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PREFACE 

 
 

Toxicogenomics has been described as a discipline combining ex-
pertise in toxicology, genetics, molecular biology, and environmental 
health to elucidate the response of living organisms to stressful environ-
ments. It includes the study of how genomes respond to toxicant expo-
sures and how genotype affects responses to toxicant exposures. As the 
technologies for monitoring these responses rapidly develop, it is critical 
that scientists and regulators are confident that the technologies are reli-
able and reproducible and that the data analyses have been validated. To 
discuss these issues in a public forum, the Committee on the Validation 
of Toxicogenomic Technologies designed a workshop to consider the 
current practice and advances in the validation of toxicogenomic tech-
nologies. The workshop focused on the technical aspects of validation, 
recognizing it as a prerequisite for considering other important issues, 
such as biological validation (e.g., validating the use of microarray “sig-
natures” to describe a toxic effect). 

This workshop summary has been reviewed in draft form by per-
sons chosen for their diverse perspectives and technical expertise in ac-
cordance with procedures approved by the National Research Council’s 
(NRC) Report Review Committee. The purpose of this independent re-
view is to provide candid and critical comments that will assist the insti-
tution in making its published workshop summary as sound as possible 
and to ensure that the summary meets institutional standards of objectiv-
ity, evidence, and responsiveness to the study charge. The review com-
ments and draft manuscript remain confidential to protect the integrity of 
the deliberative process. We wish to thank the following people for their 
review of this workshop summary:  Federico Goodsaid, William Mattes, 
Gavin Sherlock, and Mahlet Tadesse. 

Although the reviewers listed above have provided many construc-
tive comments and suggestions, they did not see the final draft of the 
workshop summary before its release. The review of the workshop sum-
mary was overseen by Timothy R. Zacharewski, of Michigan State Uni-
versity. Appointed by the NRC, he was responsible for making certain 
that an independent examination of the workshop summary was carried 
out in accordance with institutional procedures and that all review com-
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1 

 
 
 
 

SUMMARY OF THE WORKSHOP 
 
 
 
 

INTRODUCTION 
 

A workshop on the validation of toxicogenomic technologies was 
held on July 7, 2005, in Washington, DC, by the National Research 
Council (NRC). The workshop concept was developed during delibera-
tions of the Committee on Emerging Issues and Data on Environmental 
Contaminants (see Box 1 for a description of the committee and its pur-
pose) and was planned by the ad hoc workshop planning committee (The 
ad hoc committee membership and biosketches are included in Appendix 
A.) These activities are sponsored by the National Institute of Environ-
mental Health Sciences (NIEHS). The day-long workshop featured in-
vited speakers from industry, academia, and government who discussed 
the validation practices used in gene-expression (microarray) assays1,2 
and other toxicogenomic technologies. The workshop also included 
roundtable discussions on the current status of these validation efforts 
and how they might be strengthened. 
                                                 
1The microarray technologies referred to in this report measure mRNA levels in 
biologic samples. DNA from tens of thousands of known genes (for example, 
genes that code for toxicologically important enzymes such as cytochrome 
P450) are placed on small glass slides, with each gene in a specific position. 
These chips are exposed to mRNA isolated from biologic samples (for example, 
from rats that have been exposed to a pharmaceutical compound of interest). 
The mRNA in the sample is treated so that when it hybridizes with the comple-
mentary DNA strand on the chip, the resulting complex can be detected. Be-
cause the chips can hold DNA from thousands of genes, gene expression (the 
level of each mRNA) of all these genes can be simultaneously detected.  
2These technologies are commonly referred to as gene-expression arrays, tran-
script/transcriptional profiling, DNA microarray expression analysis, DNA mi-
croarrays, or gene chips; more broadly, the use of these technologies is referred 
to as transcriptomics.  
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BOX 1 Overview of the Committee on Emerging Issues and Data on 
Environmental Contaminants 

 
The Committee on Emerging Issues and Data on Environmental 

Contaminants was convened by the National Research Council (NRC) at 
the request of NIEHS. The committee serves to provide a public forum 
for communication between government, industry, environmental groups, 
and the academic community about emerging issues in the environ-
mental health sciences. At present, the committee is focused on toxico-
genomics and its applications in environmental and pharmaceutical 
safety assessment, risk communication, and public policy. A primary 
function of this committee is to sponsor workshops on issues of interest 
in the evolving field of toxicogenomics. These workshops are developed 
by ad hoc NRC committees largely composed of members from the 
standing committee. 

In addition, the standing committee benefits from input from the 
Federal Liaison Group. The group, chaired at the time of the meeting by 
Samuel Wilson, of NIEHS, consists of representatives from various fed-
eral agencies with interest in toxicogenomic technologies and applica-
tions. Members of the Federal Liaison Group are listed in Appendix C of 
this report. 

 
 
The workshop agenda (see Appendix B) had two related sections. 

Part 1 of the workshop, on current validation strategies and associated 
issues, provided background presentations on several components essen-
tial to the technical validation of toxicogenomic experiments including 
experimental design, reproducibility, and statistical analysis. In addition, 
this session featured a presentation on regulatory considerations in the 
validation of toxicogenomic technologies. The presentations in Part 2 of 
the workshop emphasized the validation approaches used in published 
studies where microarray technologies were used to evaluate a chemi-
cal’s mode of action.3 

This summary is intended to provide an overview of the presenta-
tions and discussions that took place during the workshop. This summary 
only describes those subjects discussed at the workshop and is not in-
tended to be a comprehensive review of the field. To provide greater 
depth and insight into the presentations from Part 1 of the workshop, 

                                                 
3Mode of action refers to the pharmacologic or toxicologic end point or event in 
an organism that is elicited by a compound.  
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original extended abstracts by the presenters are included as Attachments 
1 through 4. In addition, the presenters’ slides and the audio from the 
meeting are available on the Emerging Issues Committee’s Web site.4 
 
 

WORKSHOP SUMMARY 
 

Introduction 
 

Kenneth S. Ramos, of the University of Louisville and co-chair of 
the workshop planning committee, opened the workshop with welcoming 
remarks, background on the standing and workshop planning commit-
tees, and speaker introductions. Ramos also provided a brief historical 
perspective on the technological advances and applications of toxicoge-
nomics. Beginning in the early 1980s, new technologies, such as those 
based on polymerase chain reaction (PCR),5 began to permit evaluation 
of the expression of individual genes. Recent technological advances (for 
instance, the development of microarray technologies) have expanded 
those evaluations to permit the simultaneous detection of the expression 
of tens of thousands of genes and to support holistic evaluations of the 
entire genome. The application of these technologies has enabled re-
searchers to unravel complexities of cell biology and, in conjunction with 
toxicologic evaluations, the technologies are used to probe and gain in-
sight into questions of toxicologic relevance. As a result, the use of the 
technologies has become increasingly important for scientists in acade-
mia, as well as for the regulatory and drug development process.  

John Quackenbush, of the Dana-Farber Cancer Institute and co-
chair of the workshop, followed up with a discussion of the workshop 
concept and goals. The workshop concept was generated in response to 
the standing committee’s and other groups’ recognition that the promises 
of toxicogenomic technologies can only be realized if these technologies 
are validated. The application of toxicogenomic technologies, such as 
DNA microarray, to the study of drug and chemical toxicity has im-
proved the ability to understand the biologic spectrum and totality of the 
toxic response and to elucidate potential modes of toxic action. Although 
early studies energized the field, some scientists continue to question 
                                                 
4At http://dels.nas.edu/emergingissues.  
5PCR is a highly sensitive method that uses an enzyme system to amplify (in-
crease) small amounts of mRNA so that it can be more easily detected. 
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4                           Validation of Toxicogenomic Technologies  
 
whether results can be generalized beyond the initial test data sets and 
the steps necessary to validate the applications. In recognition of the im-
portance of these issues, the NRC committee dedicated this workshop to 
reflecting critically on the technologies to more fully understand the is-
sues relevant to the establishment of validated toxicogenomic applica-
tions. Because transcript profiling using DNA microarrays to detect 
changes in patterns of gene expression is in many ways the most ad-
vanced and widely used of all toxicogenomic approaches, the workshop 
focused primarily on validation of mRNA transcript profiling using DNA 
microarrays. Some of the issues raised may be relevant to proteomic and 
metabolic studies. 

Validation can be broadly defined in different terms depending on 
context. Quackenbush delineated three components of validation: techni-
cal validation, biologic validation, and regulatory validation (see Box 2).6 
Because of the broad nature of the topic, the workshop was designed to 
primarily address technical aspects of validation. For example, do the 
technologies actually provide reproducible and reliable results? Are con-
clusions dependent on the particular technology, platform, or method 
being used?  
 
 

Part 1: Current Validation Strategies and Associated Issues 
 

The first session of the workshop was designed to provide back-
ground information on the various experimental, statistical, and bioin-
formatics issues that accompany the technical validation of microarray 
analyses. Presenters were asked to address a component of technical 
validation from their perspective and experience; the presentations were 
not intended to serve as comprehensive reviews. A short summary of the 
topics in each presentation and a discussion between presenters and other 
workshop participants is presented below. This information is intended 
 

                                                 
6Another aspect of validation discussed by Russell Wolfinger, of the SAS Insti-
tute and workshop planning committee member, was statistical validation, 
which involves verifying that data processing algorithms are performing as in-
tended and are producing results that are reliable, reproducible, specific, and 
sensitive. However, he commented that consideration of statistical validation 
separately is debatable because statistical and bioinformatics methods could be 
viewed as being an integral part of the other three kinds of validation described 
(technical, biologic, and regulatory).  
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BOX 2 Validation: Technical Issues Are the First Consideration 
in a Much Broader Discussion 

 
In general, the concept of validation is considered at three levels: 

technical, biologic, and regulatory.  
Technical validation focuses on whether the technology being used 

provides reproducible and reliable results. The types of questions ad-
dressed are, for example, whether the technologies provide consistent 
and reproducible answers and whether the answers are dependent on 
the choice of one particular technology versus another.  

Biologic validation evaluates whether the underlying biology is re-
flected in the answers obtained from the technologies. For example, 
does a microarray response indicate the assayed biologic response (for 
example, toxicity or carcinogenicity)?  

Regulatory validation begins when technical and biologic validation 
are established and when the technologies are to be used as a regula-
tory tool. In this regard, do the new technologies generate information 
useful for addressing regulatory questions? For example, do the results 
demonstrate environmental or human health safety? 
 
 
to be accessible to a general scientific audience. The reader is referred to 
the attachments by the presenters of this report for greater technical de-
tail and a comprehensive discussion of each presentation. 
 
 
Experimental Design of Microarray Studies 
 

Kevin Dobbin, of the National Cancer Institute, provided an over-
view of experimental design issues encountered in conducting microar-
ray assays. Dobbin began by discussing experimental objectives and ex-
plaining that there is no one best design for every case because the de-
sign must reflect the objective a researcher is trying to achieve and the 
practical constraints of the experiments being done. Although the high-
level goal of many microarray experiments is to identify important path-
ways or genes associated with a particular disease or treatment, there are 
different ways to approach this problem. Thus, it is important to clearly 
define the experimental objectives and to design a study that is driven by 
those objectives. Experimental approaches in toxicogenomics can typi-
cally be grouped into three categories based on objective: class compari-
son, class prediction, or class discovery (see Box 3 and the description in 
Attachment 1).  
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BOX 3 Typical Experimental Objectives in mRNA Microarray Analyses 
 
Class Comparison 
Goal:  Identify genes differentially expressed among predefined classes 
of samples.  
Example:  Measure gene products before and after toxicant exposure to 
identify mechanisms of action (Hossain et al. 2000). 
Example:  Compare liver biopsies from individuals with chronic arsenic 
exposure to those of healthy individuals (Lu et al. 2001). 
Class Prediction 
Goal:  Develop a multigene predictor of class membership. 
Example:  Identify gene sets predictive of toxic outcome (Thomas et al. 
2001). 
Class Discovery  
Goal:  Identify sets of genes (or samples) that share similar patterns of 
expression and that can be grouped together. Class discovery can also 
refer to the identification of new classes or subtypes of disease rather 
than the identification of clusters of genes with similar patterns. 
Example: Cluster temporal gene-expression patterns to gain insight into 
genetic regulation in response to toxic insult (Huang et al. 2001). 
 
 

Dobbin’s presentation outlined several experimental design issues 
faced by researchers conducting microarray analyses. He discussed the 
level of biologic and technical replication7 necessary for making statisti-
cally supported comparisons between groups. He also discussed issues 
related to the study design that arise when using dual-label microarrays,8 

                                                 
7Biologic replicates are mRNA samples from separate individual subjects that 
were experimentally treated in an identical manner (for example, five mRNA 
isolates from each identically exposed animal). Technical replicates would, for 
example, be tests of different sample aliquots drawn from the same biologic 
sample.  
8Microarray technologies use two different approaches to detecting RNAs that 
have hybridized to the DNA probes on the array. Single-label technologies use a 
single fluorescent dye to detect hybridization of a single RNA sample to a single 
array, and comparisons are then made between arrays. Dual-label technologies 
compare two samples on each array by labeling each RNA with a unique fluo-
rescent dye (often represented as red and green) before applying them to the 
arrayed probes.  
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including strategies for the selection of samples to be compared on each 
microarray, the use of control samples, and issues related to dye bias.9 
The costs and benefits of pooling RNA samples for analysis on microar-
rays were discussed in relation to the study’s design and goals. As an 
example to help guide investigators, Dobbin presented a sample-size 
formula to determine the number of arrays needed for a class comparison 
experiment (see Equation 1). This formula calculates the statistical power 
of a study based on the variability estimates of the data, the number of 
arrays, the level of technical replication, the target fold-change in expres-
sion that would be considered acceptable, and the desired level of statis-
tical significance to be achieved (see Attachment 1 for further details).  

The ensuing workshop discussion on Dobbin’s presentation focused 
on the interplay between using technical replicates and using biologic 
replicates. Dobbin emphasized the importance of biologic replication 
compared with technical replication for making statistically powerful 
comparisons between groups, because it captures not only the variability 
in the technology but also samples the variation of gene expression 
within a population.  
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where 
n = number of arrays needed 
m = technical replicates per sample 
δ = effect size on base 2 log scale (e.g., 1 = 2-fold) 
α = significance level (e.g., .001) 
1-β = power 
z = normal percentiles (t percentiles preferable) 
t
2

g = biological variation within class 

s
2

g = technical variation. 
 

                                                 
9When two dyes are used, slight differences in their efficiencies at each step in 
the process—labeling, hybridization, and detection—can cause systematic bi-
ases in the measurements that must be estimated from the data and then removed 
so that effective comparisons can be made. 
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Multiple-Laboratory Comparison of Microarray Platforms 
 

Rafael Irizarry, of Johns Hopkins University, described published 
studies that examined issues related to reproducibility of microarray 
analyses and focused on between-laboratory and between-platform com-
parisons. The presentation examined factors driving the variability of 
measurements made using different micorarray platforms (or other 
mRNA measurement technologies), including the “lab effect,”10 practi-
tioner experience, and use of different statistical-assessment and data-
processing techniques to determine gene-expression levels. Irizarry’s 
presentation focused on understanding the magnitude of the lab effect, 
and he described a study where a number of laboratories analyzed the 
same RNA samples to assess the variability in results (Irizarry et al. 
2005). Overall, the results suggest that labs using the Affymetrix mi-
croarray systems have better accuracy than the two-color platforms, al-
though the most accurate signal measure was attained by a lab using a 
two-color platform. In this analysis, a small group of genes had relatively 
large-fold differences between platforms. These differences may relate to 
the lack of accurate transcript information on these genes. As a result, the 
probes used in different platforms may not be measuring the same tran-
script. Moreover, disparate results may be due to probes on different 
platforms querying different regions of the same gene that are subject to 
alternative splicing or that exhibit divergent transcript stabilities. 

