estimate the total volume or number of cells in a large animal. Effectively, we are in the
"extended case" where it is not feasible to study more than a tiny sample from the object. Worse, it would seem
that we have to generate a uniformly distributed random sample of this complex object in order to get valid
estimates.

On the other hand, it is easy to generate a systematic sample of an animal. We start by dismembering the
animal—in any fashion we choose— and arranging the pieces in arbitrary order (e.g., in ascending order of size;
or at whim). Then we take a systematic sample of this finite population (inverse sampling fraction k1) and throw
away the remaining material. The retained sample is then cut into smaller pieces and again arranged in arbitrary
order; a systematic subsample of this material (inverse fraction k2) is taken. The process is repeated until we have
a subsample that is small enough to analyze microscopically. Then we apply a design-based method to estimate
the total amount of material in this ultimate subsample. Finally the total for the entire animal is estimated by the
subsample total estimate times the product of the successive inverse sampling fractions kl . . .k n. Clearly this
estimator is unbiased. Sampling fractions as low as 10-9 are routinely used in brain tissue, meaning that only

 cells are actually counted.
At the lowest level of the experiment we still have the problem of estimating the total number (say) of cells

in the sample. But here we can often employ a modification of the disector method. If the last stage of
subsampling is carried out by slicing the material into sections and systematically subsampling the sections, then
we just apply the disector counting rule to each section, and sum the disector counts. This does not require
knowledge of section thickness . Indeed the section planes can be separated by different distances, and even be
nonparallel [26,28,27].

Little is known theoretically about the variance of fractionation sampling, although the estimator clearly has
a martingale structure. Current practice is to form a jackknife estimate of variance, by initially dividing the
specimen into two comparable halves, forming a fractionator estimate from each half, and estimating variance
from the absolute difference of the two estimates.
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Figure 10.3:
A point-sampled intercept through a plane section of a par-tide.

10.4.3 New Estimation Formulas

Perhaps the most exciting area of stereology is the discovery of new mean content results (10.3). Some of
the new quantities β are associated with "shape," "size," orientation, curvature, or spatial arrangement. Other
results apply in sampling situations where it was previously thought impossible to estimate anything.

Let X be a point inside a three-dimensional set X, which we assume convex (for convenience only). Let
 be the infinite ray (half-line) through x in direction w, where w is a unit vector. Then the mean cubed

length of the intersection between this line and X is proportional to the volume of X:

this is an application of elementary calculus. Note that X is a fixed, arbitrary point. A similar but more
complicated formula holds if X is not convex and/or X is outside X.

This can be used [40] to estimate the mean squared volume of particles in a three-dimensional population.
First take an area-weighted plane section of the sample material; superimpose a point grid on the section, and at
every grid point which hits a particle profile, place a line in a random direction through the grid point and
measure the cubed intercept (i.e., length of the intersection between the line and the particle profile). See
Figure 10.3. Un
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der this sampling regime, the particles have been selected with probabilities proportional to their individual
volumes,

The cubed intercept lengths estimate the individual volumes; so the mean cubed intercept length is an
estimate of the volume-weighted mean particle volume,

i.e., this is the ratio of mean square volume to mean volume. The mean volume can be estimated separately
from estimates of total volume and total number; thus we have reliable (approximately unbiased) estimates of the
first two moments of particle volume. Methods exist for some higher moments. In some applications,
particularly in pathology, the mean square volume (or variance of volume, etc.) has proved very useful in
detecting differences between particle populations.

Another application of (10.16) is useful in studying materials that do not consist of separate particles. Let Y
be any set in three dimensions. For example, Y might be the union of all the cells in a tissue, or the empty space
in a porous material. At any point x, define the star set S(x, Y) to be the set of all points y such that the line
segment from X to y lies wholly inside Y. See Figure 10.4. If , then S(x, Y) is empty; otherwise, S(x, Y) is
a "star-shaped" set, and if Y is convex, then S(x, Y) = Y. Consider the mean star volume, i.e., the mean of V(S(x,
Y)) over all points x. This can be estimated on plane sections by the mean cubed length of an intercept through a
point in the section. The star volume gives us an interesting measure of the average "local size" of holes in a
porous material.

Variations on the star volume, involving other moments of intercept length, have recently been considered
as indicators of "shape" [29].

Covariance, and other second-order parameters, can be estimated without bias. This is easiest to describe
when X is a stationary random set in R3. The (noncentered) spatial covariance of X at lag  is

where 1X is the indicator function of the set X. In other words, this is the expected volume fraction of points
x in space where both x and x + h simultaneously lie inside X. If we are willing to assume that X is isotropic, then C
(h) depends only on the length |h| and not on direction, and we
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can estimate C(h) as a function of |h| from the sample covariance of plane sections of X. This has been applied to
extract detailed information about a material [33,77]. Second-order statistics have also been used to define
indices of mineral liberation [19,18].

Figure 10.4:
The star volume.

