
AUTHORS

DETAILS

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press.
(Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences.

Copyright © National Academy of Sciences. All rights reserved.

THE NATIONAL ACADEMIES PRESS

Visit the National Academies Press at NAP.edu and login or register to get:

– Access to free PDF downloads of thousands of scientific reports

– 10% off the price of print titles

– Email or social media notifications of new titles related to your interests

– Special offers and discounts

BUY THIS BOOK

FIND RELATED TITLES

This PDF is available at SHAREhttp://nap.edu/12840

Report of a Workshop on the Scope and Nature of
Computational Thinking

114 pages | 6 x 9 | PAPERBACK

ISBN 978-0-309-14957-0 | DOI 10.17226/12840

Committee for the Workshops on Computational Thinking; Computer Science and

Telecommunications Board; Division on Engineering and Physical Sciences;

National Research Council

http://cart.nap.edu/cart/cart.cgi?list=fs&action=buy%20it&record_id=12840&isbn=978-0-309-14957-0&quantity=1
http://www.nap.edu/related.php?record_id=12840
http://www.nap.edu/reprint_permission.html
http://nap.edu
http://api.addthis.com/oexchange/0.8/forward/facebook/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12840&pubid=napdigops
http://www.nap.edu/share.php?type=twitter&record_id=12840&title=Report+of+a+Workshop+on+the+Scope+and+Nature+of+Computational+Thinking
http://api.addthis.com/oexchange/0.8/forward/linkedin/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12840&pubid=napdigops
mailto:?subject=null&body=http://nap.edu/12840

Committee for the Workshops on Computational Thinking

Computer Science and Telecommunications Board

Division on Engineering and Physical Sciences

COMPUTATIONAL
THINKING

REPORT OF A WORKSHOP ON THE SCOPE AND NATURE OF

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Gov-
erning Board of the National Research Council, whose members are drawn from
the councils of the National Academy of Sciences, the National Academy of Engi-
neering, and the Institute of Medicine. The members of the committee responsible
for the report were chosen for their special competences and with regard for
appropriate balance.

Support for this project was provided by the National Science Foundation under
sponsor award number CNS-0831827. Any opinions expressed in this material are
those of the authors and do not necessarily reflect the views of the agencies and
organizations that provided support for the project.

International Standard Book Number-13: 978-0-309-14957-0
International Standard Book Number-10: 0-309-14957-6

Copies of this report are available from

The National Academies Press
500 Fifth Street, N.W., Lockbox 285
Washington, D.C. 20055
800/624-6242
202/334-3313 (in the Washington metropolitan area)
http://www.nap.edu

Copyright 2010 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

The National Academy of Sciences is a private, nonprofit, self-perpetuating
society of distinguished scholars engaged in scientific and engineering research,
dedicated to the furtherance of science and technology and to their use for the
general welfare. Upon the authority of the charter granted to it by the Congress
in 1863, the Academy has a mandate that requires it to advise the federal govern-
ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the
National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter
of the National Academy of Sciences, as a parallel organization of outstanding
engineers. It is autonomous in its administration and in the selection of its mem-
bers, sharing with the National Academy of Sciences the responsibility for advis-
ing the federal government. The National Academy of Engineering also sponsors
engineering programs aimed at meeting national needs, encourages education
and research, and recognizes the superior achievements of engineers. Dr. Charles
M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of
Sciences to secure the services of eminent members of appropriate professions
in the examination of policy matters pertaining to the health of the public. The
Institute acts under the responsibility given to the National Academy of Sciences
by its congressional charter to be an adviser to the federal government and, upon
its own initiative, to identify issues of medical care, research, and education.
Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of
Sciences in 1916 to associate the broad community of science and technology
with the Academy’s purposes of furthering knowledge and advising the federal
government. Functioning in accordance with general policies determined by the
Academy, the Council has become the principal operating agency of both the
National Academy of Sciences and the National Academy of Engineering in pro-
viding services to the government, the public, and the scientific and engineering
communities. The Council is administered jointly by both Academies and the
Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and
vice chair, respectively, of the National Research Council.

www.national-academies.org

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�

COMMITTEE FOR THE WORKSHOPS ON
COMPUTATIONAL THINKING

MARCIA C. LINN, University of California, Berkeley, Chair
ALFRED V. AHO (NAE), Columbia University
M. BRIAN BLAKE, University of Notre Dame
ROBERT CONSTABLE, Cornell University
YASMIN B. KAFAI, University of Pennsylvania
JANET L. KOLODNER, Georgia Institute of Technology
LAWRENCE SNYDER, University of Washington, Seattle
URI WILENSKY, Northwestern University

Staff

HERBERT S. LIN, Study Director and Chief Scientist, CSTB
ENITA A. WILLIAMS, Associate Program Officer
SHENAE BRADLEY, Senior Program Assistant

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�i

COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD

ROBERT F. SPROULL, Sun Microsystems, Inc., Chair
PRITHVIRAJ BANERJEE, Hewlett Packard Company
WILLIAM J. DALLY, NVIDIA Corporation and Stanford University
DEBORAH ESTRIN, University of California
KEVIN KAHN, Intel Corporation, Hillsboro
JAMES KAJIYA, Microsoft Corporation
JOHN E. KELLY III, IBM
JON M. KLEINBERG, Cornell University
WILLIAM H. PRESS, University of Texas
PRABHAKAR RAGHAVAN, Yahoo! Research
DAVID E. SHAW, D.E. Shaw Research
ALFRED Z. SPECTOR, Google, Inc.
PETER SZOLOVITS, Massachusetts Institute of Technology
PETER J. WEINBERGER, Google, Inc.

JON EISENBERG, Director
RENEE HAWKINS, Financial and Administrative Manager
HERBERT S. LIN, Chief Scientist, CSTB
LYNETTE I. MILLETT, Senior Program Officer
NANCY GILLIS, Program Officer
ENITA A. WILLIAMS, Associate Program Officer
VIRGINIA BACON TALATI, Program Associate
SHENAE BRADLEY, Senior Program Assistant
ERIC WHITAKER, Senior Program Assistant

For more information on CSTB, see its website at
http://www.cstb.org, write to CSTB, National Research Council,

500 Fifth Street, N.W., Washington, D.C. 20001, call (202) 334-2605,
or e-mail the CSTB at cstb@nas.edu.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�ii

Preface

As the use of computational devices has become widespread, there is
a need to understand the scope and impact of what is sometimes called
the Information Revolution or the Age of Digital Information. This is
particularly apparent in education at all levels. Various efforts have been
made to introduce K-12 students to the most basic and essential compu-
tational concepts, and college curricula have tried to provide students a
basis for lifelong learning of increasingly new and advanced computa-
tional concepts and technologies. At both ends of this spectrum, however,
most efforts have not focused on fundamental concepts.

One common approach to incorporating computation into the K-12
curriculum is to emphasize computer literacy, which generally involves
using tools to create newsletters, documents, Web pages, multimedia
presentations, or budgets. A second common approach is to empha-
size computer programming by teaching students to program in par-
ticular programming languages such as Java or C++. A third common
approach focuses on programming applications such as games, robots,
and simulations.

But in the view of many computer scientists, these three major
approaches—although useful and arguably important—should not be
confused with learning to think computationally. In this view, compu-
tational thinking is a fundamental analytical skill that everyone, not just
computer scientists, can use to help solve problems, design systems,
and understand human behavior. As such, they believe that computa-
tional thinking is comparable to the mathematical, linguistic, and logical

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�iii	 PREFACE

reasoning that is taught to all children. This view mirrors the grow-
ing recognition that computational thinking (and not just computation)
has begun to influence and shape thinking in many disciplines—Earth
 sciences, biology, and statistics, for example. Moreover, computational
thinking is likely to benefit not only other scientists but also everyone
else—bankers, stockbrokers, lawyers, car mechanics, salespeople, health
care professionals, artists, and so on.