Beyond describing the results of the analysis, Irizarry provided 
suggestions for conducting experiments and analyses to compare various 
microarray platforms. The suggestions included use of relative, as op-
posed to absolute, measures of expression; statistical determinations of 
precision and accuracy; and specific plots to determine whether genes are 
differentially expressed between samples. These techniques are described 
in Attachment 2. Irizarry also commented that reverse transcriptase PCR 
(RTPCR) should not be considered the gold standard for measuring gene 
expression and that the variability in RTPCR data is very similar to mi-
croarray data if enough data points are analyzed. In this regard, the large 
quantity of data produced by microarrays is useful in describing the vari-
ability in the technology’s response. However, this attribute is sometimes 
portrayed as a negative because the data can appear variable. Conversely, 
                                                 
10The lab effect relates to differences in results from different laboratories that 
may relate to, for example, analyst techniques, lab equipment, or differences in 
reagents.  
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RTPCR produces comparatively few measurements, and one is not able 
to readily assess the variability. 

Irizarry also commented that obtaining a relatively low correspon-
dence between lists of genes generated by different platforms is to be 
expected when comparing just a few genes from the thousands of genes 
analyzed. On this point, it was questioned how and whether researchers 
can migrate from the common practice of assessing 1,000s of genes and 
selecting only a few as biomarkers to the practice of converging on a 
smaller number of genes that reliably predict the outcome of interest. 
Also, would a high-volume, high-precision platform be a preferred alter-
native? Further questions addressed measurement error in microarray 
analyses and whether, because of the magnitude of this error, it was pos-
sible to detect small or subtle changes in mRNA expression. In response, 
Irizarry emphasized the importance of using multiple biologic replicates 
so that consistent patterns of change could be discerned.  
 
 
Statistical Analysis of Toxicogenomic Microarray Data 
 

The next presentation by Wherly Hoffman, of Eli Lilly and Com-
pany, discussed the statistical analysis of microarray data. This presenta-
tion focused on the Affymetrix platform and discussed the microarray 
technology and statistical hypotheses and analysis methods for use in 
data evaluation. Hoffman stated that, like all microarray mRNA expres-
sion assays, the Affymetrix technology uses gene probes that hybridize 
to mRNA (actually to labeled cDNA derived from the mRNA) in bio-
logic samples. This hybridization produces a signal with intensity pro-
portional to the amount of mRNA contained in the sample. There are 
various algorithms that may be used to determine hybridized mRNA sig-
nal intensity from background signals.  

Hoffman emphasized the importance of defining the scientific ques-
tions that any given experiment is intended to address and the importance 
of including statistical expertise early on in the process to determine ap-
propriate statistical hypotheses and analyses. During this presentation, 
three types of experimental questions were addressed along with the sta-
tistical techniques for their analysis (as mentioned by Hoffman, these 
techniques are also described in Deng et al. 2005). The first example pre-
sented data from an experiment designed to identify differences in gene 
expression in animals exposed to a compound at several different doses. 
Hoffman discussed the statistical techniques used to evaluate differences 

Copyright © National Academy of Sciences. All rights reserved.

Validation of Toxicogenomic Technologies:  A Workshop Summary
http://www.nap.edu/catalog/11804.html

http://www.nap.edu/catalog/11804.html


10                           Validation of Toxicogenomic Technologies  
 
in expression between exposure levels while considering variation in re-
sponses from similarly dosed animals and variation in responses from 
replicate microarrays. In this analysis (using a one-factor [dose] nested 
analysis of variance [ANOVA] and t-test), it is essential to accurately 
define the degrees of freedom. Hoffman pointed out that the degree of 
freedom is determined by the number of animal subjects and not the 
number of chips (when the chips are technical replicates that represent 
application of the same biologic sample to two or more microarrays). 
Thus, technical replicates should not be included when determining the 
degrees of freedom. If this is not factored into the calculation, the P 
value is inappropriately biased because exposure differences appear to 
have greater significance. The second example included data from an 
experiment designed to evaluate gene expression over a time course. The 
statistical analysis on this type of experiment must capture the dose ef-
fect, the time effect, and the dose-time interaction. Here, a two-factor 
(dose and time) ANOVA is used. The third example provided by Hoff-
man was an experiment to determine those genes affected by different 
classes of compounds (alpha, beta, or gamma receptor agonists). This 
analysis evaluated dose-response trends of microarray signal intensities 
when known peroxisomal proliferation activated receptor (PPAR) ago-
nists were tested on agonist knockout and wild-type mice to determine 
those probe sets (genes) that responded in a dose-response manner. Here, 
a linear regression model is used for examining the dose-response trends 
at each probe set. This model considers the type of mice (wild type or 
mutant), the dose of the compound, and their interaction. 

Hoffman also discussed graphical tools to detect patterns, outliers, 
and errors in experimental data, including box plots, correlation plots, 
and principal component analysis (PCA). Other visualization tools, such 
as clustering analysis and the use of volcano plots used to show the gen-
eral patterns of microarray analysis results, were also presented. These 
tools are further discussed in Attachment 3. 

Finally, multiplicity issues were discussed. Although microarray 
analyses are able to provide data on the expression of thousands of genes 
in one experiment, there is the potential to introduce a high rate of false 
positives. Hoffman explained various approaches used to control the rate 
of false positives, including the Bonferroni approach, but commented 
that recent progress in addressing the multiple testing problems has been 
made, including work by Benjamini and Hochberg (1995). (These ap-
proaches as well as the relative advantages and disadvantages are further 
discussed in Attachment 3.) 
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The short discussion following this presentation centered primarily 
on the visualization tools presented by Hoffman and the type of informa-
tion that they convey.  
 
 
Diagnostic Classifier—Gaining Confidence Through Validation 
 

Clinical diagnosis of disease primarily relies on conventional histo-
logical and biochemical evaluations. To use toxicogenomic data in clini-
cal diagnostics, reliable classification methods11 are needed to evaluate 
the data and provide accurate clinical diagnoses, treatment selections, 
and prognoses. Weida Tong, of the Food and Drug Administration 
(FDA), spoke about classification methods used with toxicogenomic ap-
proaches in clinical applications. These classification methods (learning 
methods) are driven by mathematical algorithms and models that “learn” 
features in a training set (known members of a class) to develop diagnos-
tic classifiers and then classify unknown samples based on those fea-
tures. Tong’s presentation focused on the issues and challenges associ-
ated with sample classification methods using supervised12 learning 
methods.  

The development of a diagnostic classifier can be divided into three 
steps: training, where gene expression or other toxicogenomic profiles 
are correlated with clinical outcomes to develop a classifier; validation, 
where profiles are validated using cross-validation13 or external valida-
                                                 
11Classification methods are algorithms used to assign test cases to one of a 
number of designated classes (StatSoft, Inc. 2006). Most classification schemes 
referred to in this workshop report refer to classifying a chemical compound 
based on mode of toxicologic action. Another common scheme is the classifica-
tion of a biologic sample (for example, classifying a tumor into subtypes based 
on invasiveness potential).  
12The term supervised learning is usually applied to cases in which a particular 
classification is already observed and recorded in a training data set, and one 
wants to build a model to predict the class of a new test sample. For example, 
one may have a data set from compounds with a known mode of toxicologic 
action. The purpose of the classification analysis would be to build a model to 
predict which compounds (from tests of unknown compounds) would be in the 
same class as the test data set.  
13Cross-validation is a model evaluation method that indicates how well the 
learning method will perform when asked to make new predictions for data not 
already seen. The basic premise is not to use the entire data set when training a 
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tion14 approaches; application, where the classifier is used to classify an 
unknown subject for a clinical diagnosis or for biomarker identification 
(see Figure 1 and Attachment 4). In this presentation, the “decision for-
est” method, developed by Tong et al. (2004), was discussed with an 
emphasis on prediction confidence and chance correlation.15 The deci-
sion forest approach is a consensus modeling method; that is, it uses sev-
eral classifiers instead of a single classifier (hence, the decision forest 
instead of a decision tree) (see Box 4). This technique may be used with 
microarray, proteomics, and single-nucleotide polymorphism data sets. 
An example of this technique was presented that used mass spectra from 
protein analyses of serum from individuals to distinguish patients with 
prostate cancer from healthy individuals. Here, mass spectra peaks were 
used as independent variables for classifiers. Initially, only a few peaks 
were identified as classifiers and run on the entire pool of healthy indi-
viduals and cancer patients; this analysis is considered a decision tree 
and has an associated error (misclassification) rate. Combining decision 
trees (additional runs with distinct classifiers) into a decision forest im-
proves the predictive accuracy.  

Tong emphasized that validating a classifier has three components: 
the first is determining whether the classifier accurately predicts un-
known samples; the second is determining the prediction confidence for 
classifying different samples or individuals; and the third is establishing 
that correlations between a diagnostic classifier and disease are not just 
because of chance (chance correlation). Tong’s presentation focused on 
the techniques to evaluate predictive confidence and chance correlation 
and emphasized the usefulness of a 10-fold cross-validation technique in 
providing an unbiased statistical assessment of prediction confidence and 
chance correlation (see Attachment 4). 

Discussion following Tong’s presentation focused on the distinc-
tion between external validation methods and details surrounding the 
cross-validation methods (described in Attachment 4 and Tong et al. 

                                                                                                             
learning method, so some data are removed before training begins. After train-
ing is completed, the removed data can be used to test the performance of the 
learned model on “new” data (Schneider and Moore 1997). 
14External validation is the process where the accuracy of a model’s prediction is 
tested on samples independent of those used in the training set. 
15Because of the large number of predictor variables (proteins, mRNA tran-
scripts, etc.) and the relatively small number of samples, it is possible that the 
patterns identified by a classification model could be due to chance. 
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FIGURE 1 Three steps in the development of a diagnostic classifier. 
Source: Tong 2004.  

 
 

BOX 4 Decision Forest Analysis for Use with Toxicogenomics Data 
 

Decision forest (DF) is a consensus modeling technique that 
combines multiple decision tree models in a manner that results in more 
accurate predictions than those derived from an individual tree. Since 
combining several identical trees produces no gain, the rationale behind 
decision forests is to use individual trees that are different (that is, 
heterogeneous) in representing the association between independent 
variables (gene expression in DNA microarray, m/z peaks in SELDI-TOF 
data, and structural descriptors in SAR modeling) and the dependent 
variable (class categories) and yet are comparable in their prediction 
accuracy. The heterogeneity requirement assures that each tree 
uniquely contributes to the combined prediction. The quality 
comparability requirement assures that each tree makes a similar 
contribution to the combined prediction. Since a certain degree of noise 
is always present in biologic data, optimizing a tree inherently risks 
overfitting the noise. Decision forest tries to minimize overfitting by 
maximizing the difference among individual trees to cancel some random 
noise in individual trees. The maximum difference between the trees is 
obtained by constructing each individual tree using a distinct set of 
dependent variables. 
 
Source: Modified from Tong 2006. 
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2004). In addition, questions were raised about the extent to which estab-
lished classifiers could be extrapolated beyond the original training set. 
Tong indicated that the results of the cross-validation technique could 
describe the predictive accuracy of an established classifier within the 
confines of the original data set but not new, independent data sets.  
 
 
Toxicogenomics: ICCVAM Fundamentals for Validation and  
Regulatory Acceptance 
 

The final presentation of the morning session was by Leonard 
Schectman, the chair of the Interagency Coordinating Committee on 
Validation of Alternative Methods (ICCVAM). This presentation de-
scribed the validation and regulatory acceptance criteria and guidelines 
that are currently in place and have been compiled and adopted by 
ICCVAM and its sister agency the European Center for Validation of 
Alternative Methods.  

At present, the submission of toxicogenomic data to regulatory 
agencies is being encouraged (for example, FDA 2005). However, the 
regulatory agencies generally consider it premature to base regulatory 
decisions solely on toxicogenomics data, given that the technologies are 
rapidly evolving and in need of further standardization, validation, and 
understanding of the biologic relevance. In addition, regulatory accept-
ability and implementation will in part depend on whether these methods 
have utility for a given regulatory agency and for the products that that 
agency regulates. 

Schectmann described ICCVAM’s 2003 updated guidelines for 
nomination and submission of methods (ICCVAM 2003). These guide-
lines detail ICCVAM validation and regulatory acceptance criteria. Fig-
ure 2 outlines the generalized scheme of the validation process, as pre-
sented by Schechtman. Components of this process include standardiza-
tion of protocols, variability assessments, and peer review of the test 
method. The presentation concluded with the overall comment that vali-
dation in the regulatory arena is, for the most part, a prerequisite for 
regulatory acceptance of a new method. 

In response to the presentation, it was questioned whether regula-
tory agencies were required to go through the ICCVAM process before 
they could use or accept information from a new test. Schectmann re-
sponded that it was not required—the process is made available to help 
guide a validation effort, and because multiple agencies are part of the  
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FIGURE 2 ICCVAM test method validation process. Source: ICCVAM 
2003. 
 
 
ICCVAM process, an ICCVAM-accepted test is likely to be accepted by 
those agencies. However, he cautioned that acceptance of any given 
method goes far beyond validation, and the ICCVAM process is one that 
facilitates the validation of a method but does not provide or guarantee 
regulatory acceptance of that method.  

It was suggested by a participant that one aspect of the test-
validation process (distribution of chemicals for testing), as outlined in 
the presentation, would not work well in the field of toxicogenomics but 
that the distribution of biologic samples (for mRNA quantification) 
would be a better alternative. Schectmann clarified that many new tech-
nologies did not exist when the ICCVAM process was initiated and that 
other validation approaches could be used. He emphasized that there is 
nothing about the ICCVAM process that is inflexible relative to the new 
or different technologies. 

The fundamental differences between the processes for validating 
new technologies and those used to validate conventional, currently used 
toxicological methods were discussed next. It was noted that there is an 
apparent disconnect in that a very elaborate validation process is estab-
lished for new methods, yet thousands of chemicals are currently being 
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evaluated with methods (such as quantitative-structure-activity relation-
ships) that would likely not pass through the current ICCVAM validation 
process. Overall, it was questioned whether this process sets up a system 
where “the perfect was the enemy of the good,” because new technolo-
gies can offer information, for instance, in a chemical’s weight-of-
evidence evaluation? Schechtman responded that he did not believe that 
it was necessary to wait for a final stamp of approval. Indeed, the U.S. 
Environmental Protection Agency (EPA) and FDA are accepting data 
and mechanistic information from tests that have not undergone, and 
probably will never undergo, the ICCVAM validation process. Even the 
classical toxicological tests themselves have never been validated in this 
manner. 
 
 

Part 2: Case Studies: Classification Studies and the 
Validation Approaches 

 
The second session of the workshop featured case studies where 

mRNA expression microarray assays were used to classify compounds 
according to their toxicological mode of action. Authors of the original 
papers presented salient details of their studies, emphasizing validation 
techniques and concepts. The presentations and discussion are described 
below and the author’s PowerPoint slides are available on the commit-
tee’s Web site. As mentioned before, this report is intended to present the 
information at a level accessible to a general scientific audience. Techni-
cal details on the presentations are presented at a cursory level. Readers 
are referred to the original publications, cited in each section, for greater 
technical detail and a more comprehensive treatment of specific proto-
cols. 
 
 
Proof-of-Principle Study on Compound Classification  
Using Gene Expression 
 

Hisham Hamadeh, of Amgen, outlined a two-part proof-of-
principle study on compound classification that used microarray tech-
nologies (Hamedah et al. 2002a,b). This study was initiated in 1999 
when many of these technologies were in their infancy and current vali-
dation techniques had not yet been devised. However, the experimental 
design and concepts used for validation and classification in those early 
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studies remain illustrative for discussion. The purpose of the study was to 
determine whether gene-expression profiles resulting from exposure to 
various compounds could be used to discriminate between different toxi-
cological classes of compounds. This study evaluated the gene-
expression profiles resulting from exposure to two compound classes, 
peroxisome proliferators (including three test compounds:  clofibrate, 
Wyeth 14,643, and gemfibrozil) and enzyme inducers (modeled by the 
cytochrome P450 inducer, phenobarbital). Hamadeh described the ex-
perimental design of the study, highlighting data analyses used to desig-
nate whether gene expression was significantly induced. 