Non-uniform sampling designs are a very important development. As remarked in §10.3.3, the general
formulas for estimating quantities other than volume require random section planes with (roughly speaking)
uniform distribution over all possible orientations and all possible positions. However, many experimenters
cannot adhere to this requirement. For example, about a third of all stereological applications require that the
section plane be cut in a particular direction, either for physical reasons, or because the structure of interest can
only be identified when cut this way.

A common case is "vertical" sectioning, where the section plane must be aligned with a specified axis, in
other words, normal to some well-defined plane we can call the "horizontal." Thus, there is only one degree of
rotational freedom for plane orientation and one degree of translational freedom. An unbiased estimate of surface
area from vertical sections has recently been found [5] that uses a test grid consisting of cycloid arcs.

Sampling designs that are non-uniform in position and orientation have recently been studied
[41,90,91,92,93]. Mattfeldt and Mall [56,55] proposed samples involving three mutually orthogonal section
planes.
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10.4.4 Research Frontiers

Here we speculate about future advances (other than those already in progress and covered above).

Three Dimensions

New imaging modalities (such as confocal optical microscopy, infrared Fourier transform imaging) have
been developed that can "see" directly into three-dimensional structures such as biological soft tissue and solid
bone. Three-dimensional images can also be reconstructed computationally from serial optical sections or
tomographic data. Rather than making stereology redundant, this technology has released a flood of interesting
new problems. Stereological sampling techniques are needed, e.g., for counting three-dimensional particles [38],
and the methods of two-dimensional spatial statistics (see chapters 4 and 7) need to be adapted and refined for
three dimensions [6,49].

Structured Models

One reason for the overwhelmingly "nonparametric" character of stereology is that explicit stochastic
process models have not succeeded in reproducing the very high degree of organization seen in real (especially
biological) microscopic structures. This may change in the next five years. Much recent activity in stochastic
geometry [80] is focusing on models where the realizations have a prescribed, ordered appearance such as
random tessellations [63], random dense packings, and random fibre processes.

Markov Models

Particularly promising is the development of several kinds of Markov models for spatial processes
[1,7,10,73,71,72]. These are one step more complex than completely random Poisson processes, in that a
stochastic interaction is allowed between "neighbouring" elements of the process, for example, pairwise
interactions between the points in a point process. Markov point processes and random sets can easily be
simulated using Monte Carlo methods, and they are convenient for likelihood-based inference [68].

Bootstrap Methods

Bootstrap resampling methods were introduced to stereology by Hall [31,33] in connection with the point-
counting estimator of area fraction AA. The basic idea was to break the sampling region into strips or pieces that
are
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sufficiently separated for any dependence to be ignored, and to resample these pieces as if they were i.i.d.
observations. It seems likely that such methods will prove a useful alternative to parametric modeling, as a way
of getting information about variances and confidence levels. The difficulty is in finding acceptable ways of
bootstrapping a spatial process with all its inherent spatial dependence.
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11

Markov Models For Speech Recognition

Alan F. Lippman
University of Washington

11.1 INTRODUCTION

The goal of speech recognition research is to enable machines to reduce human speech to a list of printed
words. By imposing restrictions such as a limited vocabulary and grammar, automated speech recognition
systems have been produced during the last 15 years that, within those constraints, approach human
performance. Sustained research efforts have resulted in systems that place substantially fewer restraints on the
speaker. Earlier recognition systems typically required that the words spoken belong to a fixed small vocabulary,
that the speaker pause between each word, and that the speaker participate in a training period during which the
system would automatically adjust to that particular speaker (and no other).

Each of the constraints above was used to reduce the complexity inherent in natural speech. This chapter
presents an introduction to concepts underlying much of the work in speech recognition and, in the process,
explains how the constraints above simplify the problem. The chapter then presents a detailed description of a
simple probabilistic speech recognition system, modeled after the SPHINX system [14], that implements hidden
Markov models (HMMs).

Hidden Markov models are the basis for many recently developed speech recognition systems and are
related to Markov Random Fields (MRFs), which have been successfully applied to some image-processing
tasks (see chapter 3). Both approaches rely on similar probabilistic frameworks to describe and exploit the
relationship between the items of interest (e.g., the
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microphone recording and its transcript, the degraded and ''true'' images). Both approaches share some
fundamental tools: maximum likelihood estimation to estimate parameters, maximum a posteriori (MAP)
estimation to perform recognition/restoration, and the use of Markovian models to make these estimation
problems tractable. However, recorded speech, unlike images, is not a spatial process, it is a function of pressure
(or through a microphone, voltage) versus time. This chapter provides a quite different view of some of the
methods of chapter 3.

11.2 BASIC SPEECH CONCEPTS

Some of the basic units of speech are the sentence, the word, and the phoneme. There axe approximately 40
phonemes, each corresponding to a distinctive sound. The symbol list that dictionaries provide after each word
(as a pronunciation guide), is a list of phonemes. Phonemes, words, and sentences are all fundamental to the way
we produce speech; people think in terms of sentences and words, while phonemic descriptions are necessary for
people to pronounce words correctly. Modern speech recognition systems function in a similar way: a
hierarchical approach is used where sentences are modeled as series of words; words are modeled in terms of
phonemes; and phonemes are modeled as series of features of the signal. By nesting these three layers of models,
printed sentences (our desired goal) are related to the speech signal.