To explore these notions in greater depth, the Computer and Infor-
mation Science and Engineering Directorate of the National Science
Foundation asked the National Research Council (NRC) to conduct two
 workshops to explore the nature of computational thinking and its cogni-
tive and educational implications. This report summarizes the first work-
shop, which focused on the scope and nature of computational thinking
and on articulating what “computational thinking for everyone” might
mean. A second workshop, to be held sometime later, will focus on the
cognitive and educational dimensions of computational thinking.

Although this document was prepared by the Committee for the
Workshops on Computational Thinking based on workshop presentations
and discussions, it does not reflect consensus views of the committee.
Under NRC guidelines for conducting workshops and developing report
summaries, workshop activities do not seek consensus and workshop
summaries (such as the present volume) cannot be said to represent “an
NRC view” on the subject at hand. This workshop report reveals the
plethora of perspectives on computational thinking, raises issues for the
follow-on workshop concerned with pedagogy, and suggests the need
for the field to build consensus on the scope, nature, and structure of
computational thinking. The present report contains a digest of both pre-
sentations and discussion.

The workshop agenda and participants are described in Appen-
dix A and Appendix B, respectively. Appendix C reprints the executive
summary of the NRC’s Being	 Fluent	 with	 Information	 Technology report
(National Academy Press, Washington D.C., 1999). Appendix D pro-
vides an extended bibliography of additional references not contained
in footnotes.

Marcia C. Linn, Chair
Committee for the Workshops on Computational Thinking

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

ix

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen
for their diverse perspectives and technical expertise, in accordance
with procedures approved by the National Research Council’s (NRC’s)
Report Review Committee. The purpose of this independent review is
to provide candid and critical comments that will assist the institution
in making its published report as sound as possible and to ensure that
the report meets institutional standards for objectivity, evidence, and
responsiveness to the study charge. The review comments and draft
manuscript remain confidential to protect the integrity of the delibera-
tive process. We wish to thank the following individuals for their review
of this report:

Edward A. Fox, Virginia Polytechnic Institute
Susanne Hambrusch, Purdue University
David E. Shaw, D.E. Shaw Research
Gerald Sussman, Massachusetts Institute of Technology
Ursula Wolz, The College of New Jersey
Wm. A. Wulf, University of Virginia

The reviewers listed above provided many constructive comments
and suggestions; they did not see the final draft of the report before its
release. The review of this report was coordinated by Harold Abelson of
the Massachusetts Institute of Technology. Appointed by the NRC, he was
responsible for making certain that an independent examination of this

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

x	 ACKNOWLEDGMENTS

report was carried out in accordance with institutional procedures and
that all review comments were carefully considered. Responsibility for
the final content of this report rests entirely with the authoring committee
and the institution.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

xi

Contents

1 INTRODUCTION 1
 1.1 Scope and Approach of This Report, 1
 1.2 Motivation—Why Should Anyone Care About Computational

Thinking?, 3

2 WHAT IS COMPUTATIONAL THINKING? 7
 2.1 The Landscape of Computational Thinking, 8
 2.2 Computational Thinking as a Range of Concepts, Applications,

Tools, and Skill Sets, 10
 2.3 Computational Thinking as Language and the Importance of

Programming, 13
 2.4 Computational Thinking as the Automation of Abstractions, 16
 2.5 Computational Thinking as a Cognitive Tool, 17
 2.6 Computational Thinking in Contexts Without Programming a

Computer, 20
 2.7 The Role of Computers and Technology, 26
 2.8 A Collaborative Dimension to Computational Thinking, 27
 2.9 What Computational Thinking Is Not, 28

3 LOOKING OUTWARD 33
 3.1 The Relationship of Computational Thinking to Mathematics

and Engineering, 33
 3.1.1 Mathematical Thinking, 33
 3.1.2 Engineering, 34
 3.2 Disciplinary Applications of Computational Thinking, 36

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

xii	 CONTENTS

 3.3 Computational Thinking Across Different Disciplines, 40
 3.3.1 Problem Solving/Debugging, 40
 3.3.2 Testing, 41
 3.3.3 Data Mining and Information Retrieval, 41
 3.3.4 Concurrency and Parallelism, 41
 3.3.5 Modeling, 42

4 RELATIONSHIP TO PAST AND ONGOING EFFORTS 45
 4.1 Previous Work, 45
 4.1.1 LOGO, 45
 4.1.2 Fluency with Information Technology (FIT), 46
 4.1.3 Computing the Future, 47
 4.1.4 Reflections on the Field, 51
 4.1.5 Engineering in K-12 Education, 52
 4.1.6 Technically Speaking, 53
 4.2 Some Drivers of Change, 54
 4.2.1 The National Science Foundation CPATH Program, 55
 4.2.2 The Computing Research Association Education

Committee, 55
 4.2.3 Advanced Placement Computer Science—NSF Broadening

Participation Program and the College Board, 56
 4.2.4 Carnegie Mellon University’s Center on Computational

Thinking, 57

5 OPEN QUESTIONS 59
 5.1 What Is the Structure of Computational Thinking?, 59
 5.2 How Can a Computational Thinker Be Recognized?, 60
 5.3 What Is the Connection Between Technology and

Computational Thinking?, 61
 5.4 What Is the Best Pedagogy for Promoting Computational

Thinking?, 62
 5.5 What Is the Proper Institutional Role of the Computer Science

Community with Respect to Computational Thinking?, 63

6 NEXT STEPS 65

APPENDIXES

A Workshop Agenda 69
B Short Biographies of Committee Members, Workshop

Participants, and Staff 74
C Executive Summary from Being	Fluent	with	Information	Technology 94
D Supplemental Bibliography 99

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�

1

Introduction

1.1 SCOPE AND APPROACH OF THIS REPORT

This report summarizes a workshop on the nature of computational
thinking held February 19-20, 2009, in Washington, D.C., under the aus-
pices of the National Research Council’s (NRC’s) Committee for the
Workshops on Computational Thinking. The workshop was structured to
gather inputs and insights from computer scientists, information technol-
ogists, and disciplinary experts knowledgeable about how computational
thinking might be relevant to their domains of expertise. It also involved
a number of education researchers and cognitive scientists familiar with
educational dimensions of computational thinking.

Questions posed to workshop participants included the following:
What are the scope and the nature of computational thinking? How does
it differ from other ways of thinking, such as mathematical thinking, quan-
titative reasoning, scientific thinking, and fluency with information tech-
nology? What kinds of problems require computational thinking? What
are some examples? How, if at all, does computational thinking vary by
discipline? What is the value of computational thinking for nonscientists?
How, if at all, would widespread facility with computational thinking
enhance the productivity of American workers? What affordances are
provided by new technologies for computational thinking?1 What is the
role of information technology in imparting computational thinking skills?

1 Loosely speaking, an affordance is the quality of an artifact that enables someone to take
or perform an action. Affordances are discussed in somewhat greater detail in Section 2.5.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

What parts of computational thinking can be taught without the use of
computers? Without the skills of computer programming?

Although the original workshop agenda was structured around
 panels devoted to exploring a subset of the questions above, the discus-
sion throughout the workshop resulted in useful insights regarding all
of these questions. Accordingly, the committee organized its summary
so that thoughts and insights on similar questions would be presented
together, rather than being scattered throughout a summary organized in
accordance with the original panel structure.

Each succeeding chapter describes some of the main themes arising
from a workshop session. The themes are not conclusions or findings
of the committee; they are ideas, extracted from the discussions during
each session and drawn not only from the presentations of the speakers
but also from the discussions among all the participants (committee,
speakers, and attendees), that seem to have formed the gist of the ses-
sion. In addition, to improve readability and to promote understanding,
background material on some of the topics raised has been interspersed
in this summary.