Gene induction results were presented using hierarchical cluster-
ing,16 principal components analysis, and pairwise correlation. These 
visualization techniques demonstrated that although phenobarbital-
exposed animals exhibited significant interanimal variability, they could 
be readily distinguished from those exposed to the peroxisome prolifera-
tors on the basis of gene expression. To expand on results obtained with 
this limited data set, the researchers attempted to classify blinded sam-
ples based on earlier data. A classifier using 22 genes with the greatest 
differential expression between the two compound classes was used to 
classify unknown samples into a compound class. This gene set was de-
termined by statistical analyses of the training set (tests on the model 
compounds described above) using linear discriminant analysis and a 
genetic algorithm for pattern recognition (Hamadeh et al. 2002b). 
Blinded samples were classified initially by visual comparison of the 
levels of mRNA induction or repression in blind samples to the known 
compounds. Subsequently, pairwise correlation analysis of expression 
level of the 22 discriminant genes was also used. Correlations of r ≥ 0.8 
between blinded and known samples were used to determine whether the 
unknown was similar to the known class.  

The analysis was able to successfully discern the identity of the 
blinded compounds. Phenytoin, an enzyme inducer similar to phenobar-
bital, was classified as phenobarbital-like; DEHP, a peroxisome prolif-
erator, was also indicated as such; and the final compound, hexobarbital, 
has a similar structure to phenobarbital but is not an enzyme inducer, was 
not classified as being either phenobarbital-like or a peroxisome prolif-
erator. Overall, the conclusions of this study are that it was possible to 
                                                 
16Hierarchical clustering groups similar objects into a sequence of nested parti-
tions, where the similarity metric is predefined. In DNA microarray applica-
tions, the technique is used to identify genes with similar expression patterns. 
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separate compounds based on the gene-expression profiles and that it is 
feasible to gain information on the toxicologic class of blinded samples 
through interrogation of a gene-expression database.  

Workshop participants were interested in the suite of discriminant 
genes that were used for the evaluation of chemical class and in whether 
that number of genes could be narrowed down. For instance, the question 
was asked whether it would be satisfactory to use only the induction pro-
files of CYP2B and CYP4A17 to indicate the class of the unknowns. 
Hamadeh reported that this type of evaluation had been conducted and 
the number of discriminant genes could indeed be narrowed down. How-
ever, he noted that a larger number of discriminant genes allow for in-
creased resolution between compounds. Of course, microarray analysis 
also provides information on many genes that would not be obtained 
from a simple evaluation of individual gene transcripts, and this is par-
ticularly useful when analyzing unknown samples.  

The amount and origin of the variability seen within a chemical 
class was also discussed. Hamadeh explained that there was interanimal 
variability but that generally the variability in the microarray responses 
mirrored those seen in the animal responses (for example, whether ani-
mals within a group exhibited hypertrophy, necrosis, or the presence of 
lesions). Overall, the level of interanimal variability did not alter the end 
result that expression profiles were different for the different classes.  

The discussion emphasized that mRNA expression results have 
several layers of intertwined information that can complicate the analysis 
of factors eliciting gene-expression changes. Beyond the molecular tar-
gets that are specifically affected by a compound, there are expression 
changes associated with the pathology resulting from exposure (for ex-
ample, necrosis or hypertrophy). Gene-expression changes can also be 
related to an event that is secondary, or downstream, from the initial 
toxicologic interaction. A compound may also interact with other targets 
not associated with its toxic or therapeutic action. In addition, all of these 
effects may change, depending on time after dose, which adds another 
layer of complexity to the analysis. As a result, the number of genes that 
are used to screen for certain chemical classes is generally low and in-
tended to screen for certain toxicities.  
 
                                                 
17Cytochrome P450 2B and 4A (CYP2B and CYP4A) are members of the cyto-
chrome P450 family of proteins that catalyze mono-oxygenation of endogenous 
and exogenous substrates.  
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Acute Molecular Markers of Rodent Hepatic Carcinogenesis  
Identified by Transcription Profiling 
 

Kyle Kolaja, of Iconix Pharmaceuticals, presented a study that 
sought to identify biomarkers of hepatic carcinogenicity using microar-
ray mRNA expression assays (Kramer et al. 2004). In particular, identifi-
ers of nongenotoxic carcinogenicity were desired because the conven-
tional method for determining this mode of action (a 2-year rodent car-
cinogenicity assay) is time consuming and expensive. The study evalu-
ated nine well-characterized compounds, including five nongenotoxic 
rodent carcinogens, one genotoxic carcinogen, one carcinogen that may 
not act via genotoxicity, a mitogen,18 and a noncarcinogenic toxicant. 
Rats from the control group and three groups that received different dose 
levels of each compound were sacrificed after 5 days of dosing, and liver 
extracts were tested in microarray assays. The purpose of the analysis 
was to correlate the short-term changes in gene expression with the long-
term incidence of carcinogenicity (known from previous studies of these 
model compounds). Kolaja highlighted the data analysis used to desig-
nate whether gene expression was significantly induced or repressed. 
Significantly affected genes were correlated to carcinogenic index (based 
on cancer incidence in 2-year rodent carcinogenicity studies). 

The study resulted in the identification of two optimal discrimina-
tory genes (biomarkers): cytochrome P450 reductase (CYP-R) and trans-
forming growth factor-β stimulated clone 22 (TSC-22). TSC-22 nega-
tively correlated with carcinogenic potential, and CYP-R correlated with 
carcinogenicity. The results were validated initially by measuring the 
mRNA levels using another mRNA measurement technique, quantitative 
PCR (Q-PCR). This analysis indicated a strong correlation between the 
microarray data and the Q-PCR data generated from the same set of 
samples. From a biologic standpoint, the role of TSC-22 in carcinogene-
sis is consistent with its involvement in the regulation of cellular growth, 
development, and differentiation. 

The results of this analysis were extended by a “forward validation” 
of these biomarkers, that is, the independent determination of these genes 
as carcinogenic biomarkers by other groups or studies. Kolaja described 
two independent studies (Iida et al. 2005; Michel et al. 2005) using both 
rats and mice that identified TSC-22 as a potential marker of early 

                                                 
18 Mitogens induce cell division. 
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changes that correlate with carcinogenesis. Additional study at Iconix 
Pharmaceuticals on 26 nongenotoxic carcinogens and 110 noncarcino-
gens indicated that the TSC-22 biomarker at day 5 after dosing had an 
accuracy for detecting the carcinogens of about 50% and for excluding 
compounds as carcinogens at about 80%. Kolaja remarked that these re-
sults were fairly robust, especially recognizing that the biomarker is a 
single-gene biomarker being compared across a very diverse set of com-
pounds. Overall, it is very difficult to find one gene that is a suitable 
biomarker in terms of predictive performance. It was noted that multiple 
genes create a more integrated screening biomarker and allow for 
stronger predictivity, performance, and accuracy. Kolaja also stated that 
in the future it would be more appropriate for validation strategies to em-
phasize the biologic and not methodologic aspects of the validation, be-
cause the testing of a biologic question captures the technical aspects. As 
such, additional tests on treatments and models would follow with less 
emphasis on platforms and methods.  

During the discussion, it was questioned whether it was possible 
that TSC-22 was correlative rather than mechanistic—that is, if the TSC-
22 was related to another general response (such as liver weight change) 
and not to carcinogenesis? Kolaja mentioned that he would not be sur-
prised if liver weight changes were also seen at day 5 and that the possi-
bility that TSC-22 was a correlative response had not been ruled out. 
Another question raised was whether analyzing data sets using a multi-
ple-gene biomarker had correspondingly greater technical difficulty 
compared with a single-gene biomarker? Kolaja indicated that it was the 
same type of binary analysis (Is a sample in the class or not?), but with 
multiple genes, the answer relies on the compendium of genes, and the 
mathematical modeling. He also noted that recent mathematical algo-
rithms and models have become increasingly better at class separation. 
 
 
Study Design and Validation Strategies in a Predictive 
Toxicogenomics Study 
 

Guido Steiner, of Roche Pharmaceuticals, presented a study that 
used microarray analyses to classify compounds by mode of toxicologic 
action (Steiner et al. 2004). The goals of the study were to predict hepa-
totoxicity of compounds from gene-expression changes in the liver with 
a model that can be generalized to new compounds to classify com-
pounds according to their mechanism of toxicity and to show the viabil-
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ity of a supervised learning approach without using prior knowledge 
about relevant genes.  

In this study, six to eight model hepatoxicants for each known 
mode of action (for example, steatosis, peroxisome proliferation, and 
choleostasis) were tested. Rat liver extracts were obtained at various 
times (typically under 24 hours) following dosing with model com-
pounds and tested for changes in mRNA expression. Clinical chemistry, 
hematology, and histopathology were used to assess toxicity in each 
animal. The gene-expression data from tests of the model toxicants be-
came the training set for the supervised learning methods (in this study, 
support vector machines [SVMs]) (see Box 5). One aspect of this study 
that differed from many comparisons of gene-expression levels is that the 
commonly used statistical measures denoting significant gene-expression 
changes (magnitude of change and associated P value) were not used. 
Rather, the discriminatory features from the microarray results for classi-
fication were selected using recursive feature elimination (RFE), a 
method that uses the output of the SVMs to extract a compact set of rele-
vant genes that as an ensemble yield a good classification accuracy and 
stabilize against the background biologic and experimental variation (see 
Box 5 and Steiner et al. 2004). Features for a particular class were se-
lected from gene-expression profiles from animals exposed to model 
compounds. A compound’s class was based on results from the serum 
chemistry profile and liver histopathology.  

Steiner’s presentation focused on the study design and validation 
considerations that need to be addressed when conducting this type of 
study. First, only a small set of compounds within a class are typically 
available for developing classification algorithms, and it is important to 
consider whether these compounds are adequately representative of class 
toxicity. Overall, this problem is difficult to predict or avoid a priori. In 
the presented study, some well-characterized treatments were initially 
selected, and the problem of generalizability within a toxic class was 
dealt with during the model validation phase. So then, how is a well-
characterized training set defined? This question was approached by 
carefully selecting the compound using phenotypic anchoring based on 
the clinical chemistry and histopathologic data, subsequently confirming 
that the clinical results correspond with those in the literature, and then 
using the higher-dose treatments in the training sets that had no ambigu-
ity regarding the toxic manifestation. One implication of this approach is 
that the “scale” for detecting an effect is set higher (that is, gene-
expression signatures in the training set are based on higher dose, “real” 
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effects at the organ level). Also, although the meaning for this class (in 
terms of gene expression) is well defined, the ability to extrapolate to 
lower doses is not known until this question is tested. 

Another issue is that the toxicity classes established by researchers 
may not be accurate. Some tested compounds may show a mixed toxic-
ity. Steiner explained that the model would pick up the various aspects of 
the toxicity, and indeed, results presented in Steiner et al. (2004) indi-
cated that to be the case.  
 
 

BOX 5 Classification of Microarray Data Using Algorithms  
and Learning Methods 

 
Various methods are used to analyze large-scale gene-expression 

data. Unsupervised methods widely reported in the literature include ag-
glomerative clustering (Eisen et al. 1998), divisive clustering (Alon et al. 
1999), K-means clustering (Everitt 1974), self-organizing maps (Kohonen 
1995), and principal component analysis (Joliffe 1986). Support vector 
machines (SVMs), on the other hand, belong to the class of supervised 
learning algorithms. Originally introduced by Vapnik and co-workers 
(Boser et al. 1992; Vapnik 1998), they perform well in different areas of 
biologic analysis (Schölkopf and Smola 2002). Given a set of training 
examples, SVMs are able to recognize informative patterns in input data 
and make generalizations on previously unseen samples. Like other su-
pervised methods, SVMs require prior knowledge of the classification 
problem, which has to be provided in the form of labeled training data. 
Used in a growing number of applications, SVMs are particularly well 
suited for the analysis of microarray expression data because of their 
ability to handle situations where the number of features (genes) is very 
large compared with the number of training patterns (microarray repli-
cates). Several studies have shown that SVMs typically tend to outper-
form other classification techniques in this area (Brown et al. 2000; Furey 
et al. 2000; Yeang et al. 2001). In addition, the method proved effective 
in discovering informative features such as genes that are especially 
relevant for the classification and therefore might be critically important 
for the biologic processes under investigation. A significant reduction of 
the gene number used for classification is also crucial if reliable classifi-
ers are to be obtained from microarray data. A proposed method to dis-
criminate the most relevant gene changes from background biologic and 
experimental variation is gene shaving (Hastie et al. 2000). However, we 
chose another method, recursive feature elimination (RFE) (Guyon et al. 
2002), to create sets of informative genes. 
 

Source: Steiner et al. 2004.  
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Data heterogeneity is also an issue, and a primary reason protocol 
standardization and chip quality control is essential. Time-matched vehi-
cle controls19 should be used; according to Steiner, it is a necessity be-
cause changes occur (for instance, due to variations in circadian rhythms, 
age, or the vehicle) through an experiment’s time course. To handle the 
known remaining heterogeneities, the SVM models were always trained 
using a one-versus-all approach where data points of all toxicity classes 
are seen at the same time. In this setting, chances are good that any con-
founding pattern is represented on both sides of the classification bound-
ary. Therefore, the SVM can “learn” the differences that are related to 
toxicity class (which are designated) and ignore the patterns that are not 
related to toxicity class (experimental factors driving data heterogeneity).  

Another issue that needs to be considered is data overfitting. This 
effect can occur when the number of features in the classification model 
is too great compared with the number of samples, and it can lead to spu-
rious conclusions. In this regard, the SVM technique has demonstrated 
performance when the training set is small (Steiner et al. 2004). Selection 
of model attributes in SVMs, including the aforementioned RFE func-
tion, also limit the potential for overfitting. However, the true perform-
ance of the model has to be demonstrated using a strict validation scheme 
that also takes into account that a number of marker genes have to be 
selected from a vast excess of available (and largely uninformative) fea-
tures. 

Steiner also stated that a compound classification model should not 
confuse gene-expression changes associated with a desired pharmacol-
ogical effect with those from an unwanted toxic outcome. The SVM 
model addresses this concern based on the assumption that pharmacol-
ogical action is compound specific and the toxic mechanism is typical for 
a whole class; if this is true, then the SVM will downgrade features asso-
ciated with a compound-specific effect and find features for classifica-
tion that work for all compounds within a class. 

The final issue considered by Steiner was that of sensitivity and the 
need for a model and classification scheme to be at least as sensitive as 
the conventional clinical or histological evaluations. In this study, in-
creased sensitivity of the developed classification scheme was demon-
strated with a sample that had no effect using conventional techniques, 

                                                 
19For example, dosed animals at day 1 would be compared with control animals 
at day 1 and so on for each time point throughout the experiment.  
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but there was a small shift from the control group toward the active 
group in a three-dimensional scatter plot for visualizing class separation. 
This shift is a hint that gene-expression profiling could be more sensitive 
than the classical end points used in this study (Steiner et al. 2004).  

Discussion from workshop participants included questions about 
whether the described systems were capable of detecting effects at a 
lower dose or if they were only detecting effects at an earlier time point 
(that is, the effect would have been manifested at the dose but at a later 
time). Steiner explained that those assessments had been completed and 
that the model worked quite well in making correct predictions from 
lower doses than those that elicit classic indicators of toxicity.  