Neither words nor phonemes are easily identified in the speech signal. Even finding the boundaries between
two words can be a difficult task, since in the speech signal, phonemes as well as words may merge together and
no simple signal processing can separate them. A spoken phrase like "this is," can easily be interpreted as "the
sis" (or even by some graduate students as "thesis"). Most people have had the experience of listening to a
foreign language and hearing only a steady stream of sounds, illustrating that one must understand speech to find
word boundaries. (This type of difficulty is familiar to those who work in image segmentation; it is often
impossible to find the boundaries between objects without some knowledge about what the objects are.)

Isolated-word recognition systems require that the boundaries between words be obvious. This is typically
accomplished by requiring a speaker to pause between words. These silent pauses can be easily identified in the
signal. Individually spoken words also tend to be enunciated more clearly,
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aiding recognition. The main drawback of such systems is that the speaker is constrained to speak in a slow,
unnatural manner. Continuous-speech recognition systems lack this constraint.

The construction of even an isolated-word speech recognizer is difficult. The speech signal associated with
a word or a phoneme is extremely variable, and can vary greatly depending on both the speaker's identity and the
manner in which the word was spoken. Variability is caused by anatomical differences between speakers, such as
sex or vocal tract length, as well as by differences in style, health (presence or absence of a cold), speaking rate,
stress, or accent. A quickly spoken word will frequently be slurred or have parts "missing." Accents can result in
the wholesale shifting of vowels [9]. In addition, some words have many allowed (as opposed to recommended)
pronunciations. This is especially true for common words, like "the," that are typically articulated poorly ("the"
is often pronounced as "dee,'' "dab,'' "dih," "thah," or "thih"). Speaker-dependent systems simplify the
recognition problem by adapting themselves to one particular speaker, removing some of the causes of variability.

The speech signal associated with a phoneme also varies depending on the context in which it is
pronounced. This effect is called co-articulation. As people speak, the tongue, lips, and other articulators must
move from a position necessary to pronounce the current phoneme to a position that will result in the next
phoneme being produced. The articulators tend to move only far enough for speech to be intelligible, so current
positioning is affected by the previous positioning. The placing of the articulators can also be influenced by the
position that should be occupied next, a form of "thinking ahead" that people perform automatically.

For small-vocabulary recognition systems, the concept of phonemes typically is not used. Many examples
of each word are used to discover a direct relationship between the word and the speech signal. In this way the
effect of co-articulation is modeled implicitly. Since the required number of examples will grow linearly as a
function of vocabulary size, this type of approach is almost impossible for vocabularies containing more than a
thousand words. Phonemes, or some similar concept, are often employed by large-vocabulary systems.

Perhaps the most challenging problem in speech recognition research is that of modeling sentences. Unless
words are enunciated very clearly, confusions between phonetically similar words are inescapable. While a
person would pick the sentence that makes the most sense, an automated system must rely on a sentence model.
Different types of models have been used,
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ranging from classification trees [1] to N-step Markov chains [2] (the probability of the current word conditioned
on all past words being only dependent on the previous N words). If the speaker obeys a highly constrained
grammar specified by the system (e.g., the word "come" can only be followed with "here," "over," or "back''), it
becomes much easier to automatically recognize sentences. A measure of the constraining power of a grammar is
the perplexity (for a definition see [2]). Automated systems that allow large vocabularies and employ a grammar
whose perplexity is close to the perplexity of spoken English, can be said fairly to handle natural tasks.

11.3 SOME RECENT SYSTEMS

All speech recognition systems require restricted input to achieve good accuracy (around one word in
twenty wrong). Table 11.1 provides a short guide to some recent systems and the constraints under which they
operate.

Almost universal is the requirement that the speech be recorded in a low-noise environment; a device that
operates in a cocktail lounge or on a construction site may not be seen for decades. Other standard requirements
are described by the terms continuous speech, speaker independent, large vocabulary, and natural task. Large
vocabulary systems in this table recognize more than three hundred words.

TABLE 11.1: Some Speech Recognition Systems and Their Abilities

SYSTEM DATE Speaker Independence Continuous Speech Large Vocabulary Natural Task
NTT 1975 No No No No
DRAGON 1975 No Yes No No
HEARSAY 1975 No Yes Yes No
HARPY 1976 No Yes Yes No
BELL '82 1982 Yes No No No
FEATURE 1983 Yes No No No
TANGORA 1985 No No Yes Yes
BYBLOS 1987 No Yes Yes No
BELL '88 1988 Yes Yes No No
SPHINX 1988 Yes Yes Yes No
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11.4 SIGNAL PROCESSING

Speech signals are typically sampled at 8-16 kHz (8 to 16 thousand samples per second), where the value of
each sample is specified by 10-12 bits. The first step in most recognition systems is to process this signal, both to
reduce the amount of data and in an attempt to extract the features of the signal that are relevant for recognition.