This report does not include all of the material that was discussed in
the committee’s first workshop. Specifically, in addition to discussions
related to the nature of computational thinking, there were many discus-
sions related to pedagogy and how best to expose students to the ideas of
computational thinking. Because the second workshop will be devoted to
that topic, the committee felt that it was better to communicate most of the
first workshop’s pedagogical discussions in the second workshop’s report.
That said, this report (of the first workshop) does foreshadow some of the
themes and ideas that will be reflected in the second report. For example,
the second workshop will explore possible connections between the struc-
ture and the pedagogy of computational thinking, as well as the extent to
which it is reasonable to expect individuals to generalize computational
thinking abilities from one problem domain to another.

In addition, the reader is cautioned that the workshop was not struc-
tured to result in a consensus regarding the scope and nature of com-
putational thinking, and the workshop was deliberately organized to
include individuals with a broad range of perspectives. For this reason
and because some of the discussion amounted to brainstorming, this
summary may contain internal inconsistencies that reflect the wide range
of views offered by workshop participants. In keeping with its purpose of
exploring the topic, this workshop summary does not contain findings or
recommendations.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

INTRODUCTION	 �

1.2 MOTIvATION—WHy SHOULD ANyONE CARE
ABOUT COMPUTATIONAL THINKING?

As it is usually construed, computational thinking includes a broad
range of mental tools and concepts from computer science that help
people solve problems, design systems, understand human behavior, and
engage computers to assist in automating a wide range of intellectual
processes. The elements of computational thinking are reasonably well
known, given that they include the computational concepts, principles,
methods, languages, models, and tools that are often found in the study of
computer science. Thus, computational thinking might include reformula-
tion of difficult problems by reduction and transformation; approximate
solutions; parallel processing; type checking and model checking as gen-
eralizations of dimensional analysis; problem abstraction and decompo-
sition; problem representation; modularization; error prevention, testing,
debugging, recovery, and correction; damage containment; simulation;
heuristic reasoning; planning, learning, and scheduling in the presence of
uncertainty; search strategies; analysis of the computational complexity
of algorithms and processes; and balancing computational costs against
other design criteria. Concepts from computer science such as algorithm,
process, state machine, task specification, formal correctness of solutions,
machine learning, recursion, pipelining, and optimization also find broad
applicability.

Computer science, of course, has no monopoly on such concepts. For
example, physicists have used abstraction and modeling for centuries,
logisticians and management scientists have studied scheduling exten-
sively, and notions of tradeoff are central to the work of economists and
engineers. Nevertheless, computer science provides a basis for a unified
framework and language with which to discuss such notions explicitly,
and these notions are the fundamental concepts of this discipline broadly
construed (e.g., including information science, elements of computational
science and engineering, digital media studies, and so on).

By explicitly articulating these notions, many computer scientists, and
certainly the workshop attendees, believe that it is possible to describe
a collection of analytic skills that everyone, not just computer scientists,
can use to help solve problems, design systems, and understand human
behavior. Thus, they argue, computational thinking is comparable in
importance and significance to the mathematical, linguistic, and logical
reasoning that society today agrees should be taught to all children.

Expanding on these ideas, workshop participants offered a number of
reasons for promulgating computational thinking skills more broadly:

• Succeeding	in	a	technological	society. In this view, computational think-
ing affords individuals the ability to navigate more effectively through a

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

society in which they frequently encounter technological devices in their
personal lives (cell phones, automobiles, dishwashers, and so on). In
addition, individuals have the opportunity to take advantage of tech-
nological resources (e.g., information on the Internet, social networking,
online education, cloud computing). Finally, individuals competent in
computational thinking are better able to understand the ways in which
technology is relevant to public policy decisions. Workshop participants
including Marcia Linn argued that emphasis on computational thinking
in K-12 education would increase equitable access to the resources of
modern society.

• Increasing	 interest	 in	 the	 information	 technology	 professions. It is a
 matter of record that enrollments in computer science university pro-
grams have dropped since the peak of the dot-com years, though in recent
years, these enrollments have begun to rise again.2 A number of workshop
participants, among them Lenore Blum, argued that a broader promulga-
tion of computational thinking in K-12 students would help to sustain the
rising interest in computing as a profession.

• Maintaining	and	enhancing	U.S.	economic	competiti�eness. Some work-
shop participants pointed to reports that noted concerns about offshoring
of U.S. jobs and the U.S. ability to remain economically competitive in a
global environment.3 In this view, a better educated workforce is an essen-
tial element of an internationally competitive workforce, and a number of
workshop participants expressed the view that computational thinking is
an essential component of such an education.

• Supporting	inquiry	in	other	disciplines. Given the increasingly promi-
nent role that computational tools are having in other disciplines, several
participants, including Edward Fox and Bill Wulf, argued that a facility
with computational thinking would assist specialists in those other dis-
ciplines to more effectively adopt, use, and develop computational tools.
Robert Constable pointed to some of the examples listed in Box 1.1.

• Enabling	personal	empowerment. Many workshop participants sug-
gested that a strong motivator for an individual to learn computational
thinking is to gain the ability to do things that are important to him or her.
For example, Roy Pea noted that in general people want “to do something
without error, do those things efficiently, and do them cost-effectively.”
Furthermore, people “constantly have meta-discourse around routines

2 Steve Kolowich, 2009, “Computer-Science Enrollment Rises for the First Time in Six
Years,” The	 Chronicle	 of	 Higher	 Education,	 March 17. Available at http://chronicle.com/
blogPost/Computer-Science-Enrollment/4579. Accessed December 28, 2009.

3 See for example, National Academy of Sciences, National Academy of Engineering, and
Institute of Medicine, 2007, Rising	Abo�e	the	Gathering	Storm:	Energizing	and	Employing	America	
for	a	Brighter	Economic	Future.	Washington, D.C.: The National Academies Press. Available at
http://www.nap.edu/catalog.php?record_id=11463. Accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

INTRODUCTION	 �

BOX 1.1
Computation and Computational Thinking for

Creating Knowledge

1.	 The	1976	proof	of	the	Four-Color	Conjecture	was	based	on	an	exhaustive	search	
to	evaluate	an	enormous	number	of	possible	cases.	In	2004,	the	Coq	theorem	
checker	was	used	to	confirm	a	variant	of	the	original	1976	proof.

2.	 Computers	led	to	the	discovery	that	the	gene	regulating	the	size	of	tomatoes	is	
similar	to	genes	involved	in	cancer	in	mammals.1

3.	 Five	new	pulsars	were	discovered	by	mining	12	terabytes	of	data	gathered	from	
the	Arecibo	observatory	in	Puerto	Rico.

4.	 Biologists	such	as	Jane	Hillston	have	used	probabilistic	process	algebras	to	model	
the	interaction	of	proteins	within	and	between	cells.	

5.	 Researchers	at	the	Joseph	Bell	Centre	in	the	United	Kingdom	have	built	a	system	
that	constructs	a	space	of	hypotheses	to	explain	the	evidence	in	a	crime	scene.	
Such	 a	 system	 has	 been	 used	 to	 remind	 detectives	 of	 hypotheses	 they	 might	
otherwise	have	missed.	

6.	 Predictions	about	climate	change	and	global	warming	are	enabled	only	through	
the	use	of	computational	models	of	planetary	climate	and	weather.	An	example	
of	 an	 unexpected	 connection	 discovered	 using	 such	 models	 (and	 enormous	
amounts	 of	 data	 from	automated	 sensors)	 is	 the	 influence	of	 the	 surface	 tem-
perature	 of	 the	 Indian	 Ocean	 on	 long-term	 weather	 patterns	 over	 the	 North	
Atlantic.	

7.	 The	Forma	Urbis	Romae2	has	used	computers	to	help	create	new	primary	data	
from	shards	of	the	great	stone	map	of	Rome	circa	210	AD	by	representing	the	
shards	so	that	they	could	be	treated	as	geometric	puzzle	pieces	that	computers	
could	attempt	to	assemble.	