During discussion, it was noted that Steiner’s data set indicated dif-
ferences in responses between strains of rats, which has important impli-
cations for cross-species extrapolation (for example, between rodents and 
humans). Notable differences seen in microarray results between two 
inbred strains of rats might presage the inapplicability of these tech-
niques to humans. Steiner replied that this was an important question not 
addressed in the study but that the authors did not imply that the effect in 
humans could be predicted from the rat data. Hamedeh pointed out that 
the training method used in that example data set did not consider both 
strains in the training set, and identifiers could have likely been found if 
this had been done. However, the extrapolation of this classification 
scheme to humans would create a whole different set of issues because 
those analyses would be conducted with different microarray chips (hu-
man based not rat based). 
 
 

Roundtable Discussion 
 

A roundtable discussion, moderated by John Quackenbush and 
open to all audience members, was held following the invited presenta-
tions, and the strengths and limitations of the current validation ap-
proaches and methods to strengthen these approaches were considered. 
Although technical issues and validation techniques were discussed, 
many of the comments focused on biologic validation, including the ex-
tent to which microarray results indicated biologic pathways, the linking 
of gene-expression changes to biologic events, the different requirements 
of biologic and technical validation, the impact of individual, species and 
environmental variability on microarray results, and the use of microar-
ray assays to evaluate the low-dose effects of chemicals. The primary 
themes of this discussion are presented here. 
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Technical Issues and Validation Techniques 

 
John Balbus, of Environmental Defense, commented that most of 

the presentations during the day were from case studies of self-contained 
data sets from a particular lab or group. However, it is commonly 
thought that a benefit of obtaining toxicogenomic data is that they will be 
included in larger databases and mined for further information. In this 
context, he noted the level of difficultly in drawing statistically sound 
conclusions from self-contained data sets and asked whether analyzing a 
fully populated database would create even greater complexities and 
whether it was possible to achieve sufficient statistical power from data 
mining. John Quackenbush suggested that a level of data standardization 
would be necessary to analyze a compiled database and that the quality 
of experiments in the database would exert a major influence. In addi-
tion, these analyses may require that comparisons are only made between 
similar technologies or applications. Irizarry suggested that a large data-
base would also serve as a resource of independent data sets for evaluat-
ing whether a phenomenon seen in one experiment has been seen in oth-
ers. 

Casimir Kulikowski, of Rutgers University, raised a technical issue 
relating to cross-validation techniques used in binary classification mod-
els in toxicogenomics. Those models usually involve very different types 
of categories for a positive response for a specific compound versus 
other possible responses. In cross-validation, most techniques assume 
symmetry with random sampling from each class. In Steiner’s presenta-
tion, the sampling was appropriately compound specific, but a question 
arises as to whether it could also take into account confounding issues 
not known a priori, such as the possibility of a compound differentially 
affecting different biologic pathways. More generally, cross-validation 
methods may need to be applied in a more stratified manner for problems 
dealing with multiple classes or mixed classes, or where there are rela-
tionships between the classes. For instance, there may be a constrained 
space for the hypothesis of a toxic response affecting a single (regulatory 
or metabolic) pathway, but one may also wish to focus on other con-
straints that have not yet been satisfied to generate additional information 
for other pathways. One approach would be to use causal pathway analy-
sis, together with its counterfactual20 network, to limit the possible out-
comes of hypothesis generation. This means that if a set of assertions can
                                                 
20A counterfactual conditional is an “if-then” statement indicating what would 
be the case if its antecedent were true. 
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be made based on the current state of the art, the investigator can identify 
those counterfactual questions that might actually be scientifically inter-
esting. (This technique has currently been proposed for biomedical image 
classification, but it might also apply to microarray-based classification 
studies.) Kulikowski commented that it was problematic to design classi-
fiers as simple, binary classifications and then assume that the toxic re-
sponse class is the same as the class representing the mixture of all other 
responses. It would be more desirable to tease out what that mixture class 
is and then figure out how it should be stratified in a systematic manner. 
 
 
Microarray Assays for the Analysis of Biologic Pathways 
 

Federico Goodsaid, of FDA, commented that based on the presenta-
tions, the analytical validation of any given platform was fairly straight-
forward, but the end product of these studies (a set of genes to be used as 
a marker) is likely to be platform dependent, and these sets of genes will 
not be the same across platforms. However, he noted that identifying 
identical sets of genes across platforms is not essential as long as the 
markers are supported by sufficient biologic validation. Another partici-
pant provided an example of this concept: In a study of sets of genes in-
dicative of breast cancer tumor metastasis, different microarray platforms 
indicated completely distinct sets of genes as markers of breast cancer. 
However, when these gene sets were mapped biologically, there was 
complete overlap of the pathways in which those genes were involved, 
thus, there was good agreement in terms of the biologic pathways. John 
Quackenbush also commented on the results of recent studies presented 
in Nature Methods,21 where a variety of platforms were tested using the 
same biologic samples. In general, these studies indicated that although 
variability exists between labs and microarray platforms, and different 
platforms identify different biomarkers of those pathways, common bio-
logic pathways emerge.  
 
 
Linking Gene-Expression Changes to Biologic Events 
 

Bill Mattes, of Gene Logic,22 commented that it was necessary to 

                                                 
21May 2005, Volume 2, No. 5 
22Dr. Mattes is currently affiliated with the Critical Path Institute 
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understand gene-expression changes in an appropriate biologic context, 
particularly if gene-expression changes are causative of a pathology or if 
they are just coincident (or correlative) to the pathology. Also, it is im-
portant that the time course be considered because gene-expression 
changes will vary through time. Overall, when the goal is understanding 
the etiology of a biologic effect, the gene-expression changes examined 
should be those preceding, not coincident to, the biologic effect of inter-
est. Joseph DeGeorge, of Merck Pharmaceuticals, also commented on the 
importance of understanding the biologic context of gene-expression 
changes in validation efforts. For instance, if a gene-expression signal is 
obtained from animal tests with no associated pathology, it is important 
to ask if the change in mRNA expression is the first step to pathology or 
just an adaptive response. It is also important to know if the response is 
real or false or an artifact of screening a multitude of genes, and it is im-
portant to ask whether an observed response would be relevant to human 
risk when extrapolating from animal to humans. 

 
 

Recognizing Differences in Biologic and Technical Validation 
 

The importance of distinguishing between the vastly different needs 
for technical and biologic validation was also discussed by Kenneth S. 
Ramos. Many of the difficult concepts being addressed relate solely to 
biologic validation, and sufficient technical validation can be readily 
achieved using multiple compounds tested on a single animal strain un-
der a single set of conditions. This would constitute the technical valida-
tion of a biomarker, even though the biology is not exactly understood. 
Conversely, for biologic validation, the needs are quite different, and the 
problems are more substantial, as has been discussed. 

Geoff Patton, of EPA, commented that it was his personal opinion 
that when scientists seek to achieve biologic validation, they will not just 
rely on one method such as microarray technologies to make statements 
on biologic mechanisms or pathways. It is not sufficient to auto-validate 
within the same technique; it is necessary to look for other confirmatory 
information. He also stated that microarray assays provide multiple op-
portunities for gaining biologic insight from transcriptomics. For exam-
ple, insight can be developed by evaluating events upstream of gene ex-
pression (such as the transcriptional regulatory elements and transcrip-
tion factors driving gene-expression results) to solidify the understanding 
of co-regulated genes. Insight can also be gained by analyzing down-
stream events, such as the relationship to pathologic markers or the break 
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point between adaptation and frank toxicity. Patton commented that the 
current understanding of modes of action can be sufficient to manipulate 
the biologic systems and to use other tools (such as proteomics or pa-
thology) to demonstrate the validity of mechanistic or mode-of-action 
biomarkers. Thus, biologic validation will not be solely achieved with 
microarray technologies. To achieve biologic validation, a framework to 
describe how to assemble information to execute external validation of 
the pathway is needed. 

 
 

Impact of Individual, Species, and Environmental Variability  
on Microarray Results 
 

Georgia Dunstan, of Howard University, emphasized the impor-
tance of genetic variation when considering toxicogenomic results and of 
not extrapolating beyond the reference (for example, species and condi-
tions) of the original experiments and platforms. The contribution of ge-
netic variation between model systems and between individuals in re-
sponse to various stressors cannot be avoided. 

Leigh Anderson, of Plasma Proteome Institute, commented on the 
lack of microarray studies that characterize individual variation. For ex-
ample, studies on the variation between inbred rat strains would be useful 
because understanding the interindividual variation will be critical in 
choosing genes as stable biomarkers. However, although that research is 
relatively simple, it is not being done, raising the question of how cross-
species extrapolation can be discussed when the variation within a spe-
cies has not been determined? It indicates the time is still early for these 
technologies. 

Cheryl Walker, of the M.D. Anderson Cancer Center, commented 
on the impact of environmental variability on the stability of the genomic 
biomarkers. For instance, what happens to these biomarkers and signa-
tures as you start to get away from a controlled light/dark cycle, diet, and 
nutritional status? Anderson replied that, at least in the field of pro-
teomics, there are a known series of situations to be avoided (for exam-
ple, animals undergoing sexual maturation and the use of proteins con-
trolled by cage dominance). He commented that these types of variables 
and effects should be catalogued for microarray assays as well.  

Hisham Hamedah indicated that there was an ongoing effort at the 
International Life Sciences Institute (ILSI) to obtain data from several 
companies on control animals. At the member companies of ILSI, there 
are different strains, different feeding regimens, and different method-
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ologies. This effort has obtained data from about 450 chips tested on 
liver samples. Although the analysis is not yet complete, the goal is to 
identify genes with very low variance, and the results could possibly be 
extrapolated to other tissues or even other species. 

Bill Mates, of Gene Logic, responded that in his experience, ex-
pression changes respond to these environmental variables in predictable 
ways. In fact, the wealth of information provided in microarray assays 
can permit researchers to find errors in study implementation, and he 
mentioned an experience where perturbations in expression profiles indi-
cated improper animal feeding or watering.  

Sarah Gerould, of the U.S. Geological Survey (USGS), commented 
that Dunstan’s initial comments on cross-species differences were par-
ticularly important in ecotoxicology, which focuses on different kinds of 
fish, birds, and insects. Beyond the variety of organisms and their range 
of habitats, the organisms are exposed to multiple contaminants, increas-
ing the potential difficulties in ecotoxicologic applications of these tech-
nologies. 
 
 
Evaluating Low-Dose Effects of Chemicals 

 
Jim Bus, of Dow Chemical, commented that most of the presenta-

tions during the workshop focused on screening pharmaceutical com-
pounds in an overall attempt to avoid potential adverse outcomes as they 
enter the therapeutic environment. However, for the chemical manufac-
turing industry, the questions are of a different nature (although screen-
ing is a component) because, unlike pharmaceutical exposures, humans 
are not intentionally dosed, and the exposures are substantially lower. 
Therefore, toxicogenomic assays present an opportunity for biologic 
validation of effects, particularly at the low end of the dose-response 
curve where conventional toxicologic animal tests are insufficient. Cur-
rently, low-dose effects are addressed by, for example, 10-fold uncer-
tainty factors or a linearized no-threshold model, but these techniques are 
primarily policy and are not biologically driven. Bus referred to “real 
world” environmental exposures that are thousands-fold lower than those 
assessed using conventional toxicologic models. In particular, he was 
interested in determining how toxicogenomics can assist in bridging the 
uncertainty associated with default uncertainty factors and models. These 
issues emphasize the need for biologic validation of these technologies 
and the potential for their application to the regulatory arena. 
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Federico Goodsaid, of FDA, brought up a related issue, comment-
ing that conventional animal-based toxicology experiments use a limited 
number of samples and replicates, limiting the ability to see low-dose 
effects. Further, one of the most daunting tasks in using animal models to 
try to predict human safety issues is extrapolating from a limited sam-
pling to what would happen with humans. In this effort, toxicogenomics 
perhaps represents a tool to go beyond what is currently available and to 
increase the power of the animal models and look at very low doses over 
a long period of time. 

 
 

Summary Statements and Discussion 
 

Kenneth S. Ramos moderated a summary discussion where, to ini-
tiate the discussion, he asked whether participants were comfortable with 
technical validation of the microarray technologies and whether it is ap-
propriate for the field to progress to focusing on biologic validation. In-
deed, similar to the roundtable session, the ensuing discussion focused on 
issues surrounding biologic validation, and some participants brought up 
themes mentioned earlier, such as the need to define mRNA expression 
changes that do and do not constitute a negative effect and that genetic 
diversity will confound extrapolation between species and among hu-
mans. Several participants also commented on the current state of valida-
tion efforts. The themes that emerged in this discussion are presented 
here.  
 
 
Validation Issues with Microarray Assays Are Not Novel 
 

Several participants suggested that many of the validation issues 
brought up throughout the day were not isolated to toxicogenomic as-
says. Linda Greer, of Natural Resources Defense Council, noted that in 
conventional animal bioassays, we often do not understand the biology 
underlying why, for example, animals may or may not get tumors; we do 
not understand the individual variation within an inbred animal strain nor 
how to make comparisons between species. Greer stated that she was 
actually relieved to hear the lack of dispute regarding technical validation 
of microarray technologies, because a common perception among non-
specialists is that the technology does not produce consistent results. 
However, she noted that technical questions have been narrowed and 
addressed as demonstrated by, for example, the afore-mentioned series of 
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papers in Nature Methods.23 Also, the questions regarding biologic vali-
dation apply to a lot of toxicology issues. In this regard, toxicogenomic 
assays are in the same state as many other conventional methodologies.  

Rafael Irizarry responded to concerns that microarray assays rely 
heavily on “black box” mathematical preprocessing, where complex 
electrical and optical data is converted to a gene-expression level. He 
noted that other technologies also rely on mathematical algorithms or 
other preprocessing of raw data, for instance, RTPCR and functional 
magnetic resonance imaging (FMRI). However, a notable difference is 
that these other technologies do not produce a wealth of data like the mi-
croarray technologies, possibly explaining why the issue is rarely consid-
ered.  

Bill Mattes commented on the level of consistency of microarray 
results generated among different labs. He stated that microarrays are 
like other technically demanding technologies, where everybody is not 
able to produce reliable data. For instance, inexperienced practitioners of 
histopathology via microscopy, which is considered a “gold standard” for 
detecting pathologic responses, will not produce reliable results. In this 
regard, Mattes suggested discussing the development of standards to 
qualify good practice. Irizarry also suggested that the scientific commu-
nity use a type of internal validation of practitioners where, for example, 
laboratories would periodically hybridize a universal standardized refer-
ence and submit results to compare against other researchers. 
 
 
Validation in What Context: Technical, Biologic, or Regulatory 
 

Leonard Schectmann, of FDA, asked which participants had used 
microarray technologies and whether they were confident that the tech-
nologies had been sufficiently validated and were ready for widespread 
use (or “prime time” as stated by a few participants). Ramos suggested 
that, in this context, perhaps prime time was not the best term; rather, 
that these technologies had undergone sufficient validation and that it 
was understood they could be used to generate reliable and reproducible 
results. Other participants also asserted that it was necessary to under-
stand the context in which the term validation was being used. 

Yvonne Dragan, of FDA, said that it has been shown with microar-
ray technologies that technical reproducibility can be achieved in the 
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laboratory and that reproducibility across different laboratories depends 
on each laboratory’s proficiency at the technique, with replicability being 
possible if the labs are proficient at the analyses. Whether reproducibility 
is possible across platforms depends on whether the platforms are assess-
ing the same thing. For example, if probe sets on the microarray chip are 
from different locations in the same gene, then different questions are 
being asked. Therefore, overall, the answers depend on the level at which 
validation is desired. Asking whether microarrays are capable of accu-
rately measuring mRNA levels is one question. Biologic questions are 
different, however, and one has to ask whether this method is the right 
one to address the questions being asked? 