Some processing methods begin by taking short-term Fourier transforms; short (on the order of 20
milliseconds), overlapping (by on the order of 10 milliseconds) frames of the signal are transformed into vectors
whose components axe the energies associated with (approximately 10) differing frequency bands. In this
manner the speech signal would be represented by a small number (on the order of 100) of vectors per second.
Other processing methods fit autoregressive (AR) models (of order 8 to 16) to these short, overlapping frames of
the speech signal. In that approach the speech signal is represented by a sequence of AR parameter vectors. Note
that whereas each frame of the signal may contain 320 values (20 ms of a 16 kHz sampled signal), this first
processing step reduces it to a vector of dimension 16 or less.

The final step of most processing algorithms is the use of vector quantization [19], which reduces each
vector to an acoustic label belonging to a small discrete set (containing on the order of 256 elements).

Briefly described, the use of vector quantization first requires that standard techniques be used to find
cluster centers in a set of vectors obtained from a representative variety of recorded speech. Each of these duster
centers is given a label. Vector quantization replaces any vector in the high-dimensional space with the label of
the closest duster center. In this way, a 16-dimensional vector of AR parameters could be represented by a single
byte.

Although good signal processing is critical to the successful performance of a recognition system, it is
beyond the scope of this discussion, and we refer the reader to [2], [14], and [7] for further details. For the
remainder of this discussion, it is assumed that the speech signal is already described by a series of acoustic
labels, each of which belongs to a small, fixed set.

11.5 PROBABILISTIC RECOGNITION

The most successful approaches to the speech recognition problem use probabilistic modeling. The
processed speech signal y = (y1, . . ., yn) is considered to be an observation of n random variables (R.V.s) Y =
(Y1,. . , Yn). A
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sentence or string of words w = (w1, . . ., wm) is considered to be an observation of m R.V.s W = (W1, . . .,
Wm). For a fixed series of recorded acoustic labels y, the value of the conditional distribution P(W =w|Y= y)
specifies the probability that the words w are the "script" of the recording. Speech recognition can be
accomplished by finding the word string that maximizes this conditional distribution. (This is MAP estimation.)

By Bayes' rule,

For any fixed recording, the value of P(Y = y) is a constant and the w that maximizes P(W =w|Y = y) also
maximizes P(Y = y, W = w) and P(Y = y|W = w)P(W = w). Instead of constructing the conditional distribution P
(W = w|Y = y), we shall consider two, wholly separate problems. The first is the construction of a distribution P
(W = w) on sentences; this is the modeling of grammar. The second is the construction of a distribution P(Y = y|
W = w) on acoustic label strings; this is the modeling of speech production.

The remainder of this chapter is designed to provide a brief introduction to the techniques used to
implement the above approach. The construction of P(W = w) is not discussed. (The interested reader should
refer back to §11.2 for a few references regarding the choice of a grammar.) We concentate instead on presenting
in some detail a simplified parametric model for P(Y = y|W = w) similar to the SPHINX baseline system [14],
which formed the basis for the SPHINX system, a successful large-vocabulary, continuous speech, speaker-
independent recognition system. (We recommend [14] as a detailed guide to the construction of a complex and
functional speech recognition system.) Discussion follows on estimating the parameters of this distribution
(§11.11). The final topic is the identification of the word string that has maximal probability conditioned on the
spoken signal.

11.6 IMAGE-PROCESSING PARALLELS

This probabilistic approach to speech recognition has many points in common with Bayesian image
processing using MRFs. A typical digital picture is a specification of intensities or colors at the sites of a finite
two-dimensional lattice . Modeling can be accomplished by introducing two
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types of random variables,  corresponding to an observed picture, and 
corresponding to an unobserved "true" picture. One method of image restoration is to calculate for any observed
image f the u that maximizes P(U = u|F = f). Bayes' rule is applied, just as it was in speech, to reduce the
construction of P(U = u|F = f) to the construction of two separate distributions: P(U = u) and P(F =f|U = u). P(U
= u) is called the prior distribution and has the same role that P(W = w), the sentence model, did for speech. P(F
= f|U = u) is the degradation model, and is the analogue of the speech production model.

Both image-processing tasks and speech recognition require the placement of distributions on very large (»
21000), but finite, spaces. Both rely on Markov assumptions to allow computational feasibility. Major differences
are that the speech problem is inherently one-dimensional, whereas pictures are multidimensional. The inherent
one-dimensionality of speech signals allows the use of fast estimation and search techniques. Although some
image models allow the use of similar techniques [11], the class of such models is highly restricted and may not
be particularly useful.

11.7 MODELING OF SPEECH

The recognition system we describe uses phoneme models as an intermediate stage between acoustic labels
and words. For every phoneme we will form a distribution on acoustic label strings produced during the
enunciation of the phoneme. These distributions take the form of HMMs. In our simplified presentation, the
effects of co-articulation will be ignored; the distribution of the acoustic labels associated with a given phoneme
will be assumed to be independent of the neighboring phonemes.