8.	 Computational	 thinking	 has	 helped	 to	 transform	 the	 Earth	 sciences.	 Without	
computing,	geological	narratives	have	tended	to	be	direct,	uncoupled,	and	linear	
(because	such	systems	are	easier	to	analyze),	but	such	narratives	underestimate	
the	complexity	of	the	interactions	between	different	geological	processes.	Com-
puter	modeling	enables	Earth	scientists	to	represent	previously	intractable	rela-
tionships	and	thus	helps	them	to	develop	a	deeper	understanding.	

9.	 Psychologists	 working	 on	 the	 problem	 of	 how	 humans	 recognize	 faces	 have	
made	 good	 use	 of	 computer-based	 image	 morphing	 techniques.	 While	 early	
experiments	with	photos,	scissors,	and	paste	were	too	crude	to	provide	the	fine	
gradations	between	images	needed	to	separate	rival	psychological	hypotheses,	
Vicky	 Bruce	 and	 collaborators	 were	 able	 to	 show	 that	 faces	 are	 encoded	 in	
memory	by	abstracting	them	into	a	small	collection	of	archetypes.	Face	recogni-

1Anne	Frary,	Clint	Nesbitt,	Amy	Frary,	Silvana	Grandillo,	Esther	van	der	Knaap,	Bin	Cong,	
Jiping	Liu,	Jaroslaw	Meller,	Ron	Elber,	Kevin	B.	Alpert,	and	Steven	D.	Tanksley,	2000,	“T	Cloning,	
Transgenic	Expression	and	Function	of	fw2.2:	A	Quantitative	Trait	Locus	Key	to	the	Evolution	of	
Tomato	Fruit,”	Science	289(5476):85-88.

2Marc	 Levoy,	 2000,	 “Digitizing	 the	 Forma	 Urbis	 Romae,”	 presented	 at	 Siggraph	 Digital	
Campfire	on	Computers	and	Archeology,	Snowbird,	Utah,	April	14.

continued

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

and processes that help them achieve these goals.” Computational think-
ing, Pea noted, provides people with “a way to abstract what they’re
already doing and talking about. . . . Connecting computational thinking
in a personally meaningful way is at the heart of tackling the problem of
how everyone can be brought into a pathway for developing and using
computational thinking in their everyday lives.”

tion	 then	consists	of	a	human	matching	 the	current	 image	 to	 the	most	 similar	
archetype.	Bruce’s	theory	of	 face	recognition	is	also	formulated	as	a	computa-
tional	process,	employing	techniques	for	abstraction,	representing	and	formulat-
ing	archetypes,	“nearest	neighbor”	matching,	and	so	on.

SOURCE:	Items	1-3,	6,	and	7	are	adapted	from	Robert	L.	Constable,	“Transforming	the	
Academy:	Knowledge	Formation	in	the	Age	of	Digital	Information,”	PhysicaPlus,	Issue	
9,	available	at	http://physicaplus.org.il/zope/home/en/1185176174/trans_academy_en.	
Items	4,	5,	8,	and	9	are	adapted	from	Alan	Bundy,	“Computational	Thinking	Is	Perva-
sive,”	available	at	http://www.inf.ed.ac.uk/research/programmes/	comp-think/.

BOX 1.1 Continued

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�

2

What Is Computational Thinking?

Most of the workshop’s discussions focused on exploring different
aspects of what participants thought about computational thinking. The
presentation of topics in this chapter is not chronological—throughout
the workshop discussions, participants returned to topics and ideas men-
tioned earlier. Thus, the presentation below seeks to organize the discus-
sions by theme rather than by order of presentation. Section 2.1 outlines
an overview of some of the intuitive notions of computational thinking
held by different workshop participants. Section 2.2 discusses compu-
tational thinking as a range of concepts, applications, tools, and skill
sets. Section 2.3 looks at computational thinking linguistically (i.e., as a
language) and explores the role and importance of programming as an
essential aspect of computational thinking as a primary and critical mode
of precise expression. Section 2.4 examines computational thinking from
the perspective of automating computational abstractions. Section 2.5
looks at computational thinking as a cognitive tool set for certain kinds
of intellectual endeavor. Section 2.6 explores computational thinking in
contexts that do not explicitly require the use of information technology
as traditionally understood. A related section (Section 2.7) explores the
question of how and to what extent computers per se relate to compu-
tational thinking. Section 2.8 examines the collaborative dimensions of
computational thinking. Section 2.9 presents views on what computa-
tional thinking is not.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

2.1 THE LANDSCAPE OF COMPUTATIONAL THINKING

In a 2006 article, Jeannette Wing, then a professor of computer sci-
ence at Carnegie Mellon University, discussed computational thinking
as “a way of solving problems, designing systems, and understanding
human behavior that draws on concepts fundamental to computer sci-
ence.”1 Since then, Wing has assumed the position of assistant director of
the National Science Foundation Computer and Information Science and
Engineering Directorate. From that podium, she has promoted the idea
that as computation, communications, and information become increas-
ingly prominent throughout daily life, computational thinking becomes
more useful to the economic, intellectual, and social well-being of every-
one (Box 2.1).

Wing’s presentation at the workshop made prominent mention of
the “shotgun” approach to sequencing the human genome as a powerful
example of how computational thinking might be useful outside the tradi-
tional domain of computer science. The human DNA sequence consists
of 3.4 billion base pairs, and the determination of this sequence was com-
pleted in 2003, in a significantly shorter time than originally estimated,
through the use of the shotgun approach. In general, the sequencing of
a long DNA string can be accomplished only by dividing the sequence
into a number of short fragments, each of which is sequenced and then
assembled into the appropriate order.

In the shotgun approach, a long DNA sequence is randomly divided
into many short fragments, each of which can be sequenced. To reas-
semble the fragments, investigators use overlaps between the ends of the
fragments—fragments whose ends do not match cannot be connected
to each other. However, the presence of a match between fragment ends
does not guarantee that the two fragments in question should necessarily
be joined, and additional data are needed to resolve these ambiguities. To
obtain the additional data, the fragmentation process is repeated—since
the division is random, it is likely that the spot where two fragments
were separated in the first fragmentation will in fact be contiguous in the
second fragmentation. This fact can be used to confirm or reject the match
proposed from the first round. Through a series of successive rounds of
fragmentation and analysis, the correct sequence can be determined. The
algorithm used to analyze the data resulting from this iterative process is
widely known as a shotgun algorithm.

This example manifests several aspects of computational thinking.
Algorithm embodies the notion of a precisely formulated unambiguous

1 Jeannette M. Wing, 2006, “Computational Thinking,” Communications	 of	 the	 ACM	
49(3):33-35.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 �

BOX 2.1
Who Is “Everyone”?

Workshop	 participants	 offered	 a	 number	 of	 definitions	 of	 “everyone.”	 Many	
of	 the	examples	of	computational	 thinking	offered	were	directed	at	 scientists	and	
engineers.	A	 few	examples	were	connected	 to	 the	needs	of	professionals	 in	non-
technical	fields,	such	as	archeology	and	law.	Thus,	by	implication,	computational	
thinking	was	thought	to	be	relevant	to	a	broad	swath	of	individuals	with	college	and	
postgraduate	educations.	

Others	discussed	the	possibility	of	computational	thinking	for	K-12	students.	Of	
course,	K-12	spans	a	broad	range.	High	school	students	take	courses	that	address	
some	 topics	 that	 involve	 the	 same	computational-thinking-related	activities	 found	
in	undergraduate	courses.	K-8	instruction	is	 the	focus	of	modeling	and	simulation	
environments	such	as	Scratch	and	LOGO,	and	the	NetLogo	modeling	and	simulation	
environment	is	used	primarily	in	middle	and	high	schools	as	well	as	in	university	
courses.	Curricular	innovations	such	as	the	honeybee	example	of	Joshua	Danish	(see	
Figure	2.2)	illustrate	the	possibilities.	