Kerry Dearfield, of USDA, commented that the question of whether 
a technology was ready for prime time really meant it was ready to be 
accepted by the regulatory agencies. In this regard, Dearfield commented 
that the microarray technologies were not quite there yet. Technical re-
producibility, while important, does not specifically address the types of 
questions being asked in the regulatory field, and accurately answering 
the biologic questions is essential. It will be necessary to directly tie ex-
pression changes to some type of adverse end point and thus be able to 
address questions of regulatory interest (for example, safety or efficacy). 
Another application for risk assessment is when toxicogenomics will be 
used to examine if effects can be seen at earlier times after dosing or at 
lower doses. Tough questions will remain. For example, if expression 
changes that can be associated with a pathologic effect are seen at low 
doses where that pathology has not been observed, how will that infor-
mation be considered in the regulatory arena? Would regulations change 
based on expression changes? To progress, it is necessary to ensure that 
the technologies are technically solid and generating reproducible, be-
lievable information. Then, that information has to be linked to biologic 
effects that people are concerned about. This type of technical and bio-
logic validation needs to be tied together prior to use in the regulatory 
arena to address public health concerns. To get to this point, the technol-
ogy will need to go through some form of internationally recognized 
process where, for example, performance measures for the technologies 
are specified, so the agencies can use the generated information. 

Carol Henry, of the American Chemistry Council, commented on 
the potential for a group of independent researchers to recommend prin-
ciples and practices necessary for the technical validation of these tech-
nologies, so the field can advance to the point where the technologies can 
be used in public health and environmental regulatory settings. Develop-
ing these practices could aid getting the technologies into a formal proc-
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ess where agencies might actually be able to accept it; right now, toxico-
genomic submissions are being considered on a case-by-case basis. 

Richard Canady, of the Office of Science and Technology,24 com-
mented that a reason to go through a validation process or certification of 
practitioners is to improve practice overall and reduce the odds that ques-
tionable data sets would become an accepted part of the weight of evi-
dence for regulatory decisions (particularly for data that support a deci-
sion almost entirely). He also commented that it is important to recognize 
the value of data to support arguments about, for instance, dose-response 
extrapolation below the observable range, where it may not be possible 
to obtain biologically validation. In these applications, data would be 
used in weight-of-evidence arguments to help researchers understand the 
biology. Although it is good to think about validation of assays and 
maybe even certification of practitioners, it is bad to close the door and 
categorically exclude information. 

Goodsaid stated that efforts were under way at FDA to develop an 
efficient and standard process to receive genomic information and to 
minimize the confusion regarding potential regulatory applications of the 
technologies. 
 
 

Wrap-Up Discussion 
 

To finish the workshop, John Quackenbush assembled several 
summary statements of themes he heard emerge from the workshop dis-
cussions and projected these for the audience (see Box 6). The statements 
encapsulated the technical and biologic validation considerations ad-
dressed in the speaker’s presentations and the discussion that followed. 
Discussion on the summary statements was brief, and the workshop was 
adjourned. 
 
 
 
 
 
 
 
 

                                                 
24Dr. Canady is currently employed by the Food and Drug Administration. 
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ATTACHMENT 1 
 
 

EXPERIMENTAL OBJECTIVES OF 
DNA MICROARRAY STUDIES 

 
Kevin K. Dobbin, Ph.D. 

Biometric Research Branch  
National Cancer Institute  

National Institutes of Health  
Bethesda, Maryland 

 
 
 

Good gene expression microarray studies have clear objectives. 
These objectives will typically not be to confirm hypotheses about indi-
vidual genes or pathways, because this could often be done more effec-
tively with lower throughput assays. Instead, the hypotheses will be more 
general and include hundreds or thousands of genes. Having clear objec-
tives is important for study design because no one design is best for 
every set of objectives, and so the choice of study design should be 
guided by the objectives. 

Three common types of objectives in microarray studies are class 
comparison, class prediction and class discovery. In class comparison 
studies, the goal is to identify genes differentially expressed among pre-
defined classes of samples. For example, Hossain et al. (2000) measured 
gene expression before and after toxic exposure to identify mechanisms 
of action of the toxicant, and Lu et al. (2001) compared liver biopsies 
from individuals in China with chronic arsenic exposure to those from 
healthy individuals to identify how the toxicant altered gene expression. 
In class prediction studies, one also has predefined classes but the goal is 
to develop a method for predicting class membership from gene expres-
sion data. An example of class prediction appears in Thomas et al. 
(2001), where a multi-gene predictor of toxic outcome was developed. In 
class discovery studies, one does not have predefined classes, but instead 
the classes are constructed during the course of the data analysis, typi-
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cally by cluster analysis methods. One can cluster either the samples or 
the genes. Samples are typically clustered to identify structure in an oth-
erwise homogeneous collection of samples, or to identify a novel taxon-
omy for the samples. An example of clustering genes in a study appears 
in Huang et al. (2001), where gene expression was measured at key time 
points after a toxic insult in order to gain insight into genetic regulation.  
 
 

LEVELS OF REPLICATION 
 

Because of the complexity of the microarray assay, replication can 
be performed at many different levels. But for experimental design pur-
poses, it is important to distinguish between two general types of repli-
cates, technical replicates and biologic replicates. Technical replicates 
occur when the same sample is measured multiple times. For example, 
one may pipette out multiple RNA samples from the same test tube and 
run each on a different array. Biologic replicates occur when different 
samples are measured on different arrays. For example, when studying 
populations of humans or animals, biologic replicates occur when each 
array is associated with a different person or animal. In cell culture ex-
periments, the analogue to biologic replication occurs when one re-grows 
the cells under the same condition for each array (independent replica-
tion). 

Figure 1-1 shows the effect of replication level choice on class 
comparison estimates. Here the number of arrays from each of two 
classes is fixed at 12. On the x-axis is the number of technical replicates 
performed on each sample; for example, a 1 corresponds to having one 
array performed for each of 12 samples; and a 2 corresponds to having 
two arrays performed for each of 6 samples. The open circles represent 
the accuracy of the individual sample estimates and the closed squares 
the accuracy of the class estimates. The figure shows that as the number 
of technical replicates per sample increases, so that the accuracy of each 
individual sample measurements gets better, the accuracy of the class 
estimates simultaneously gets worse. But the more accurate the class es-
timates are, the better the quality of the gene list. Hence the best gene list 
will result from the design that assigns one sample to each array with no 
technical replication. 

Independent biologic replicates are required for valid statistical in-
ference, because one needs some estimate of the variation in expres- 
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FIGURE 1-1 Accuracy (inverse of the variance of the mean estimate) of 
sample estimates (open circles) and class estimates (closed squared) as 
the number of technical replicates per sample increases from 1 to 4. 
Fixed number of 12 arrays per each of two class assumed. Source: Dob-
bin et al. 2003. 
 
 
sion in the population. If, for example, one only has one sample from 
each of two classes, then one cannot assess the statistical significance of 
observed fold changes without knowing whether these are outside the 
range of the normal biologic variations observed in the populations. In 
general, the higher the level of replication the better, so that biologic rep-
licates are preferable to technical replicates. While technical replicates 
can be informative in some cases, for instance for quality control, in gen-
eral systematic technical replication on all samples results in poor study 
design. One obvious exception is when there are a limited number of 
samples available. 

Spotted arrays typically use two dyes. This permits two expression 
measurements to be made at each spot. This is important because spot-to-
spot variation tends to be large in spotted arrays, and may drown out the 
gene expression differences one is trying to detect. Having two meas-
urements at each spot makes it possible, by designing and analyzing the 
study properly, to eliminate the spot variation from the gene expression 
comparisons. 
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Experimental designs that have been used for microarray studies 
include reference designs, balanced block designs, all pairs designs, loop 
designs, and variations on loop designs. For the experimental objectives 
under discussion here, usually a reference design or a balanced block 
design will be the best to use. Figure 1-2 shows an example of a refer-
ence design and of a balanced block design. The reference design uses a 
common reference sample which is applied to every array and is always 
tagged with the same dye (in the figure, this is Cy3, but it could also be 
Cy5). Each sample under study is tagged with the other dye and paired 
with one of the reference samples on an array. With this design, the ex-
pression level of each sample relative to the reference sample is meas-
ured for each gene. This permits one to also assess the expression level 
of any sample relative to any other sample by connecting them together 
using these relations to the reference. The balanced block design does not 
use a reference sample. With just two classes, the balanced block design 
pairs together one sample from each class on each array. For any class, 
one tags half the samples from that class with each dye.  

Table 1-1 shows the relative efficiency of the balanced block design 
compared to the reference design for a class comparison experiment. A 
relative efficiency of 2.4 means that 2.4 times as many arrays are re-
quired for a reference design to equal the accuracy of a balanced block 
design. This is the relative efficiency for two classes, and it depends on 
the ratio of technical to biologic variation (Dobbin and Simon 2002). As 
the number of classes increases, the relative efficiency decreases, but the 
balanced block design will always be more efficient than the reference 
design. 

The balanced block design does have some drawbacks. Because 
there is no common reference to connect all the samples, samples on dif-
ferent arrays cannot be compared effectively. This means, for example, 
that cluster analysis of the samples will perform very poorly with this 
type of design (it will essentially not be possible). It also means that if 
there is more than one way to classify the samples (for example, in can-
cer one can classify by tumor grade or by tumor stage), then the balanced 

 
 

TABLE 1-1 Relative Efficiency of the Balanced Block (BB) Design 
Compared with the Reference (R) Design 
Number of Classes Being Compared Relative Efficiency (BB/R) 
2 2.4 
3 1.8 
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Reference Design 
Array Cy3 Cy5

1 R A1 

2 R A2 

3 R A3 

4 R B1 

5 R B2 

6 R B3 
 
Balanced Block Design 
Array Cy3 Cy5 

1 A1 B1 

2 B2 A2 

3 A3 B3 

4 B4 A4 

5 A5 B5 

6 B6 A6 

  
FIGURE 1-2 Examples of a reference design and a balanced bock de-
sign. There are two classes, A and B. For example, “A1” indicates bio-
logic sample 1 from class A. “R” indicates the reference sample, which is 
subsampled multiple times. Cy3 and Cy5 are dyes (green and red, re-
spectively) used to label the samples. Source: Adapted from Dobbin et 
al. 2003. 
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block design may make some of these alternative comparisons impossi-
ble or inefficient. Another potential drawback is that data from different 
block design experiments cannot be effectively combined together, 
whereas if the same reference sample is used the data from different ex-
periments can be combined for analysis.  

For class discovery experiments in which one is classifying the 
samples, the reference design appears to be the best choice, although it is 
possible that a better design will be found. Block designs are not appro-
priate.  
 
 

DYE BIAS IN DUAL LABEL ARRAYS 
 

Dye bias is the tendency of some genes to fluoresce more brightly 
in one dye than the other. If such bias is not removed in the pre-
processing and normalization of the data, then it has the potential to in-
troduce bias into comparisons of interest. This type of dye bias can be 
called gene-specific dye bias and it has been shown to exist in numerous 
studies under a wide range of normalization and data analysis techniques 
(Dobbin et al. 2005).  

Gene-specific dye bias cancels out of class comparisons in refer-
ence and balanced block designs. It will also not affect cluster analysis in 
reference design experiments if a Euclidean distance metric is used. Dye 
bias can affect comparisons in other types of designs, or comparisons 
with the reference sample in a reference design. 
 
 

POOLING RNA SAMPLES 
 

RNA samples are sometimes pooled prior to labeling and hybridi-
zation in order to either avoid RNA amplification in cases when RNA 
samples are insufficient for the microarray assay, or reduce the cost of 
the experiment by using fewer arrays. When pooling, RNA pools should 
be independent, so that no two pools have a sample in common. 

Table 1-2 shows an example of the tradeoff between the number of 
arrays required and the number of samples required for a class compari-
son experiment when one pools RNA samples. Each row of the table 
represents an experiment which uses a different pooling level, and the 
number of arrays and sample sizes are calculated so that each experiment 
has the same type I and type II error rates.  

As can be seen from the table, pooling may make sense when sam-
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ples are cheap relative to microarrays. If the samples are valuable, then 
pooling will probably not make sense. One does lose information on in-
dividual samples when one pools, so, for example, human samples are 
rarely pooled. But it may be a viable alternative to RNA amplification 
when individual RNA samples are too small. 
 
 

SAMPLE SIZE DETERMINATION 
 

For class comparison studies, sample size formulas are available. In 
these studies, the statistical significance of the differential expression for 
each gene is tested using a test such as a t-test. Sample size methods for 
these univariate tests can be used to estimate the sample size require-
ments for a study. Examples of formulas for single and dual-label arrays, 
and various designs, appear in Dobbin and Simon (2005).  

Sample size guidelines and methodologies for class prediction in 
microarray studies have been suggested (Mukherjeee et al. 2003; Dobbin 
and Simon 2007). Determining sample size for cluster analysis is more 
problematic.  
 
 
TABLE 1-2 Example of the Tradeoff Between Number of Arrays 
Required and Number of Samples Required for Various Pooling Levels  

Number of Samples 
Pooled on Each Array 

Number of Arrays 
Required 

Number of Samples 
Required 

1 25 25 
2 17 34 
3 14 42 
4 13 52 

Source: Adapted from Dobbin and Simon 2005.  
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INTRODUCTION 
 

Microarray technology is a powerful tool able to measure RNA ex-
pression for thousands of genes at once. This technology promises to be 
a useful tool to better understand the role of genetics in biologic re-
sponses to environmental contaminants. Various examples were pre-
sented in the 10th Meeting of the Committee on Emerging Issues and 
Data on Environmental Contaminants. In this extended abstract I give a 
short summary of a study organized to compare the three leading mi-
croarray platforms. I also give recommendations on experimental issues 
and statistical analyses. Many of the recommendations are applicable to 
general problems in technology assessment. More details are available in 
a Nature Methods paper (Irizarry et al. 2005) which includes various fig-
ures and tables referred to in this extended abstract.  
 
 

MOTIVATION 
 

As a statistician working in the Johns Hopkins Medical Institutions 
I give advice to various scientists working with microarrays. Various 
commercial vendors as well as custom made facilities provide many 
alternative platforms for researchers interested in gene-expression data. 
A frequently asked questions among those just getting started with this 
relatively new technology is “which platform performs best?” Various 
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studies have been published comparing competing platforms with mixed 
results: some find agreement (Kane et al. 2000; Hughes et al. 2001; Yuen 
et al. 2002; Barczak et al. 2003; Carter et al. 2003; Wang et al. 2003), 
others do not (Kuo et al. 2002; Kothapalli et al. 2002; Li et al. 2002; Tan 
et al. 2003). Why the disagreement? Two possibilities were that 1) 
different statistical assessments were used and 2) the lab effect was not 
explored. That different statistical assessments can lead to different 
conclusions is clear and we will give an example later. To see how the 
lab effect can result in different conclusions, consider that in all previous 
studies, platform variation was confounded with technician/lab variation. 
In the cases where the same lab created all the microarray data it was 
clear that they had more experience with one of the platforms being 
compared. The lab effect has been shown to be particularly strong. For 
example, in a 1972 paper, W.J. Youden (Youden 1972) pointed out how 
different Physics labs published speeds of light estimates with 
confidence intervals that made the differences between labs statistically 
significant (see Figure 2-1). Notice, that if we do not take the lab effect 
into account this would imply that the speed of light is different in the 
different labs! It is no surprise that similar effects are present in biology 
labs and that it does not only apply to microarray measurements. 

 
 

 
 
FIGURE 2-1 Speed of light estimates with confidence intervals (1900-
1960). Source: Youden 1972. Reprinted with permission; copyright 
1972, Journal Information for Technometrics. 
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Furthermore, in my opinion, previous studies had at least one of 
these problems: (1) precision/accuracy were not properly assessed (that 
is, the sensitivity/specificity trade-off was not considered and in general, 
assessments were based on validation of few genes). (2) There was not 
an a-priori expectation of truth. In general, RTPCR was considered the 
gold standard and measurements from that technology considered the 
“truth.” (3) The effect of preprocessing was not explored. (4) As men-
tioned, the lab effect not explored. 
 