A more ambitious speech recognition system would model phonemes in context. In such a system, the goal
would still be to put a distribution on acoustic strings produced during the enunciation of the phoneme. However,
the distribution would also depend (commonly) on the preceding and following phonemes (e.g., a distribution
would be formed for the acoustic label strings associated with the phoneme \R\ when that phoneme is in the
phoneme string \TH\ \R\ \IY\). The fundamental difficulty of this approach is that the number of such
distributions would be approximately 403, and parameter estimation becomes impossible. However, clever
implementations of context-dependent phoneme models have been made, and we refer the reader to [14] for
details.
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The use of phoneme models (either context-dependent or context-independent) usually necessitates the
assumption that the distribution of the acoustic labels produced during a given phoneme, or that lies within a
given context for context-dependent models, be independent of the acoustic labels produced during other
phonemes. This assumption allows the production of acoustic labels for a string of phonemes to be considered as
though each phoneme was produced independently and the results concatenated. This type of assumption is
necessary in order to build models by "instantiation," a technique that is described in §11.10.

Although many words have multiple pronunciations, this model assumes that each word has a unique
pronunciation, and therefore a unique phonemic representation. This assumption is used in some state-of-the art
systems. Such an assumption forces the phoneme models to model implicitly some of the variability in
pronunciation.

In the remainder of this chapter it is assumed that a grammar, and thus P(W = w), has been specified. The
modeling strategies and assumptions above will be used to produce P(Y = y|W = w). Combining this with the
value for P(W = w) yields P(W = w, Y = y).

11.8 HIDDEN MARKOV MODELING

First, we introduce hidden Markov models (HMMs), and then describe their use in speech recognition. A
HMM describes the behavior of two series of discrete R.V.s, call them X - (X1, X2, . . .) and Y = (Y1, Y2, . . .). The
X series is called the hidden R.V.s, and the other series is called the observed R.V.s. The conditional distribution
of Xi given the values of all the previous R.V.s (Xj, Yj, ) will be dependent only on the value of Xi-1 (and
not on i). The conditional distribution of Yi, given the values of all other R.V.s (both hidden and observed), will
be dependent only on the value of Xi and Xi-1 (and not on i):

The "hidden" part of a HMM arises from its use. Only observations of the R.V.s Y will be used to estimate
the transition matrix P(Xi |Xi-1) and the conditional distribution P(Yi|Xi, Xi-1). These conditional probabilities are
sometimes called the parameters of the model.
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For each phoneme, we construct a distribution on acoustic label strings y and hidden state strings x. Based
on these distributions we can construct the distribution P(Y = y, X = x|W = w). Note that this distribution
specifies the distribution P(Y = y|W = w).

11.9 THE SPHINX PHONEME MODEL

We now present a model for the production of one phoneme. Note that although a phoneme may be
pronounced either quickly or slowly, the acoustic labels are produced at a constant rate. A phoneme model must
allow the production of variable numbers of acoustic labels. As shown in Figure 11.1, let Xi take on seven
allowed values, and call them S1,. ., S7. X1 equals S1 with probability 1. In Figure 11.1, arrows connect two states
Si and Sj (possibly the same) if P(Xk= Sj|Xk-1 = Si) is allowed to be nonzero. With every allowed transition (from
Si to Sj) there is an associated character, B, M, or E, denoting the beginning, middle, or end of the pronunciation
of the phoneme. The distribution of Yi conditioned on observations of all the other R.V.s will only depend on the
character associated with the transition from Xi-1 to Xi (e.g., from Figure 11.1, P(Yi=y i|Xi-1=S2, Xi=S3) = PM(Yi

= yi)). When S7 is reached, the pronunciation of the phoneme is complete.
Note that PB, PM, and PE are distributions on Y, and recall that an acoustic label can typically have any one

of a few hundred values. The distributions PB, PM, and PE will not be parametrized, so the specification of each
distribution requires the specification of many probabilities. For the non-baseline SPHINX system,
approximately 700 probabilities are needed to describe each of the distributions PB, PM, and PE.

Hidden Markov models possess desirable properties. The observed R.V.s (Y) behave in a very simple
fashion (they are independent) when conditioned on the hidden R.V.s (X), but the marginal distribution of Y
possesses no such independence. The behavior of the observed R.V.s is quite complicated. The model above
allows variable length label strings, and allows the probabilities of strings of length 1, 2, and 3 to be anywhere
between 0 and 1. The loops at states S2, S3, and S4 allow the phoneme to idle at a particular state, helping to
model the various ways in which phonemes can be extended in duration (e.g., some phonemes may occasionally
have long "middles," other phonemes may always have short "middles").
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Figure 11.1:
Allowed transitions.