Participants	did	not	explore	the	relevance	of	computational	thinking	to	noncollege-
educated	adults	 in	any	detail.	 (Christopher	Hoffmann	did	recount	a	 tale	of	a	group	
of	thieves	that	attempted	to	steal	a	large	piece	of	construction	equipment.	While	the	
thieves	prepared	for	most	of	 the	basic	 logistics	surrounding	the	crime,	 they	did	not	
ultimately	 understand	 the	 computational-thinking-based	 technology	 at	 work	 in	 the	
system,	and	their	efforts	were	ultimately	thwarted.	In	particular,	several	men	attempted	
to	steal	a	piece	of	Caterpillar	construction	equipment	by	loading	it	on	a	truck	to	haul	
it	away.	The	equipment	had	an	active	condition-based	maintenance	system	within	it	
broadcasting	its	exact	location	and	condition	as	the	thieves	attempted	to	run	off	with	
the	machine.	They	did	not	get	far.)	This	topic	will	be	explored	further	in	the	committee’s	
second	workshop.

procedure that is repetitively applied. Search, pattern matching, and itera-
tive refinement can also be seen in the example, and the powerful idea
of randomization as an asset in repeated fragmentation is a particularly
important aspect of computational thinking.

Drawing on their own intuitive notions of computational thinking,
workshop participants offered a number of additional examples of com-
putational thinking in context. For instance, when a device (computer,
cell phone, or printer) malfunctions, a reboot is often used to restore it to
working condition. A person thinking computationally realizes that by
turning it off and restarting it, she can reset the internal state of the device
to a known and fresh state and allow the device’s internal processes to
execute from that known state. Second, information technology can help
to process very large volumes of information. A person thinking compu-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

tationally realizes that data-intensive problems such as sequencing DNA
may be amenable to solutions based on algorithms and automation. Third,
information technology can often be used to help manage complexity in
understanding complicated problems. A person thinking computationally
realizes that computational modeling can help address complex problems
across varied disciplines such as climate change, economic policy, and
educational decision making.

Responding to the workshop focus on explicating the scope and
nature of computational thinking (with the implied goal of being more
effective in imparting to students the essentials of computational think-
ing), Uri Wilensky offered a caution—that “it is not necessarily the case
that the best way to enter into something is to enter it in the way that an
expert already understands it.” For those in attendance at the workshop,
he noted that “if one is already an expert in computer science, it’s easy to
forget what it’s like to enter into the field.” He did not argue that the expli-
cation effort was wasted or inappropriate, only that as a community “we
should be careful about the process of bringing a lot of people, in a wide-
spread way, into computational thinking. We should do more than present
to students expert ways of thinking computationally—attention must be
paid to the developmental understanding of students.” Roy Pea made a
similar point when he cautioned workshop participants against focusing
on the prototypes for computational thinking provided by experts in the
field, because such prototypes “may lead us away from the professed goal
of everyday computational thinking.”

2.2 COMPUTATIONAL THINKING AS A RANGE OF
CONCEPTS, APPLICATIONS, TOOLS, AND SKILL SETS

Over the course of the workshop discussion, several participants
described computational thinking as a collection of mental tools and con-
cepts from computer science that help people to solve problems, design
systems, and understand human behavior. For example, Wing drew the
distinction between “metal tools” and “mental tools,” the former being
the hardware/software applications that help solve problems and the
latter being cognitive and intellectual skills that human beings can use
to understand and solve problems more effectively. Participants argued
that these concepts feature prominently in computer science but are not
exclusive to the field.

Computational thinking was defined in a number of ways. These
definitions fell into several categories and are described (in no particular
order) below:

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

• David Moursund, along with several other workshop partici-
pants, suggested that computational thinking was closely related to, if
not the same as, the original notions of procedural thinking developed by
Seymour Papert in Mindstorms.�	Procedural thinking includes developing,
representing, testing, and debugging procedures, and an effective proce-
dure is a detailed step-by-step set of instructions that can be mechanically
interpreted and carried out by a specified agent, such as a computer or
automated equipment.

• Peter Lee offered a definition of computational thinking as the
study of the mechanisms of intelligence that can yield practical applica-
tions by magnifying human intelligence. Such a definition includes but
is not equivalent to artificial intelligence, which in his view generally
consists of efforts to mimic human mental processes. Rather, Lee argued,
computational thinking is fundamentally about expanding human mental
capabilities through abstract tools that help manage complexity and allow
for automation of tasks. Andrew McGettrick supported this view, but
went further in saying that computational “thinking” had to involve
actual capability and competency with technological artifacts in addition
to thought processes. Such an extended view, he noted, would require
computational thinkers to constantly immerse themselves and invest in
staying technologically current.

• Bill Wulf suggested that computational thinking was primarily
about process. He noted that other areas of science focus on physical
objects, whereas computational thinking focuses on processes and abstract
phenomena that enable processes. Wulf objected to the connotations of
“computational” as focusing on numbers. Speaking via videoconference,
Peter Denning expressed a parallel sentiment, arguing that computer sci-
ence itself is the study of information processes and that computational
thinking is a subset of computer science.

• Dor Abrahamson saw computational thinking as the use of com-
putation-related symbol systems (semiotic systems) to articulate explicit
knowledge and to objectify tacit knowledge, to manifest such knowledge
in concrete computational forms, and to manage the products emerging
from such intellectual efforts. He further argued that a semiotic approach
had embedded within it a philosophy of the relationship between under-
standing and personal meaning and helps guide the construction of per-
sonal meaning for these symbols.

• Gerald Sussman defined computational thinking as a way of for-
mulating precise methods of doing things. Computational thinking is
about rigorous analysis and procedures for accomplishing a defined task

2 Seymour Papert, 1981, Mindstorms:	Children,	Computers,	 and	Powerful	 Ideas.	New York:
Basic Books.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

efficiently. Sussman pointed to the importance of having precise language
for methods and concepts—for this reason, Sussman argued that compu-
tational thinking has an “underlying linguistic structure.” For example,
situations like “A happens before B” or “do this and then do that” are
captured by the general idea of a partial order, and there are techniques
for navigating partial orders and reasoning about them.

• Wing and Sussman suggested that computational thinking could
be seen as a bridge between science and engineering—a meta-science
about studying ways or methods of thinking that are applicable across
the different disciplines. In this view, computational thinking is the central
element of the reasoning that takes place in transitioning from the study
of physical phenomena and the application of scientific observation.

• Edward Fox emphasized the notion of handling and manipulat-
ing intangible abstractions for problem-solving purposes at the core of
computational thinking. Fox defined computational thinking as “what
humans do as they approach the world [that is, their framing, paradigm,
philosophy, or language], considering processes, manipulating digital
representations (and [meta] models),” and hence all humans engage in
computational thinking to some extent already in their daily lives. Brian
Blake argued that computational thinking had to include representations,
visualizations, modeling, or meta-modeling. Uri Wilensky pointed out
the historical power of representational shifts and argued that, like other
such shifts, computational representations would enable greater model-
ing power and wider access to scientific models. Janet Kolodner noted
that computational thinking plays a role in the manipulation of software
in support of problem solving. Kolodner stated that “[a piece of software
can be] a tool that is being provided so that somebody can do computa-
tional thinking and can do thinking in some domain, but there’s [also]
some kind of computational thinking they need to be able to do in order
to manipulate that tool to be able to use it for their domain.”

• Robert Constable would eschew static definitions of computational
thinking—rather than a finite set of skills and thought processes, computa-
tional thinking is an open-ended and growing list of concepts that reflects
the dynamic nature of technology and human learning, and that combines
elements of all the descriptions of computational thinking outlined above
such as “automating intellectual processes” and “studying information
processes,” among others. What makes computational thinking especially
relevant is that computers can execute our “computational thoughts”
and that “computers have become partners and collaborators” in dis-
covery. He further noted that the list of elements in the first paragraph
of Section 1.2 is not merely a list of examples of computational thinking.
Rather, it is a partial list of important intellectual concepts and elements
that are part of the science of computing and of digital information.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

Computational	 thinking	 is	careful	 reasoning	about	 the	methods	of	doing	
things.	 It’s	clearly	 related	 to,	but	not	 identical	with,	mathematical	 think-
ing.	Both	[computational	thinking	and	mathematical	thinking	deeply]	are	
involved	with	abstraction,	and	reasoning	with	simplified	models.	