 

OUR STUDY 
 

Together with various labs from District of Columbia/Baltimore 
area, that volunteered their time and materials, I conducted a study for 
comparing microarray technologies. To overcome the problems of previ-
ous studies, we followed methodology that can be summarized by the 
following steps: (1) We included platforms for which results from at 
least two labs were available. (2) To avoid a transportation effect, we 
considered only labs in DC/Baltimore area. Of those we asked, five Af-
fymetrix labs, three two-color cDNA labs, and two two-color oligo labs 
agreed. (3) We send each lab technical replicates of two RNA samples. 
(4) In the samples sent to each lab, we included technical replicates of 
each of the two samples. This permitted us to assess precision. (5) We 
designed the two RNA samples to induce a-priori knowledge of differen-
tial expression of four genes. This permitted us to assess accuracy. (6) 
Finally, to provide more power to the assessment of accuracy we meas-
ured fold-changes for 16 strategically chosen genes. Details are available 
from the Nature Methods publication (Irizarry et al. 2005). 
 
 

STATISTICAL RECOMMENDATIONS—WHAT 
MEASUREMENT? 

 
In our study we evaluated what we consider to be the basic meas-

urement obtained from microarrays: relative expression in the form of 
log ratios. Thus, for each lab we had two replicate measures of relative 
expression: M1 = log(B1/A1) and M2 = log(B2/A2), with A1, A2, B1, B2 
representing the two pairs of technical replicates provided to each lab. 

The first important recommendation is that when comparing and/or 
combining measurements from different platforms one should look at 
relative as opposed to absolute measures of expression. This is because 
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in microarray technology there exists a strong probe or spot effect. The 
Nature Methods publication (Irizarry et al. 2005) describes in some detail 
how this can lead to over-optimistic measures of precision when compar-
ing within platform and over-pessimistic measures of agreement when 
comparing across platforms.  
 
 

USING RELATIVE EXPRESSION INSTEAD OF ABSOLUTE 
EXPRESSION 

 
Most experiments compare expression levels between different 

samples, thus in general this type of measure is readily available. In 
classification problems, it is typical to use distance measures which 
implicitely use relative measures. For example, the most popular 
methods subtract the across sample mean log expression for each gene, 
which produces relative (to the mean) expression measures.  
 
 

PRECISION AND ACCURACY ASSESSMENTS 
 

We believe it is important to assess precision in the context of accu-
racy. A platform that produces results that are perfectly reproducible 
(precise) is of little practical use if it fails to detect a signal (accuracy). 
This concept is particularly important with microarray platforms because 
different pre-processing methodology can lead to differences in precision 
and accuracy. Typically, better precision can be reached by sacrificing 
accuracy and vice-versa (Wu and Irizarry 2004).  
 
 

PRECISION 
 

In our study we used the following simple statistical assessments 
that have very intuitive interpretation in practice. To assess precision we 
looked at the standard deviation (SD) of M1 − M2 across all genes. This 
SD represents (roughly) the typical value of log-fold change when it 
should be 0. Correlation, which is a commonly used measure, does not 
have the same simple interpretation. Furthermore, in a comparison where 
most genes are not differentially expressed the correlation will be cor-
rectly attenuated towards 0 which might lead to the incorrect interpreta-
tion that the measurements are not reproducible. Note that measurement 
error should not correlate, but it should have small variance. 
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ACCURACY 
 

To assess accuracy we computed the slope of M’s regressed against 
nominal log-fold change. This represents (roughly) the expected log-fold 
change when it should be 1. This measure combined with the precision 
assessment gives us a good overall idea of the ability of the technology 
to detect changes among a large number of instances of no change. 
 
 

CAT PLOTS 
 

In practice, we typically screen a small subset of genes that appear 
to be differentially expressed. Therefore, it is more important to assess 
agreement for genes that are likely to pass this screen. To account for 
this, we introduce a new descriptive plot: the correspondence at the top 
(CAT) plot. This plot is useful for comparing two procedures for detect-
ing differentially expressed genes. To create a CAT plot we form a list of 
n candidate genes for each of the two procedures and then form curves 
that show the proportion of genes in common plotted against the list size 
n. These figures can be seen in the Nature Methods publication (Irizarry 
et al. 2005). As an assessment measure, we can give the proportion of 
genes in common in lists of specific sizes, for example 25, 50, and 100. 
 
 

RESULTS 
 

Our results demonstrated that precision is comparable across plat-
forms. With the exception of one lab, all the labs performed similarly, 
and it is clear that the lab effect is stronger than the platform effect. All 
the labs appear to give attenuated log2-fold change estimates, which is 
consistent with previous observations. In general, the Affymetrix labs 
appear to have better accuracy than the two-color platforms, although the 
best signal measure was attained by a two-color oligo lab. While two 
labs (a two-color cDNA lab and a two-color oligo lab) clearly under per-
formed, the differences among the other eight labs do not reach statistical 
significance. Among the best performing labs we found a relatively good 
agreement of about 40% among list sizes of 100 (that is, among these 
labs, there was about 40% agreement on the top 100 genes with the 
greatest fold change in expression). It is not obvious that for variables 
that are highly correlated it is hard to get agreement much higher than 
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40%. Figure 2-2 plots the expected agreement of two bivariate normal 
random variables against their correlation. 
 
 

DISCUSSION 
 

Overall, the Affymetrix platform performed best. However, it is 
important to keep in mind that this platform is typically more expensive 
than the alternatives. We also demonstrated that relatively good agree-
ment is achieved between the Affymetrix labs and the best performing 
two-color labs. These results contradict some previously published pa-
pers that find disagreement across platforms (Kuo et al. 2002; Kothapalli 
et al. 2002; Li et al. 2002; Tan et al. 2003). The conclusions reached by 
these studies are likely due to inappropriate statistical assessments as 
well as the confounding of lab effects. The existence of the sizable lab 
effect was ignored in all previously published comparison studies. This 
permits the possibility that studies using, for example, experienced tech-
nicians may find agreement and studies using less experienced techni-
cians may find disagreement. Figure 2-3 plots the precision assessment 
against experience for the Affymetrix labs. 
 
 

 
 
FIGURE 2-2 Expected agreement of two bivariate normal random vari-
ables against their correlation. 
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FIGURE 2-3 Precision versus years of experience for labs using Affy-
metrix microarrays. Source: Irizarry et al. 2005. Reprinted with permis-
sion; copyright 2005, Nature Methods. 
 
 

Although we found relatively good across platform agreement it is 
quite far from being perfect. In all across-platform comparison, there was 
a small group of genes that had relatively large fold changes for one 
platform but not for the other. We conjecture that some genes are not 
correctly measured, not because the technologies are not performing 
adequately, but because transcript information and annotation can still be 
improved. 

Our findings illustrate that improved quality assessment standards 
are needed. Assessments of precision based on comparisons of technical 
replicates appear to be standard operating procedure among, at least, aca-
demic labs. Precision and accuracy assessments are not informative 
unless performed simultaneously. Figure 2-4 shows observed versus 
nominal log-fold-changes for two labs with similar precision. Labs that 
perform well in terms of accuracy will show points near the diagonal 
line. Notice these two labs had similar precision, but Lab 3 had much 
better accuracy. We hope that our study serves as motivation for the 
creation of such standards. This will be essential for the success of mi-
croarray technology as a general measurement tool. 
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FIGURE 2-4 Observed versus nominal log-fold change for two labs 
(two-color cDNA 2 and two-color cDNA 3) with similar precision. 
Source: Irizarry et al. 2005. Reprinted with permission; copyright 2005, 
Nature Methods. 
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Microarray is a relatively new technology allowing scientists to 
measure the expression level, or mRNA abundance of thousands of 
genes in a single experiment. Combined with other “omics” technolo-
gies, e.g., proteomics and metabonomics, this advance provides a com-
pletely new systems biology approach to investigate biologic problems, 
and makes it possible to study the huge dynamic gene interaction matrix 
in cells. The application of microarray in toxicity studies leads to the 
emergence of a new research area, toxicogenomics. Genomic studies 
help scientists understand the mechanism of gene function and pathway, 
and how a drug may alter a biologic process to treat a disease. Toxicoge-
nomic experiments are conducted to do this with the goal of identifying 
the no-observed-effect level (NOEL) or no-observed-adverse-effect level 
(NOAEL). Since it may take a long time to develop an adverse effect 
while the gene expression change is relatively immediate, toxicogenom-
ics studies have the potential for an early and accurate detection of toxic 
effects. Different technologies have emerged in this research area. In par-
ticular, Affymetrix’s GeneChip has been widely adopted in the drug dis-
covery process in the pharmaceutical industry. Moving from making a 
scientific conjecture of a compound’s toxicity to analyzing gene expres-
sion profiles to concluding the association between the toxicity and gene 
alteration is a complex process. Statistical considerations are vital in each 
step of the process. 

This presentation is focused on the statistical analysis of Affymetrix 
GeneChip. microarray data. The Affymetrix GeneChip technology, sta-
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tistical hypotheses, and statistical analysis methods will be discussed in 
order. Visualization of the data and analysis results will be included. 
Conventional hypothesis testing on such a massive amount of data leads 
to severe multiplicity issues. Proper multiplicity adjustments for P values 
will be discussed to help distill massive amounts of information into use-
ful information for each compound. 

 
 

AFFYMETRIX GENECHIP TECHNOLOGY 
 

On an Affymetrix GeneChip, each gene (probe set) is represented 
by a set (11-20 pairs) of paired short oligonucleotides of 25-base long, 
called perfect match (PM) and mismatch (MM) oligos. PM oligos match 
the gene sequence exactly so after hybridization with labeled sample 
RNA, they reflect the expression signal, MMs have the same sequences 
as PMs except that the middle base is changed to its complementary nu-
cleotide. MMs are designed to capture the non-specific hybridized sig-
nals, or background signals. There are dozens of algorithms to extract a 
robust signal intensity from these 11-20 pairs of PMs and MMs for each 
probeset (Cope et al. 2004). The three most commonly used are MAS 5 
from Affymetrix (Affymetrix 2002), the robust multi-array average 
(RMA) by Irizarry et al. (2003), and the model-based expression index 
(MBEI) by Li and Wong (2001). It is still not settled as to which method 
is the best. The final choice is often up to the researcher’s personal pref-
erence. In this presentation, signals extracted using MAS 5 from Affy-
metrix are statistically analyzed. 
 
 

STATISTICAL HYPOTHESES 
 

Every experiment is designed to answer certain scientific questions. 
It is important that before conducting an experiment, the researchers de-
fine scientific questions and statisticians translate the scientific questions 
into statistical hypotheses and determine appropriate statistical analyses. 
It is also important to make sure that at the end of the experiment, appro-
priate and right amounts of data have been collected for statistical analy-
ses and for answering the scientific questions. Considering the expensive 
price tag of microarray chips and the large amount of time and other re-
sources needed to carry out these experiments, it would be unwise to 
have problematic designs that could not provide answers to the scientific 
questions. In most microarray experiments, the primary goal is to iden-
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tify differentially expressed genes under different treatment conditions. 
We will examine important sources of variation and discuss some ex-
ploratory and inferential analyses. We will provide some examples to 
show how different scientific questions lead to different experimental 
designs and statistical hypotheses. 

Microarray measures the expression abundance of essentially all the 
genes in a genome. With thousands of measurements and relatively few 
subjects (tens, rarely over a hundred), any difference in the conditions of 
the subjects to be tested would cause a large number of genes to show 
expression changes. Therefore, it is very important to understand and 
control different sources of variability in microarray experiments. Typi-
cally there are two sources of random variability: biologic variation and 
technical variation. The biologic variation exists in the tested subjects. 
Sometimes it is possible to reduce the biologic variation, e.g., by using 
more homogenous individuals. Technical variation lies in the sample 
preparation and the microarray technology itself, including tissue collect-
ing, RNA isolation, labeling, chip hybridization, etc. As the microarray 
technology matures, the chip-to-chip variation decreases. Still, large 
variation is observed during the sample preparation. For example, differ-
ent labeling kits could lead to a big difference in the expression signals. 
Even with the same labeling kit, samples processed on different days 
may yield very different signals. 

A related issue is the pooling of RNA samples from animals. Dur-
ing the early discovery phase when resources are more limited, pooling 
of the samples from animals in the same group may be necessary. An 
example of this is for establishing a surrogate assay to screen perox-
isomal proliferation activated receptors (PPAR). While pooling samples 
allows researchers to use fewer chips, it loses the ability to measure indi-
vidual expression and provide the estimation of biologic variation for 
proper statistical tests. It may be advantageous if samples are very cheap 
and easy to obtain (like in cell cultures), and a partial pooling is con-
ducted in which samples from the same treatment are pooled to form 
multiple independent pools; thus the biologic variation can still be prop-
erly estimated. In general, for follow-up evaluation of observed toxicity, 
RNA samples from animals are not pooled. For example, upon observing 
heart weight changes or skeletal muscle necrosis in rats, microarray 
technology is applied to help find biomarkers and one genechip is used 
for each animal. 

Another important issue is to avoid potential bias by randomization 
and/or proper blocking. For example, the processing batch effect may be 
significant. Two samples can appear very different if processed on two 
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different days, especially if it involves a change of reagents. It has been 
consistently shown that samples, even without any treatment, are differ-
ent if the samples are collected at different times. This difference can be 
well detected by microarray technology. 
 
 

EXPLORATORY DATA ANALYSIS BY VISUALIZATION 
 

After a microarray experiment is done and data are generated, it is 
important to explore the data using some basic analytical and graphical 
tools to detect obvious patterns, potential outliers, errors during the ex-
periments, etc. The following analysis and visualization approaches serve 
these purposes well: 

 
(1) Side-by-side box plot of log signals of each chip. It is helpful to 

check the chip signal distribution and to see if normalization has 
been applied.  

(2) Pairwise chip signal correlation. A very low correlation coeffi-
cient (CC) of one chip with other chips is an indication of a qual-
ity problem of this chip. High average CC within a treatment 
group and low average CC between treatment groups indicate a 
large treatment effect in an experiment. However, the variances 
of different genes are different. In the Affymetrix platform, a 
large signal intensity corresponds to a large variance on a raw 
scale, and thus has a high influence on the CC calculation. On a 
log scale, a large signal intensity corresponds to a small variance. 
The cube root transformation could be applied to stabilize the 
variance. 

(3) MVA plot of a pair of chips or average signals of treatment 
groups. This is a scatter plot of average log differences of a pair 
of chips vs. the average mean of their log signals. This would 
show clearly the dependence of the variance on signal intensity. 
It is also helpful to see if the data scatter around 0, a good ap-
proach to check if extra normalization is needed. 

(4) Principal components analysis (PCA). PCA helps reduce the data 
dimension and reveal the general pattern in data. A clear depar-
ture of a chip from other chips with the same treatment on a PCA 
plot indicates the existence of outliers. PCA plots may also re-
veal expression patterns that are due to unrealized blocking ef-
fects, arising from the sample preparation or array processing, 
the bias to eliminate during analysis. 
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Statistical Analysis and Visualization of Results 
 

Although in the beginning of microarray technology, people 
assumed that a single model for expression could be applied to all genes 
on an array, it is understood now that the expression of each gene is 
different and should be modeled on a gene-by-gene basis. The analysis of 
microarray data depends on the questions we want to answer and the 
experimental design. To identify differentially expressed genes, in a two-
group comparison, a simple t-test is usually applied. Considering the 
high variability when expression signal is small, it has been proposed to 
add an inflation factor to stabilize the variance (Tusher et al. 2001), or 
use a regularized t-test to minimize the dependence of variance on signal 
intensity (Baldi and Long, 2001). When the experiment has more than 
two treatment groups, an ANOVA t-test may be applied to better 
estimate the variability and lead to more powerful tests. In a more 
complicated situation, e.g., with technical replicates, or with repeated 
measurements, a mixed effects model may be used (Chu et al. 2002). 