11.10 INSTANTIATION

We now use the phoneme models and the assumptions listed in the portion on modeling to construct P(Y =
y, X = x|W = w). The distribution P(Y = y, X = x|W = w) is formed by using the values of the probabilities P(Xt|
Xt-1) and P(Yt|Xt, Xt-1) as specified by appropriate phoneme models. The manner in which this is done is called
"instantiation," and is described below. For each sentence w = (w1, w2,. ., wm) there is an associated string of
phonemes  where  is the jth phoneme in the ith word. The total number of
phonemes associated with the sentence is  The distribution P(Y = y, X = x|W = w) is a HMM where
the hidden variables Xi can take on values in

This set contains 6n + 1 states, six for each phoneme and one state signifying the end of the sentence. Note
that the state of the hidden variable Xi specifies the word, phoneme, and part of phoneme that is being produced
at time i.

The distribution P(Y = y, X = x|W = w) is formed by defining the transition probabilities

to be the same as those specified by the phoneme model for the phoneme
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. The values of

Figure 11.2:
Graphical representation of the HMM for the word string she.

have the values that transitions to S7 had in the phoneme model for . All the other transition probabilities
have value zero. When Xt is observed to have value , the sentence has been completed.

The distributions P(Yi|Xi, Xi-1), similarly, are those associated with the related phoneme model. To account
for between-word pauses, a nonzero term  can be added where

; for the sake of clarity, we will not discuss this detail.
Figure 11.2 is a graphical representation of the HMM for the word string she. Notice that the distribution P

(Y = y, X = x|W = "she") contains no explicit mention of phonemes or words. It is a distribution on strings of
acoustic labels and hidden states.

As indicated previously, any string of hidden states x is associated with a unique word string. Note that this
forces the value of P(Y =y, X = x, W= w) to be either zero or equal to P(Y = y, X = x).
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11.11 COMPUTATIONAL ISSUES: PARAMETER ESTIMATION AND SEARCHES

The model for P(W = w, Y = y) is based on phoneme models. The estimation of parameters for this
distribution consists primarily of estimating the parameters of the phoneme models. The simplest way to
estimate the parameters of phoneme models would be to excise examples of phonemes from speech, and
estimate parameters for each phoneme separately. This is not done, perhaps because the excision of phonemes
(accomplished by hand) cannot be done in a manner consistent with the assumptions implicit in the phoneme
models. Most current systems estimate parameters using training data consisting of utterances of whole known
sentences. Below we present the algorithm used to perform this very difficult computational task. We also briefly
present the typical approach used to speed the computations associated with the use of a trained system.

We wish to estimate the parameters of a HMM from one or more observations of (Y1, . . ., YT). It may seem
counter-intuitive that the parameters of a HMM can be estimated. We are, after all, trying to estimate the
behavior of variables that are never observed. However, some thought yields examples of HMMs where we
should be able to estimate parameters. For example, consider the simplest possible HMM. Let both the hidden
and observed values take on only the values 0 and 1. Let P(Xi = l|Xi-1 = 1) = .9 and P(Xi = 0|Xi-1 = 0) = .7, and let P
(Yi = 1|Xi = 1) = .85 and P(Yi = 0|Xi = 0) = .8. These four terms completely describe the behavior of the HMM.
An excerpt from a simulation of this HMM is below:

x: 000000000011001111111111111110111111001111111111111111110111
y: 110000000011001111111111111111111111001111110110010111010111

Notice that there are long strings of both 1s and 0s in the observation y. Remember that the Yi are
conditionally independent given X. The strings must be caused by the behavior of the hidden variables. Since
long strings exist, we can guess that there is not much "noise," and that P(Yi = 0|Xi = 0) and P(Yi = 1|Xi = 1)
should both be close to I or both close to 0. (The distribution of Y given X might turn most 0s to 1s, and most 1s
to 0s. It is impossible to tell from the observations whether the underlying process is as above or is governed by P
(Xi = 0|Xi-1 =0) = .9, P(Xi = 1|Xi-1 = 1) = .7, P(Yi = 0|Xi = 1) = .85 and P(Yi = 1|Xi = 0) = .8.) We can then guess
that both P(Xi = 0|Xi-1 = 0) and P(Xi = 1|Xi-1 = 1) should be > .5 in order
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to consistently produce strings, and that one of these terms should be > .8 because a string of length 22 would
otherwise be quite unlikely.

One of the reasons for the success of HMM is the existence of a computationally efficient method for
approximate maximum likelihood parameter estimation (as opposed to the completely ad hoc estimation above).
Starting with an initial guess for the parameters, and an observation y = (yl, . . ., yT) of Y = (Y1, . . ., YT), the
Baum-Welch algorithm [5,4] (also known of as the forward-backward algorithm) is an iterative method for
selecting parameters that ensures that at every iteration the likelihood increases. Convergence to a local maxima
of the likelihood is guaranteed. The Baum-Welch algorithm is equivalent to, and predates, the expectation
maximization (EM) method [10].

We present here the Baum-Welch algorithm. Let

Assume, for simplicity, that aj = P(X0 = j) and bj(l) = P(YT=l|X T=j) are known. Let Pab be the distribution
on (X0, . . ., XT, Y1, . . . ,YT) generated by a and b. The likelihood of y is x P(Y = y, X =x), which can be written
as

Note that a naive calculation of the expression above would require an extreme amount of computation, the
performance of 2T × sT+1 multiplication operations. A more efficient approach is to rewrite it as

and perform the computation by first calculating  and storing its value for all values
of jT-1. Then the sum over jT-1 can be computed and stored for all values of jT-2. Repeating this until the
likelihood is evaluated results in 2T × S2 multiplications being conducted.