—Gerald	Sussman

2.3 COMPUTATIONAL THINKING AS LANGUAGE
AND THE IMPORTANCE OF PROGRAMMING

A number of workshop participants advanced the idea that computa-
tional thinking could be better understood as a fundamental intellectual
skill comparable to reading, writing, speaking, and arithmetic. Function-
ally, these fundamental skills are all means of describing and explaining
complex problems and situations to others, and computational think-
ing serves the same purpose. In other words, computational thinking is
comparable to other basic cognitive abilities that the average person in
modern society is expected to possess.

One participant quoted Niels Bohr, who said, “Science is not to tell us
about the universe, but to tell us how to talk about the universe.” Along
these lines, computational thinking is another language (in addition to
written and spoken language, science, and mathematics) that humans can
use to talk about the universe and the complex processes within it.

Roy Pea argued that “as soon as we think about the origins of com-
putational thinking and computational literacies, programming has been
at the heartland of the definition and the abstractions that are created as
step-by-step algorithmic procedures.” Ursula Wolz supported the view
that computational thinking is as essential a skill as reading, writing, and
other basic language arts skills, pointing out that “programming is a lan-
guage for expressing ideas. You have to learn how to read and write that
language in order to be able to think in that language.” Mitchel Resnick
concurred, arguing that “computational thinking is more than program-
ming, but only in the same way that language literacy is more than writing.
They are both very important. Yes, it’s more, but don’t minimize program-
ming just because it’s more.” He went on to say that programming is a
particularly important form of expression, and that “programming, like
writing, is a means of expression and an entry point for developing new
ways of thinking.” Eric Roberts also supported the idea that program-
ming is essential to computational thinking and pointed out “a misguided
assumption—that just because programming can be badly taught or that

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

it can be difficult and deter people, it needs to be avoided entirely.”
(Box 2.2 describes the thoughts expressed in the 1999 report Being	Fluent	
with	Information	Technology on the closely related question of the role of
programming in imparting FITness.)

Andrea diSessa emphasized the notion of literacy as a social con-
struction and noted that an effort to teach computational thinking (or
rather, computational literacy, in diSessa’s terms) to everyone is, in large
part, a social problem. Moreover, it is the milieu of today’s society that
encourages and/or demands that citizens have this literacy. Owen Astra-
chan argued that “computational literacy will allow civilization to think

BOX 2.2
The Role of Programming in FITness

The	1999	NRC	report	Being Fluent with Information Technology	addressed	the	
role	of	programming	 in	achieving	fluency	with	 information	 technology	 (what	 that	
report	 called	 FITness).	 The	 report	 defined	programming	 as	 “the	 construction	of	 a	
specification	(sequence	of	instructions	or	program)	for	solving	a	problem	by	an	agent	
other	 than	 the	programmer.	 .	 .	 .	 [Programming]	entails	decomposing	 the	problem	
into	a	sequence	of	steps	and	specifying	them	sufficiently	precisely,	unambiguously,	
and	primitively	that	the	interpreting	agent,	usually	a	computer,	can	effectively	realize	
the	intended	solution”	(p.	42).

Computer	programming	in	a	standard	programming	language	meets	this	defini-
tion,	of	course,	but	programming	arises	in	many	other	cases	in	which	the	agent	is	
a	human	and	the	language	is	English.	Giving	directions	to	soccer	players	to	find	a	
particular	field	 in	 a	 city,	 especially	one	not	 identifiable	by	numeric	 street/avenue	
coordinates,	constitutes	programming	by	this	definition.	A	player	is	the	agent	inter-
preting	or	executing	the	instructions.	Recipes	with	precise	quantities	of	ingredients	
and	precisely	described	preparation	and	cooking	 steps	are	programs	executed	by	
cooks.	Toy	manufacturers	write	programs,	called	assembly	instructions,	for	parents	
to	follow,	and	the	Internal	Revenue	Service	(IRS)	writes	the	program	that	taxpayers	
follow	for	deductible	IRA	contributions.	

Critical	to	the	programming	enterprise	is	specification	that	meets	the	conditions	
“precisely”	and	“primitively.”

•	 “Precise”	specifications	are	essential	to	provide	assurance	that	the	agent	can	
determine	which	actions	are	to	be	performed	and	in	what	order,	so	that	the	intended	
result	 is	 achieved.	 Avoiding	 ambiguity	 is	 obviously	 crucial,	 but	 even	 seemingly	
	unambiguous	commands	can	fail.	For	example,	“turn	right”	fails	if	the	soccer	players	
can	approach	the	intersection	from	either	the	east	or	the	west,	and	so	“turn	north”	is	
preferred.	Similarly,	“beat”	and	“fold	in”	are	not	synonyms	for	“stir”	when	combining	
ingredients,	and	so	successful	 recipes	use	precise	 terminology	selected	with	great	
care.	An	important	nontechnology	advantage	of	programming	knowledge	is	that	the	
need	for	precision	can	promote	precision	in	everyday	communication.

•	 “Primitive”	 specifications	 are	 essential	 to	 provide	 assurance	 that	 the	 steps	
to	be	performed	are	within	 the	operational	 repertoire	of	 the	executing	agent.	The	
programmer	 may	 understand	 the	 task	 as	 “pi	 times	 R	 squared,”	 but	 if	 the	 execut-
ing	agent	doesn’t	know	what	“squared”	means	or	how	to	accomplish	 it,	 then	 the	
programmer	must	 express	 the	 task	 in	more	primitive	 terms,	perhaps	 revising	 it	 to	
“pi	times	R	times	R.”	For	many	taxpayers,	the	word	“qualifying”	in	the	IRS’s	instruc-
tion	phrase	“subtract	qualifying	contributions”	would	likely	fail	the	test	for	primitive-
ness,	because	they	would	not	readily	understand	what	the	term	means.

Although	programming	can	be	as	 simple	as	giving	a	 few	commands—preheat	
oven	to	350	degrees,	combine	dry	ingredients,	stir	in	eggs,	press	into	greased	loaf	
pan,	bake	for	20	minutes—most	solutions	require	the	use	of	conditional	instructions	
and	repetition	of	groups	of	instructions.

Conditional	instructions	are	those	that	may	or	may	not	be	performed,	depending	
on	 the	 input	 to	 the	program.	Repeated	 instruction	execution	 is	a	second	essential	
programming	 construct,	 since	 it	 allows	 a	 program,	 for	 example,	 to	 process	 any	
number	 of	 data	 items	 rather	 than	 just	 a	 fixed	 number.	 In	 addition,	 FITness	 also	
	requires	experience	with	functional	decomposition	and	functional	abstraction.	These	
are	the	powerful	mechanisms	used	by	programmers	to	solve	large	problems	(func-
tional	 decomposition)	 and	 to	 reuse	 their	 earlier	 programming	 efforts	 (functional	
	abstraction).	

Finally,	 the	1999	 report	argued	 that	while	FITness	does	 imply	a	basic	program-
ming	ability,	that	ability	need	not	be	acquired	in	using	a	conventional	programming	
language.	For	example,	certain	spreadsheet	operations	and	advanced	HTML	program-
ming	for	Web	pages,	among	others,	demand	an	understanding	of	enough	programming	
concepts	that	they	can	provide	this	basic	programming	experience.	Such	applications	
will	often	yield	more	personally	relevant	opportunities	to	learn	programming	than	will	
programming	in	a	conventional	programming	language.	

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

and do things that will be new to us in the way that the modern literate
society would be almost incomprehensible to preliterate cultures, but it’s
a different kind of literacy than what it means to be familiar. By compu-
tational literacy, I do not mean a casual familiarity with a machine that
computes.”