Sometimes in an experiment, we have multiple time points or mul-
tiple doses, and the interest is to investigate the temporal expression pat-
tern or dose response. We may fit the data to a linear regression model to 
measure the general expression trend. We will present some examples to 
show different analysis approaches for different data. In general, when 
the test is applied to each gene, the statistical approach is not different 
from what has been used in classic biologic research. However, after the 
initial statistical test, since it is “fishing” significant gene expression 
changes out of thousands of genes, adjustments should be made to the 
resulting P values to control the false positive rate. 

In a typical microarray experiment, usually there are hundreds or 
even thousands of genes being identified as significant. Some visualiza-
tion tools to show the general patterns of analysis results are listed here: 

 
(1) MVA plot with highlighted significant genes. As described 

above, this plot is helpful to show the signal intensities of sig-
nificant genes, and to check if the data are properly normalized. 

(2) Volcano plot. This is the plot of P values or adjusted P values 
with fold changes, showing if the significant genes are equally 
distributed over up- or down-regulation. 

(3) Clustering of genes. There are different ways of clustering over 
different distance matrices. The general purpose is to group 
genes with similar expression patterns together. Physiological 
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data if available can be included in the clustering to identify 
genes closely correlated with the phenotypes. 

(4) Heat map (see Figure 3-1). When there are a large number of 
genes that are significant, after clustering, we may rescale the 
gene expression data within each gene and use a heat map to 
show the expression patterns. 

(5) For individual genes of interest, the expression signals of each 
sample may be plotted, overlaid with any physiological data of 
interest if available. This helps researchers decide for a particular 
gene if outliers (or non-responders) exist, if modeling ap-
proaches are appropriate, etc. 

 
 

 
 

FIGURE 3-1 Heat map and gene cluster with physiological data. The 
cluster shows only the highlighted portion of the heat map. 

 
 

MULTIPLICITY ADJUSTMENT 
 

The power of microarray to monitor the expression of thousands of 
genes in one experiment enables the researchers to investigate the gene 
function systematically at the genome level. However, testing thousands 
of genes in a single experiment introduces a high rate of false positives 
when no efforts are taken to control the false positive rate. For example, 
the new human chip U133plus2 contains 54,000 probesets. If there is no 
treatment effect for a comparison so that all the P values are from a uni-
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form distribution (0, 1), then there would be about 2,700 significant 
probesets (P < 0.05). 

Bonferroni is one approach to control the false positive rate by con-
trolling the family-wise error rate (FWER). Due to its conservativeness, 
when applied in microarray data analysis, it leads to too few rejections, 
i.e., the test power is too low to detect real useful information about gene 
expression changes. Some of the most recent progress in addressing mul-
tiple testing problems is the introduction of false discovery rate (FDR) by 
Benjamini and Hochberg (1995). FDR is defined as the expected rate of 
erroneous rejection of hypotheses among total rejected hypotheses. Let 
M be the total hypotheses being tested, R be the number of rejected null 
hypotheses, and V the number of falsely rejected true null hypotheses, 
then 

 

⎪⎩

⎪
⎨
⎧

=

>
=

0 if  0

0 if  )(
FDR

R

R
R
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With this setting, the conventional per comparison error rate (PCER) and 
FWER are  
 

)(PCER
M
VE=  and )1(FWER ≥= VP , respectively. 

 
Instead of controlling the FWER, procedures controlling FDR con-

trol the error rate of false rejections in the rejected hypotheses. Under 
complete null hypotheses (i.e., all the null hypotheses are true), FDR and 
FWER are the same. When some of the null hypotheses are not true, 
FDR is smaller than FWER, thus FDR-controlling procedures are more 
powerful than FWER-controlling procedures (but note they control two 
error rates). In microarray experiments, the researchers try to identify 
genes showing differential expressions across treatment groups. They are 
more interested in how many genes identified in a microarray experiment 
will fail to be confirmed in the follow-up studies, i.e., the false-positive 
rate among the “discoveries.” This provides a perfect setting to apply 
FDR-controlling methods. 

When addressing the multiplicity issue and deciding what gene ex-
pression changes are significant using FDR or other approaches, the re-
searchers assume that all gene expressions are independent and equally 
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important. These assumptions are typically not true. A list of genes of 
interest may be available before the microarray experiment is conducted. 
What FDR cutoff values to use to pick follow-up genes and how to apply 
the FDR adjustment will be discussed. 
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INTRODUCTION 
 

In clinical settings, accurate diagnosis and prognosis relies mainly 
on histopathology, cytomorphology, or immunophenotyping. Unfortu-
nately, some diseases are hard to classify by current clinical techniques. 
To overcome the inherent limitations of traditional methods of diagnosis/ 
prognosis, much attention has been recently placed on use of molecular 
profiles (e.g., gene expression patterns) derived from omics experiments 
for clinical application, such as DNA microarray and surface-enhanced 
laser desorption/ionization time-of-flight mass spectrometry (SELDI-
TOF MS). It has been expected that recent technological advances in the 
fields of genomics, proteomics and other omics will offer a unique op-
portunity for not only improving diagnostic classification, treatment se-
lection and prognostic assessment but also for understanding the molecu-
lar basis of health and disease. Classification methods, because of their 
power to unravel patterns in biologically complex data, have become one 
of the most important bioinformatics approaches investigated for use 
with omics data in clinical application. A number of classification meth-
ods have been applied to microarray gene expression data as well as 
other omics data. This presentation discusses the issues and challenges 
associated with application of classification using supervised learning 
methods on omics data applied to clinic. Specifically, a novel tree-based 
consensus method, decision forest (DF), will be discussed, which has 
been successfully used to develop diagnostic classifiers based on gene 
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expression patterns, SELDI-TOF MS data, and SNPs (single nucleotide 
polymorphisms) profiles in a case-control study. While the general pro-
cedure to validate a classifier will be discussed, the emphasis is manly 
placed on assessing prediction confidence and chance correlation, two 
critical aspects that, unfortunately, have not been extensively discussed 
in the field. 
 
 

ISSUES, CHALLENGES, AND RECOMMENDATIONS 
 

Developing classifiers from omics data is difficult because (1) there 
are many more predictor variables than the sample size (the number of 
subjects); (2) the sample size is often small with a skewed patient/healthy 
individual distribution; and (3) the signal/noise ratio in both clinical out-
comes (dependent variables) and omics profiles (independent variables) 
are low.  

Most molecular classification approaches reported in the literature 
have focused on developing and validating a single classifier. Although 
many successes have been demonstrated, the single classifier approach is 
inherently susceptible to the data quality and size; as the sample size 
and/or the signal/noise ratio of a data set decrease, the quality of a single 
classifier declines rapidly. Another aspect that is unique, or at least very 
significant, to molecular classification is that redundant information is 
normally present in an omics profile. The nature of the data reflects bio-
logic phenomena where multiple molecular expression patterns are often 
equally important as biomarkers in diagnosis/prognosis. Unfortunately, a 
single classifier tends to optimize a single pattern for classification. 

Consensus modeling, that combines multiple classifiers to reach a 
consensus conclusion, is theoretically less prone to data quality and size 
and more robust to handle an unbalanced data set. Most importantly, 
consensus modeling makes full use of the redundant information pre-
sented in omics data to explore all possible biomarkers. Thus, consensus 
modeling offers a unique opportunity in molecular classification.  

The critical and implicit assumption in consensus modeling is that 
multiple classifiers will effectively identify and encode more aspects of 
the variable relationships than will a single classifier. The corollaries are 
that combining several identical classifiers produces no gain, and bene-
fits of combining can only be realized if individual classifiers give differ-
ent results. In other words, benefits of combining are only expected if 
separate classifiers encode differing aspects of disease-omics pattern as-
sociations. More recently, we also found that the information gained 
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from combining classifiers is valuable in assessing prediction confi-
dence, which is usually difficult to obtain from a single classifier.  
 
 
DECISION FOREST—A ROBUST CONSENSUS METHOD FOR 

DIAGNOSTIC CLASSIFICATION 
 

Most consensus modeling relies on resampling approaches that use 
only a portion of the subjects for constructing the individual classifiers. 
Since we normally have a relatively small sample size, this approach will 
weaken individual classifiers’ predictive accuracy, which follows the 
reduction of the improvement in a combining system gained by the re-
sampling approach.  

A preferable consensus approach is to develop multiple classifiers 
using different sets of omics patterns. This approach takes full advantage 
of the available sample size as well as the redundant information pre-
sented in the data. Accordingly, we have developed the robust DF 
method (see Figure 4-1). 

DF emphasizes the combining of heterogeneous yet comparable 
trees in order to better capture the association of omics profiles and dis-
ease outcomes. The heterogeneity requirement assures that each tree 
uniquely contributes to the combined prediction; whereas the quality 
comparability requirement assures that each tree equally contributes to 
the combined prediction. Since a certain degree of noise is always pre-
sent in biologic data, optimizing a tree inherently risks over fitting the 
noise. DF attempts to minimize over fitting by maximizing the difference 
among individual trees. 

There are three benefits associated with DF compared with other 
similar consensus modeling methods: (1) since the difference in individ-
ual trees is maximized, the best ensemble is usually realized by combin-
ing only a few trees (i.e., four or five), which consequentially reduces 
computational expense; (2) since DF is entirely reproducible, the disease-
patterns associations are constant in their interpretability for biologic 
relevance; and (3) since all subjects are included in individual tree devel-
opment, the information in the original data set is fully appreciated in the 
combining process. 

For example, we develop a DF classifier on a proteomic data set to 
distinguish the prostate patients from healthy individuals. The data set 
consists of 326 samples, of which 167 samples are from the prostate can-
cer patients and the noncancer group contains 159 samples including 
both benign prostatic hyperplasia patients and healthy individuals. The 
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FIGURE 4-1 Overview of decision forest (DF). The individual tree clas-
sifiers are developed sequentially, where each tree uses a distinct set of 
variables. Classification (i.e., prediction) of an unknown subject is based 
on the mean results of all trees. Source: Tong et al. 2006. Reprinted with 
permission; copyright 2006, Toxicology Mechanisms and Methods. 
 
 
classifier contains four trees, each of them having the comparable mis-
classifications ranging from 12 to 14 (3.7-4.3% error rate). The misclas-
sification is significantly reduced as the number of trees to be combined 
increases to form a DF classifier (Figure 4-2). The four-tree DF classifier 
gave 100% classification accuracy. 

 
 
VALIDATION 1:  CROSS-VALIDATION VERSUS  

EXTERNAL VALIDATION 
 

A classifier's predictive capability is commonly demonstrated using 
either external validation or cross-validation procedures. Although both 
procedures share many common features in principle, they are different in 
both ability and efficiency in assessing a classifier’s overall prediction accu-
racy, applicability domain, and chance correlation during implementation 
and execution. 
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FIGURE 4-2 Plot of misclassifications versus the number of tree classi-
fiers to be combined in DF. Source:  Tong et al. 2004. 
 
 

When sufficient subjects are available, a classifier should be vali-
dated by predicting subjects not used in the training set, but whose diag-
nostic outcomes are known (the test set). This external validation method 
lacks validity unless the test set is sufficiently large. Using a small num-
ber of subjects is inadequate for validation and also possibly wastes valu-
able data that otherwise could improve the overall quality of a classifier. 
Unfortunately, there is no consensus on how many subjects should be set 
aside to provide a valid validation.  

A common practice for defining a test set in external validation is to 
randomly select a portion of subjects from an original population. From 
this perspective, cross-validation provides a similar validation for a given 
and fixed set of subjects. The 10-fold cross-validation procedure is com-
monly used to assess the predictive capability of a classifier. By comparing 
with external validation, cross-validation could provide a systematic 
measurement of a classifier’s performance without the loss of subjects 
set aside for testing.  

It is necessary to point out that the cross-validation results vary for 
each run due to random partitioning of the data set, and thus we recom-
mended repeating the cross-validation process many times (complete or 
extensive cross-validation). The average result of the multiple cross-
validation runs provides an unbiased assessment of a classifier’s predic-
tivity. 
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It is worthwhile to mention that classifier development and variable 
selection are integral in DF. Thus, DF avoids the selection bias during 
cross-validation that thereby provides a realistic assessment of the pre-
dictivity of a DF classifier. It is our experience that, unless the sample 
size is fairly large, given a constant set of subjects (a fixed data set with 
limited size), the cross-validation is more powerful for DF in measuring 
a classifier’s performance than external validation with respect to assess-
ing overall prediction accuracy, prediction confidence and chance corre-
lation. 
 
 

VALIDATION 2:  ASSESSING PREDICTION CONFIDENCE 
 

A molecular classifier is a product of a mathematic correlation be-
tween dependent and independent variables. The classifier’s ability to 
predict an unknown sample is directly dependent on the nature of the train-
ing set. In other words, predictive accuracy for different subjects varies ac-
cording to how well the training set represents the given samples. Thus, the 
concept of “prediction confidence” is viewed for measures of confidence in 
each prediction when the overall quality of a classifier is acceptable. It is 
critical to be able to estimate the degree of confidence for each prediction. 
The ability to quantify confidence greatly enhances the utility of any di-
agnostic classifier (to determine how best to apply the classifier). 

External validation generally provides only overall quality assess-
ment of a classifier with no indication of the confidence in individual 
prediction. In other words, external validation is of little value for assess-
ing the prediction confidence which, in turn, can be readily available 
from cross-validation. In DF, the information derived from many runs of 
10-fold cross-validation permits assessment of the prediction confidence. 

Figure 4-3 gives an example illustrating how prediction accuracy 
and prediction confidence are related in DF. Prediction accuracy is plot-
ted versus prediction confidence for both DF and decision tree (DT) for a 
problem using 2,000 runs of 10-fold cross-validation for a molecular 
classifier to predict prostate cancer from SELDI-TOF MS data (the same 
data set shown in Figure 4-2). A strong trend of increasing accuracy with 
increasing confidence is readily apparent for both DF and DT, as is the 
substantially higher accuracy for DF across almost the entire range of 
confidence levels. If we define high confidence predictions as those with 
confidence level >0.4 (Figure 4-3) and low confidence predictions as 
those with confidence level <0.4, we found that the high confidence pre-
diction accuracy is ~99%, ~20% higher than the low confidence predic- 
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FIGURE 4-3 Prediction accuracy versus confidence level for a DF clas-
sifier of a proteomics data based on 2,000 runs of 10-fold cross-
validation. The confidence level is defined as |Pi -0.5|/0.5, where Pi is 
the probability value for sample i. Source: Tong et al. 2004. 
 
 
tion accuracy (~79%). The results demonstrate that the DF classifier 
gives a better assessment of prediction confidence than does the single 
tree classifier. 
 
 

VALIDATION 3:  DETERMINING CHANCE CORRELATION 
 

Testing whether a classifier is, in fact, a chance correlation is highly 
recommended. Testing becomes increasingly imperative for smaller train-
ing sets with increasing numbers of independent variables, noise in biologic 
data, and unbalanced distribution of patient versus healthy individuals. All 
of these conditions increase the omnipresent risk of obtaining a chance cor-
relation lacking predictive value. 

Chance correlation is difficult to assess using external validation and 
is best obtained from cross-validation. To assess a degree of chance correla-
tion for a DF classifier, we normally generate many pseudo data sets (e.g., 
2,000 pseudo data sets) first using a randomization test, where the subject 
classification is randomly scrambled. Next, we apply a 10-fold cross-
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validation on each of pseudo data sets to generate a null distribution, i.e., 
the distribution of prediction accuracy from all classifiers developed on all 
pseudo data sets. The null distribution can then be compared with the dis-
tribution of multiple 10-fold cross-validation results derived from the real 
data set. The degree of chance correlation in prediction can be estimated 
from the overlap of the two distributions.  