Each iteration of the Baum-Welch algorithm results in new estimates  and , based on the
data y and on the previous estimates  and :
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These reestimation equations are the heart of the algorithm. For those more familiar with the EM algorithm,
the above formulas can be interpreted as the calculation of  where Xi denotes
the indicator function for the value i; Xi(j) = 1 if i = j, and 0 otherwise. These indicator functions axe the natural
sufficient statistics when a HMM is represented as an exponential family (which can be accomplished via the
Gibbs-MRF equivalence). The maximization step of the EM algorithm becomes trivial in this case. We shall not
present any proof that the above reestimation increases the likelihood of y; instead we refer the reader to [4,5].

The Baum-Welch algorithm in addition to the formulas above, specifies a method to calculate the new
estimates quickly. This is essential since the distribution Pab(Xi-1 = j, Xi = k|Y = y) is dependent on all the values
of Y, and a naive calculation would require as many operations as a naive calculation of the likelihood.
However, we can implement a computational strategy similar to that introduced above to compute the likelihood.
The reestimation equations above can be written as

where α and ß can be defined inductively in i, forward and backward respectively, by

The implementation of the Baum-Welch algorithm for speech recognition depends, obviously, on the form
of training data. The standard scenario, as mentioned above, is that there is a list of known sentences and
pronunciations of them. We can therefore construct a HMM P(Y = y, X = x|W = w) for each known sentence (as
in §11.10). The estimation of parameters for the HMMs can proceed by the Baum-Welch algorithm with the
simple modification that the iterations be performed synchronously. One iteration will be conducted for each
HMM sentence model, then the estimated parameters
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for each sentence will be combined into one estimate for all the parameters of all the phoneme models at the end
of every iteration.

The performance of the Baum-Welch algorithm depends highly on the quality of the initial estimates. While
every iteration of the algorithm guarantees an increase in the likelihood, a bad initial guess may cause
convergence to a bad (low) local maximum of the likelihood. Whereas whole sentences are used to train the
phoneme models, the initial estimates for the distributions P(Yi|Xi, Xi-1) often come from excised phoneme data.
In [15], for every phoneme the three distributions PB(Yi), PM(Yi), and PE(Yi) are initialized to a histogram of the
acoustic label values associated with that phoneme in hand-labeled data. The initial estimates of the transition
probabilities of the hidden states were chosen so that all allowed transitions from a state had equal probability.

Another interesting implementational detail is that the Baum-Welch algorithm is typically used for only 2 or
3 iterations [7, page 35], [14]. On the other hand, EM is well known for slowness after the first few iterations. In
[14] the performance of the recognition system is stated to worsen with continued iterations, suggesting to us
that an overfit of the training data is occurring.

Once parameter estimation is accomplished, there remains the use of the recognition system. As was stated
at the beginning of this section, our goal is the calculation of the string w that maximized P(W = w|Y = y). The
use of Bayes' rule allowed us to modify this to the calculation of the string w that maximized P(Y = y, W = w).
Recall that we have constructed P(Y = y, X = x, W = w), which equals P(Y = y, X = x) when w is the word
string associated with x, and zero otherwise.

The string w that maximizes P(Y = y, W = w) is usually approximated by the w associated with the x that
maximizes P(Y = y, X = x). The principal justification for this approximation, besides its success and
computational simplicity, is that the most likely word string should have at least one corresponding hidden state
string that will also be very likely. The most likely string of hidden states, for small vocabulary and simple
grammar systems, can be found by a simple dynamic programming [6] scheme called the Viterbi algorithm [2].
For more complicated systems the search is performed by more ad hoc methods that are based on dynamic
programming [2,14]

11.12 FUTURE DIRECTIONS

The construction of a large-vocabulary, speaker-independent, complicated-grammar speech recognition
system from scratch is a daunting task. How
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ever, it is one that new researchers interested in speech recognition will not have to face. Databases for speech
recognition are becoming commonly available. As a result, various fascinating and extremely challenging
subproblems can be approached by single researchers on current generation workstations. One such problem is
the speaker-independent recognition of phonemes in continuous speech; another is the recognition of connected
digits.