Gerald Sussman built the “computational thinking-as-basic-language”
metaphor by citing the process of composing poetry as an exercise in com-
putational thinking. A poet’s task or problem is to produce a mechanism
that induces an emotion in the reader of the poem. “The skillful poet
takes pieces that have parts of that emotional state, puts them together

BOX 2.2
The Role of Programming in FITness

The	1999	NRC	report	Being Fluent with Information Technology	addressed	the	
role	of	programming	 in	achieving	fluency	with	 information	 technology	 (what	 that	
report	 called	 FITness).	 The	 report	 defined	programming	 as	 “the	 construction	of	 a	
specification	(sequence	of	instructions	or	program)	for	solving	a	problem	by	an	agent	
other	 than	 the	programmer.	 .	 .	 .	 [Programming]	entails	decomposing	 the	problem	
into	a	sequence	of	steps	and	specifying	them	sufficiently	precisely,	unambiguously,	
and	primitively	that	the	interpreting	agent,	usually	a	computer,	can	effectively	realize	
the	intended	solution”	(p.	42).

Computer	programming	in	a	standard	programming	language	meets	this	defini-
tion,	of	course,	but	programming	arises	in	many	other	cases	in	which	the	agent	is	
a	human	and	the	language	is	English.	Giving	directions	to	soccer	players	to	find	a	
particular	field	 in	 a	 city,	 especially	one	not	 identifiable	by	numeric	 street/avenue	
coordinates,	constitutes	programming	by	this	definition.	A	player	is	the	agent	inter-
preting	or	executing	the	instructions.	Recipes	with	precise	quantities	of	ingredients	
and	precisely	described	preparation	and	cooking	 steps	are	programs	executed	by	
cooks.	Toy	manufacturers	write	programs,	called	assembly	instructions,	for	parents	
to	follow,	and	the	Internal	Revenue	Service	(IRS)	writes	the	program	that	taxpayers	
follow	for	deductible	IRA	contributions.	

Critical	to	the	programming	enterprise	is	specification	that	meets	the	conditions	
“precisely”	and	“primitively.”

•	 “Precise”	specifications	are	essential	to	provide	assurance	that	the	agent	can	
determine	which	actions	are	to	be	performed	and	in	what	order,	so	that	the	intended	
result	 is	 achieved.	 Avoiding	 ambiguity	 is	 obviously	 crucial,	 but	 even	 seemingly	
	unambiguous	commands	can	fail.	For	example,	“turn	right”	fails	if	the	soccer	players	
can	approach	the	intersection	from	either	the	east	or	the	west,	and	so	“turn	north”	is	
preferred.	Similarly,	“beat”	and	“fold	in”	are	not	synonyms	for	“stir”	when	combining	
ingredients,	and	so	successful	 recipes	use	precise	 terminology	selected	with	great	
care.	An	important	nontechnology	advantage	of	programming	knowledge	is	that	the	
need	for	precision	can	promote	precision	in	everyday	communication.

•	 “Primitive”	 specifications	 are	 essential	 to	 provide	 assurance	 that	 the	 steps	
to	be	performed	are	within	 the	operational	 repertoire	of	 the	executing	agent.	The	
programmer	 may	 understand	 the	 task	 as	 “pi	 times	 R	 squared,”	 but	 if	 the	 execut-
ing	agent	doesn’t	know	what	“squared”	means	or	how	to	accomplish	 it,	 then	 the	
programmer	must	 express	 the	 task	 in	more	primitive	 terms,	perhaps	 revising	 it	 to	
“pi	times	R	times	R.”	For	many	taxpayers,	the	word	“qualifying”	in	the	IRS’s	instruc-
tion	phrase	“subtract	qualifying	contributions”	would	likely	fail	the	test	for	primitive-
ness,	because	they	would	not	readily	understand	what	the	term	means.

Although	programming	can	be	as	 simple	as	giving	a	 few	commands—preheat	
oven	to	350	degrees,	combine	dry	ingredients,	stir	in	eggs,	press	into	greased	loaf	
pan,	bake	for	20	minutes—most	solutions	require	the	use	of	conditional	instructions	
and	repetition	of	groups	of	instructions.

Conditional	instructions	are	those	that	may	or	may	not	be	performed,	depending	
on	 the	 input	 to	 the	program.	Repeated	 instruction	execution	 is	a	second	essential	
programming	 construct,	 since	 it	 allows	 a	 program,	 for	 example,	 to	 process	 any	
number	 of	 data	 items	 rather	 than	 just	 a	 fixed	 number.	 In	 addition,	 FITness	 also	
	requires	experience	with	functional	decomposition	and	functional	abstraction.	These	
are	the	powerful	mechanisms	used	by	programmers	to	solve	large	problems	(func-
tional	 decomposition)	 and	 to	 reuse	 their	 earlier	 programming	 efforts	 (functional	
	abstraction).	

Finally,	 the	1999	 report	argued	 that	while	FITness	does	 imply	a	basic	program-
ming	ability,	that	ability	need	not	be	acquired	in	using	a	conventional	programming	
language.	For	example,	certain	spreadsheet	operations	and	advanced	HTML	program-
ming	for	Web	pages,	among	others,	demand	an	understanding	of	enough	programming	
concepts	that	they	can	provide	this	basic	programming	experience.	Such	applications	
will	often	yield	more	personally	relevant	opportunities	to	learn	programming	than	will	
programming	in	a	conventional	programming	language.	

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

in the right way—there are going to be bugs and there are going to have
to be places where you make interfaces and all that sort of stuff—so as
to make a larger structure that has that property.” Sussman went on to
cite an essay by Edgar Allen Poe that described the process of composing
poetry as an algorithm.

Alan Kay was less enthusiastic about the “computational thinking-
as-language” metaphor. Although acknowledging the utility of computa-
tional thinking as a language for describing certain aspects of the universe,
Kay noted that all human beings have an innate capacity for verbal lan-
guage, but that the same cannot be said for written language, science, and
deductive mathematics, because these are not found in every culture or
society. This point suggests that whatever computational-thinking-as-a-
language might be, human beings will not learn computational thinking
in the same way that they learn to speak. On the other hand, he also
noted that a powerful aspect of computational thinking entails the ability
to create a language well adapted to a personally relevant purpose—and
indeed that this ability could be taught to students.

Edward Fox suggested that computational thinking does have a long
historical tail. “Computational thinking is innate in the human species,”
he said, and “through telling stories our ancestors modeled and repre-
sented reality and they passed that on to other people and they enriched
those models to carry out exploring, discovering, and sustaining life.”
Today, exploration of and discovery in digital information are central
activities of human life. Computers enable modern discovery and allow
humans to access and organize information in a way that has not been
done before. Despite its novelty, accessing digital information is, accord-
ing to Fox “still a part of this modeling and representing, something that
we do uniquely and have newer ways to explain and enrich.”

2.4 COMPUTATIONAL THINKING AS THE
AUTOMATION OF ABSTRACTIONS

A number of workshop participants supported the claim that compu-
tational thinking focuses on the process of creating and managing abstrac-
tions, and defining relationships between layers of abstraction. Robert
Constable pointed out that although physics and mathematics are also
centrally concerned with abstraction, what is different in computational
thinking is that the layers of abstraction are tightly connected in ways that
in the natural sciences they cannot yet be connected.

In this view, computational thinking is a tool for explaining and rep-
resenting complexity through automation. Although mathematics and
physics are also centrally concerned with using abstraction to manage
and control complexity, computational methods add another dimension

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

to controlling complexity—that of automation. Peter Lee argued that com-
putational thinking is about “magnifying people’s intelligence through
automation and problem solving, as well as managing complexity.” Others
pointed to the role of modeling and simulation in enabling automation of
the management of complexity.