Figure 4-4 shows the results of a test for chance correlation of a DF 
classifier to predict the prostate cancer. The distribution of prediction ac-
curacy of the real data set centers around 95% while the pseudo data sets 
are near 50%. The real data set has a much narrower distribution com-
pared to the pseudo data sets, indicating that the classifiers generated 
from the cross-validation procedure for the real data set give consistent 
and high prediction accuracy. In contrast, as expected, the prediction re-
sults for the pseudo data sets varied widely, implying a large variability 
of signal/noise ratio across these pseudo classifiers. Importantly, there is 
no overlap between two distributions, indicating that a statistically and 
biologically relevant DF classifier can be obtained using the real data set. 
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FIGURE 4-4 Prediction distribution in 2,000 runs of 10-fold cross-
validation process: (A) real data set and (B) 2,000 pseudo data set gener-
ated from a randomization test. Source: Tong et al. 2004. 
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CONCLUSIONS 
 

Diagnostic classification based on omics data presents challenges 
for most conventional supervised learning methods. Validation is a vital 
step towards the practical use of diagnostic classifiers. A classifier 
should be validated from three perspectives of assessment: (1) overall 
quality (prediction accuracy, sensitivity, and specificity); (2) prediction 
confidence; and (3) chance correlation. These can be more readily as-
sessed in a consensus method, such as DF, than in other conventional 
methods using cross-validation. For DF, we have found that 

 
 Combining multiple valid tree classifiers that use unique sets of vari-

ables into a single decision function produces a higher quality classi-
fier than individual trees. 

 The prediction confidence can be readily calculated. 
 Since the feature selection and classifier development are integrated 

in DF, cross-validation avoids selection bias and become a more use-
ful means than external validation in assessing a DF classifier’s ro-
bustness and quality. 

 Carrying out many runs of cross-validation is computationally inex-
pensive, which provides an unbiased assessment of a classifier’s pre-
dictive capability, prediction confidence and chance correlation and 
facilitates identification of potential biomarkers.  
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in animal models with the goal of identifying mechanisms underlying a 
range of human diseases. They have also used microarrays to look for 
diagnostic and prognostic expression fingerprints in human breast and 
colon cancer, and he has been active in using plant models to develop 
methods for integrating functional genomics and metabolomics ap-
proaches. Dr. Quackenbush has a Ph.D. in theoretical particle physics 
from the University of California, Los Angeles. 
 
Kenneth S. Ramos (Co-Chair) is professor and chair of the Department 
of Biochemistry and Molecular Biology at the University of Louisville 
Health Sciences Center. He also serves as director of the Center for Ge-
netics and Molecular Medicine. His research focuses on the study of mo-
lecular mechanisms of environmental disease and redox-regulated tran-
scriptional control. He is the editor of the NIEHS journal Environmental 
Health Perspectives: Toxicogenomics. Dr. Ramos has served on numer-
ous NRC committees including the Committee on Emerging Issues and 
Data on Environmental Contaminants, Committee for a Review of Evi-
dence Regarding Link between Exposure to Agent Orange and Diabetes, 
Committee to Review the Health Effects in Vietnam Veterans of Expo-
sure to Herbicides: Second Biennial Update, HHMI Predoctoral Fellow-
ships Panel on Neurosciences and Physiology, and Committee to Review 
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the Health Effects in Vietnam Veterans of Exposure to Herbicides: First 
Biennial Update. He received a Ph.D. in biochemical pharmacology and 
toxicology from the University of Texas at Austin.  
 
Cynthia A. Afshari is the associate director of the Toxicology Depart-
ment at Amgen, Inc. Her expertise is in the areas of molecular toxicol-
ogy, functional genomics/toxicogenomics, in vitro models, and carcino-
genesis. At Amgen she leads the Investigative and In Vitro Screening 
Toxicology groups and conducts research in new predictive toxicity as-
says. She is also responsible for guiding preclinical safety assessment 
work for several therapeutic project teams at Amgen. Previously, she was 
an adjunct professor of toxicology at the University of North Carolina, 
Chapel Hill, and was the director of basic research applications at the 
NIEHS Microarray Center for 4 years. At NIEHS she headed an interdis-
ciplinary group of biologists, engineers, and computer scientists investi-
gating applications of new genomics technologies to mechanistic toxi-
cology. Dr. Afshari serves as the chair of the Steering Committee of the 
Subcommittee on Application of Genomics and Proteomics to Mecha-
nism-based Risk Assessment organized by the Health and Environmental 
Science Institute (HESI) of the International Life Sciences Institute 
(ILSI) and was chair of the nephrotoxicity and database working groups 
of the same ILSI-HESI subcommittee for 2 years. She is also a member 
of the Pharmaceutical Research and Manufacturers of America (PhRMA) 
Genomics Subcommittee and is an associate editor of Toxicologic Pa-
thology, Toxicological Sciences, and a reviewing editor for Environ-
mental Health Perspectives. She earned her Ph.D. in toxicology from the 
University of North Carolina, Chapel Hill, and is a board-certified toxi-
cologist.  
 
Linda E. Greer is senior scientist for the Natural Resources Defense 
Council (NRDC) and the director of its health program. She received a 
Ph.D. in environmental toxicology from the University of Maryland. Dr. 
Greer’s primary focus concerns toxic chemical pollution regulatory is-
sues and risk assessment. She is currently focusing particularly on mer-
cury pollution. Dr. Greer has served on numerous NRC committees, in-
cluding the Committee on Industrial Competitiveness and Environmental 
Protection, the Committee on Ground Water Cleanup Alternatives, and 
the Committee on Hazardous Wastes in Highway Rights-of-Way. Dr. 
Greer also was a member of the NRC’s Board on Life Sciences until 
2004. 
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Casimir A. Kulikowski is Board of Governors Professor of Computer 
Science at Rutgers University. He earned a Ph.D. in electrical engineer-
ing from the University of Hawaii. His research interests include bioin-
formatics, medical informatics, and artificial intelligence. In bioinformat-
ics, he is working on pattern recognition and clustering methods for ge-
nomics and proteomics, and consensus classification methods for com-
parative genomic analysis and annotation. Dr. Kulikowski is also work-
ing on models for clinical guidelines, on methods of medical decision 
support, biomedical imaging, and predictive data mining. He has served 
on the NRC Committee to Address “Information Infrastructure for 
Health and Health Care” and the Committee to Review the Social Secu-
rity Administration’s System Modernization and Strategic Plan. Dr. Ku-
likowski was elected to the Institute of Medicine in 1988.  
 
George Orphanides is head of investigative toxicology and Stage 1 
toxicology at Syngenta in the United Kingdom. Previously he has held 
roles as head of receptor biology and genomics at Syngenta and group 
leader for toxicogenomics at AstraZeneca. His research interests in the 
area of toxicogenomics include gene expression profiling, proteomics, 
mechanisms of gene regulation, transcription factors, nuclear receptors, 
chromatin dynamics, estrogenic compounds, and bioinformatics. He cur-
rently serves on several committees, including vice-chair of the ILSI-
HESI Committee on the Application of Genomics in Risk Assessment; 
the ECVAM (European Centre for the Validation of Alternative Test 
Methods) Committee on the Validation of Toxicogenomics-Based Alter-
native Methods; and the IPCS (International Programme on Chemical 
Safety) Committee on Toxicogenomics and the Risk Assessment of 
Chemicals in the Protection of Human Health, where he is co-chair of the 
Subcommittee on Human Susceptibility and Exposure. He currently 
serves on the editorial board of the journal Biomarkers. Dr. Orphanides 
received his Ph.D. in biochemistry from the University of Leicester, 
United Kingdom. 
 
Lawrence M. Sung holds the appointment of law school professor and 
director of the Intellectual Property Law Program at the University of 
Maryland Law School. He is also a partner with the Washington, DC 
intellectual property law firm of Schwartz, Sung & Webster. His area of 
expertise is in patent and technology transfer issues concerning the bio-
technology, pharmaceutical and medical device industries. He has previ-
ously taught at the law schools of George Washington University, 
American University, Lewis & Clark College, and Seattle University. 
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Following a judicial clerkship at the U.S. Court of Appeals for the Fed-
eral Circuit, Dr. Sung was in private practice specializing in biotechnol-
ogy patent litigation with several international law firms. He received a 
Ph.D. in microbiology from the U.S. Department of Defense, Uniformed 
Services University and a J.D. from American University, Washington 
College of Law. In addition to numerous articles, Dr. Sung is the author 
of two books: Patent Law Handbook and Patent Infringement Remedies. 
 
Russell D. Wolfinger is director of scientific discovery and genomics at 
SAS Institute, Inc, one of the top 10 software companies in the world.  
He earned a Ph.D. in statistics from North Carolina State in 1989 and has 
been at SAS ever since. His first 10 years were devoted to developing 
statistical procedures in the areas of linear and nonlinear mixed models, 
multiple testing, and density estimation.  In 2000, he started the Scien-
tific Discovery department at SAS and since then has been leading a 
team in research and development of software solutions in the areas of 
genetics, transcriptomics, and proteomics/metabalomics. Dr. Wolfinger 
is an adjunct faculty member at North Carolina State University, Univer-
sity of North Carolina at Chapel Hill, and University of Missouri. 
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APPENDIX B 
 

VALIDATION OF TOXICOGENOMIC 
TECHNOLOGIES: A FOCUS ON CHEMICAL 

CLASSIFICATION STRATEGIES 
 
 
 

WORKSHOP AGENDA 
 
Thursday, July 7, 2005 
 
8:30 am Introduction (Kenneth Ramos, University of Louisville) 
   
8:45 am Description of Workshop Concept and Goals (John 

Quackenbush, Harvard University) 
   
PART 1: Current Validation Strategies and Associated Issues 
   
9:00 am Experimental Design of DNA Microarray Studies 

Speaker: Kevin Dobbin, National Cancer Institute 
 
9:30 am Speaker: Rafael Irizarry, Johns Hopkins University 
   
10:00 am BREAK 
   
10:20 am Statistical Analysis of Toxicogenomic Microarray Data: 

Hypotheses, Analysis Methods, and Multiplicity Issues 
Speaker: Wherly Hoffman, Eli Lilly and Company 

   
10:50 am Diagnostic Classifier—Gaining Confidence Through 

Validation 
Weida Tong, FDA, National Center for Toxicological 
Research 
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11:20 am Toxicogenomics: ICCVAM Fundamentals for Validation 
and Regulatory Acceptance 
Leonard Schechtmann, The Interagency Coordinating 
Committee on the Validation of Alternative Methods 
(ICCVAM); FDA, National Center for Toxicological Re-
search 

   
11:50 am Questions and Discussion 
   
12:10 pm  LUNCH 
   
PART 2: Case Studies—Classification Studies and the Validation Ap-
proaches  
[Presenters to provide an overview of the study emphasizing the valida-
tion strategies employed in this research] 
   
1:10 pm Presenter: Hisham Hamadeh, Amgen 

Hamadeh HK. Bushel PR. Jayadev S. Martin K. DiSorbo 
O. Sieber S. Bennett L. Tennant R. Stoll R. Barrett JC. 
Blanchard K. Paules RS. Afshari CA. 2002. Gene expres-
sion analysis reveals chemical-specific profiles. Toxico-
logical Sciences. 67(2):219-231. 

   
1:40 pm Presenter: Kyle Kolaja, Iconix Pharmaceuticals 

Kramer JA. Curtiss SW. Kolaja KL. Alden CL. Blomme 
EA. Curtiss WC. Davila JC. Jackson CJ. Bunch RT. 
2004. Acute molecular markers of rodent hepatic car-
cinogenesis identified by transcription profiling. Chemi-
cal Research in Toxicology 17(4):463-470. 

   
2:10 pm BREAK 
   
2:25 pm Presenter: Guido Steiner, Roche 

Steiner G. Suter L. Boess F. Gasser R. de Vera MC. Al-
bertini S. Ruepp S. 2004. Discriminating different classes 
of toxicants by transcript profiling. Environmental Health 
Perspectives 112(12):1236-1248.  

   
2:55 pm Roundtable discussion (Moderator: John Quackenbush, 

Harvard University) 
Discuss the strengths and limitations of the current vali-
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dation approaches and methods to strengthen these ap-
proaches. 

   
3:55 pm Summary Statements and Conclusions (Kenneth Ramos, 

University of Louisville) 
Summary of ideas and themes from the presentations, 
case studies, and discussion. 

   
4:30 pm ADJOURN 
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APPENDIX C 
 

FEDERAL LIAISON GROUP FOR THE NRC 
COMMITTEE ON EMERGING ISSUES AND 

DATA ON ENVIRONMENTAL 
CONTAMINANTS 

 
 
 
Samuel Wilson, M.D., Chair 
Deputy Director 
National Institute of Environmental 

Health Sciences 
Research Triangle Park, NC  
 
William T. Allaben, Ph.D. 
Associate Director for Scientific 

Coordination 
FDA National Toxicology Program 

Liaison 
National Center for Toxicological 

Research 
U.S. Food and Drug Administration 
Jefferson, AR   
 
Nancy B. Beck, Ph.D., D.A.B.T. 
Toxicologist/Risk Assessor 
Office of Information and Regula-

tory Affairs 
Office of Management and Budget 
Washington, DC 
 
David A. Belluck, Ph.D. 
Senior Transportation Toxicologist 
FHWA/USDOT 
Washington, DC 
 
 

David Brown, M.P.H. 
Staff Assistant to the Director 
National Institute of Environmental 

Health Sciences 
Research Triangle Park, NC 
 
Richard A. Canady, Ph.D. 
Office of the Commissioner 
Food and Drug Administration 
Rockville, MD 
 
Daniel A. Casciano, Ph.D. 
Director 
National Center for Toxicological 

Research 
Food and Drug Administration 
Jefferson, AR 
 
Christopher De Rosa, Ph.D. 
Director, Division of Toxicology 
Agency for Toxic Substances and 

Disease Registry 
Atlanta, GA  
 
John Doll, Ph.D. 
Director  
United States Patent and Trade-

mark Office 
Arlington, VA 
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Amanda Edens, Ph.D. 
Director, Office of Chemical Haz-

ards-Metals 
Directorate of Standards and Guid-

ance 
OSHA/DOL 
Washington, DC  
 
William Farland, Ph.D. 
Acting Deputy Assistant Adminis-

trator for Science 
U.S. EPA 
Office of Research and Develop-

ment 
Washington, DC  
 
Kevin Geiss, Ph.D. 
Office of Science and Technology 

Policy 
Executive Office of the President 
Washington, DC 
 
M. Olivia Harris, M.A., A.B.D. 
Senior Environmental Health Sci-

entist 
Office of Science 
National Center for Environmental 

Health 
Agency for Toxic Substances and 

Disease Registry 
Atlanta, GA 
 
Robert Kavlock, Ph.D. 
Office of Research and Develop-

ment 
U.S. Environmental Protection 

Agency 
Research Triangle Park, NC   
 
Don Marlowe, Ph.D. 
Agency Standards Coordinator 
Office of the Commissioner/OSHC 
Food and Drug Administration 
Rockville, MD   
 

Albert E. Munson, Ph.D.  
Director, Health Effects Laboratory 

Division  
National Institute for Occupational 

Safety and Health 
Morgantown, WV  
 
Lawrence Reiter, Ph.D. 
Director 
National Exposure Research Labo-

ratory 
U.S. EPA  
Research Triangle Park, NC  
 
Carl M. Schroeder, Ph.D. 
U.S. Department of Agriculture 
Food Safety & Inspection Service 
Office of Public Health and Sci-

ence 
Washington, DC 
 
Paul Schulte, Ph.D. 
Director, Education and Informa-

tion Division 
National Institute for Occupational 

Safety and Health 
Robert A. Taft Laboratories 
Cincinnati, OH  
 
Karen K. Steinberg, Ph.D. 
Chief, Molecular Biology Branch 
National Center for Environmental 

Health 
Centers for Disease Control and 

Prevention 
Atlanta, GA 
 
Hal Zenick, Ph.D. 
Associate Director for Health 
National Health and Environmental 

Effects Research Laboratory 
U.S. Environmental Protection 

Agency 
Research Triangle Park, NC 
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