Whereas HMMs have been the most successful approach to date, the fundamental reason for their current
superiority is the dedication and creativity of those who have implemented them. Preliminary research indicating
that other approaches can be as accurate and computationally feasible is presented in [17]. It is hoped that, as the
computational resources to approach the speech recognition problem become available to a larger community, a
diversification of approaches will occur and that this chapter encourages research in this direction.
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Plate 2.1:
L-band synthetic aperture radar (SAR) image of ice floes in the ocean: (a) original image, 512 × 512 (pixel
resolution is about 4m × 4m), (b) evolution of segmentation via stochastic relaxation with constraints; shown are
sixteen ''snapshots'' from sixty sweeps (every third sweep) of stochastic relaxation (upper left panel shows the
random starting configuration of edges, and the lower right panel shows the final configuration of the boundaries).
Reprinted, by permission, from Geman et al. (1990). Copyright © 1990 by Institute of Electrical and Electronics
Engineers.
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Plate 2.2:
Collage composed of nine Brodatz textures: leather, grass, and pigskin (top row), raffia, wool, and straw (middle
row), and water, wood, and sand (bottom row). Two of the textures, leather and water, are repeated in the two
circles; (a) original image 384 × 384, individual textures all 128 × 128; (b) estimated boundaries via deterministic
(left panel) and stochastic (right panel) algorithms. Reprinted, by permission, from Geman et al. (1990). Copyright
© 1990 by Institute of Electrical and Electronics Engineers.
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Plate 2.3:
Single photon emission computer tomography (SPECT) reconstruction of a slice of a human skull across the eyes,
from real (hospital) data: (a) filtered back projection (FBP) reconstruction, (b) reconstruction via the iterative
conditional expectations (ICE) algorithms using β = 2.7, the ML estimator. Note that in (b) one can distinguish
details such as nose bone, eyes, and brain, most of which cannot be distinguished in (a).

Plate 2.4:
SPECT reconstruction of a simulated phantom. The model used in this experiment was developed by the Nuclear
Medicine Department of the University of Massachusetts Medical Center, Worcester. This is a comprehensive
model that captures the effects of photon scattering, photon attenuation, camera geometry, and quantum noise: (a)
original phantom, (b) FBP reconstruction, (c) ICE reconstruction with β = 1.
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Plate 2.5:
SPECT reconstruction of a human liver/spleen scan, from real (hospital) data: (a) FBP reconstruction, (b) ICE
reconstruction with β = 3, the ML estimator, (c) ICE reconstruction with β = 0, (d) ICE reconstruction with β = 20;
(c) and (d) demonstrate the significance of the parameter β (see text).
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Plate 2.6:
A shape-from-shading experiment with an egg image under uncontrolled illumination. The surface of the egg was
assumed to be Lam-bertian with unknown albedo; the algorithm (a combination of constrained annealing and
iterative conditional modes (ICM)) estimated, in addition to the configuration N of unit normals, the albedo ρ of the
egg (and of the background) and an effective light source direction : (a) original image, 64 × 64, (b) reconstruction
(simultaneous estimation of N, ρ, and ), (c) reconstructed scene illuminated from the x-direction, (d) reconstructed
scene illuminated from the y-direction.
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Plate 3.1:
(a) AVHRR band 2 (albedo) with clouds shown as white. (b) AVHRR band 4 (infrared temperature), dark gray
scales are warm. (c) Segmented image produced by the PCTSMC algorithm. (d) Final cloud-masked image (clouds
and land are black) produced by the PCTSMC algorithm. Details of the different gray scale maps used in the panels
of Plate 3.1 are given in the text.
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Plate 3.2:
(a) One-half cycle of the image sequence constructed by super-position of an image of an inclined plane with that
of a circle. Note, the circle is out of phase with the inclined plane and the range of data in the inclined plane is
about twice that of the circle. (b) Dominant patterns of variance determined from the EOF analysis of the image
sequence.
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Plate 3.3:
Image sequence and geographical information of a coastal filament observed off central California by the
Advanced Very High Resolution Radiometer on the polar-orbiting NOAA-9 and -10 satellites. Individual gray
scale mappings were used to optimize feature recognition. The lower temperature ranges (i.e., 9.9º-12.7ºC for time
step 1) were mapped to a single gray scale. (Wahl and Simpson, 1990b)
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Plate 3.4:
(a) Edge maps. (b) Total velocity field from pattern-matching. (c) The MU normal component of velocity. (d) The
tangential component of velocity computed as a difference of (b) and (c) for time step 2 of the image sequence
shown in Plate 3.3. (Wahl and Simpson, 1990b)
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Plate 3.5:
(a) A polar Landsat image showing ice floes as light gray structures against a dark background. (b) The
corresponding distribution, size, and shape of the ice floes. Reprinted, by permission, from Banfield and Raftery
(1989). Copyright © 1989 by University of Washington.
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Plate 10.1:
Plane section of a biological structure with stereological test system superimposed. Lung of Grant's gazelle; white
space is airway, dark blobs are red blood cells. Microtome thin section, optical microscope image field,
magnification × 1500. Standard test system on transparency, randomly translated over photographic print.
Reprinted, by permission, from Cruz-Orive and Weibel (1981). Copyright © 1981 by Royal Microscopial Society.
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Plate 10.2:
A disector sample formed by two optical section planes. Human renal glomerulus; dark blobs are nuclei. At left is
the look-up section; at right the counting section, with a tessellation of rectangular counting frames superimposed
(randomly translated). Arrows indicate nuclei counted by the disector/tiling rule. Optical microscope, Hematoxylin-
Giemsa stain, magnification ×1140, section separation 4 µm. By kind permission of Dr. Niels Marcussen,
University of Aarhus, Denmark.
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