To complement this view, Andy diSessa argued that abstractions must
be paired with grounding if people are to understand the significance of
those abstractions. In diSessa’s words, “Abstraction has to connect with
their concerns, whether they are menial or whether they are grand. It
has to be grounded in people’s beliefs and feelings some way or other.”
Owen Astrachan echoed this point, saying that “without the grounded
examples, we’ll be talking too abstractly, which might work in a room full
of abstract thinkers, but it’s not going to work in rooms full of less abstract
thinkers because they need to see what they are really going to do.” Ken
Kahn made a related argument that computational thinking provides
a concretization—the creation of something concrete and tangible—of
subjects that are typically dominated by abstract concepts. Kahn felt that
an example of such concretization is computer games—“They are virtual,
of course, but they feel very concrete. The important idea is that there
is a one-to-one mapping from these concrete things to computational
abstractions that are much more difficult for most people to grasp.” Uri
Wilensky concurred and described how students interacting with models
or participatory simulations of disease spread developed with NetLogo
learn to understand logistic growth of infection as an emergent pattern
that results from the concrete actions of individuals.

2.5 COMPUTATIONAL THINKING AS A COGNITIvE TOOL

David Moursund saw computational thinking as how to think about
tools, a view inspired by Donald Norman and David Perkins. In 1988,
Norman wrote The	 Design	 of	 E�eryday	 Things,3 which talks about “the
design of everyday objects and affordances—not just physical capabili-
ties of the actor, but also their goals, plans, and values, and so on.” An
example of affordances created through technology innovation is mass
communication through the creation of the printing press, radio, tele-
vision, and so on. Information technology and the computer are a set
of new tools with affordances of their own, and Moursund noted that
realization of affordances depends on the education, training, and expe-
rience of the user as well as the design of the tool. Some tools, such as a
word processor, require more formal training and skills in order to access
the affordances they offer. Others, through their very design or through

3 Donald Norman, 1988, The	Design	of	E�eryday	Things. New York: Basic Books.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

imitation, are simpler to manipulate and may not require formal training;
examples might include telephones or video games.

In the early 1990s, David Perkins wrote about the concept of “Person
Plus.”4 In the Person Plus model, three dimensions feed in to augment-
ing team problem solving (Figure 2.1). Moursund identified these three
dimensions as “tools that expand or extend mental capabilities,” such as
reading comprehension or mathematical skills; “tools that extend physical
capabilities,” such as a car, a telescope, or a rake; and finally, “education
and training” that allow one to effectively utilize tools. Moursund’s final
component in the model is team problem solving. He stated, “When I talk
about problem solving, problem solving is always a team activity. The
team might have a person on it, but the team has . . . whatever that person
has learned, the culture they grew up in, the formal/informal education,
and so on. So problem solving is always a team-type activity.” This activ-
ity usually includes aid from physical and mental tools as well as educa-
tion. Moursund believes that “computational thinking and computers fit
into both categories [of tools].” Both formal and informal education can
help people utilize these tools more effectively.

Moursund argued that computational thinking fuses the concepts of
affordance and person with respect to information technology and com-
puters. He spoke about the trend of increasing complexity and performance
power in each generation of computers and how this trend offers new
affordances and more sophisticated problem solving: “You can have a stick
and you can weed your first crops with a stick. If you get a hoe, it’s a much
better tool. But then, with better tools, we move beyond the low-level aug-
mentation or amplification, as it’s usually called. If you get good enough
tools, then you can go shooting off to the Moon and other places.”

Moursund further noted, “What I see in the computer field is that
there are oodles of tools where it doesn’t take any formal education to
learn how to use them. . . . So when we talk about computational think-
ing, we have oodles of tools which are just part of our everyday society
and life, and which people can learn to use at a level which is personally
satisfying, extends their capabilities and so on, and you don’t have to go
to school to learn them. That seems to me like a pretty important idea.”
He went on to say that in many aspects of computing and computational
thinking, many people are learning on their own and learning from each
other and focusing on “learning things that they want to do and need to
do versus the deeper level of learning we’re looking for. . . .”

Roy Pea concurred—“If you actually look at what people do when
they’re doing computational thinking, as an ethnographer, you see them

4 David Perkins, 1992, Smart	 Schools:	 Better	 Thinking	 and	 Learning	 for	 E�ery	 Child. New
York: The Free Press.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

FIGURE 2.1 Perkins on problem solving. SOURCE: Adaptation by David
 Moursund (workshop presenter), University of Oregon, from David Perkins,
1992, Smart	Schools:	Better	Thinking	and	Learning	for	E�ery	Child, New York: The
Free Press.

Figure 2-1 redrawn as vectors

Problem-
Solving
Team

Tools to extend
mental capabilities

Tools to extend
physical capabilities

Education, training, and experience to build one’s mental
and physical capabilities to effectively use mental and

physical tools individually and as a team member

immersed with a whole set of tools, they’re constantly thinking about the
things that have particular properties, affordances—they’re working with
colleagues in a particular way. They’re getting feedback from a whole host
of resources there.”

If	you	give	everybody	a	calculator,	math	doesn’t	go	away.	Thinking	and	
doing	are	needed	to	represent	and	help	solve	problems.	If	you	get	better	
tools,	you	can	do	better	at	it.	What	the	computer	is	doing	is	giving	you	the	
better	tools,	dealing	with	harder	problems.

—David	Moursund

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

2.6 COMPUTATIONAL THINKING IN CONTExTS
WITHOUT PROGRAMMING A COMPUTER

Marcia Linn and several other participants discussed computational
thinking as a way of approaching complex problems that permeate every-
day mental activities made necessary because of the ubiquity and increas-
ing omnipresence of computational tools throughout modern life. This
way of thinking involves using methods from computer science such as
debugging, search algorithms, and test cases to address everyday prob-
lems involving technological resources. Put differently, the affordances
offered by modern information technology require reasoning skills such
as debugging, test cases, and logical skills to solve everyday problems.

Linn pointed out that even very young children appreciate the Inter-
net and have a sense of search, and they often take advantage of electronic
devices such as cell phones and computers to access information they
want. When 2-year-old Ben wanted to explain to his friend how a trapeze
works, he demanded that his mother show his friend a trapeze on her cell
phone. He liked the first example but wanted her to try some of the other
search results. After a few minutes the battery of the phone died. Ben
told his mother to turn the phone back on. He was frustrated when she
tried to explain that it would take time to charge the battery. Ben already
understands the power of the Internet and the nature of keyword search.
Like many of us, he is confused about the limits of electrical power.

At the other end of the age spectrum, Linn used the example of
 retirees taking advantage of social networking opportunities to plan trips.
Jack reported that he upgraded his computer to use sites like Trip Advisor
to find hotels. He gained the ability to select sites that primarily serve lei-
sure travelers rather than business travelers. He has begun to analyze the
sites that support advertising—and worries that they promote the adver-
tised products. He prefers sites where the qualifications of the reviewers
are available. He has developed a theory about who posts on these sites
and has started to realize that many people really do not articulate their
 criteria. Jack is using his debugging skills.

Joshua Danish presented an example of young students engaging in
computational thinking concepts without using computers in a project on
honeybees—specifically to understand and represent the process honey-
bees use to collect nectar for honey. This process involves a beehive sending
out scouts to locate flowers with nectar; these scouts then return to the hive
and do a “dance” to communicate the location of the nectar to the other
bees. Other bees then return to the specified location to harvest the nectar.

Danish said, “Here [in Figure 2.2] is a student’s representation in
four panels of that process, and it’s actually quite nice. Now, there are
limitations to that. But we’re starting to see some of the skills and the
resources—and this is a 7-year-old’s drawing—and when they’re actually

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

2-2 fixed image

FIGURE 2.2 A dance of the bees. An elementary student’s four-panel drawing
modeling a complex sequence—the process bees use to communicate the location
of a viable source of nectar. SOURCE: Joshua Danish, Indiana University.

starting to be quite capable of reducing and extracting that process and
describing it for us.”

In the first phase of activity, students engaged in an individualized
“creation of representations”—that is, each student drew his or her own
detailed picture of a single bee (subject to certain minimum requirements,
such as having three body sections and including the proper names of key
parts of the bee) and also a series of four panels (Figure 2.2) depicting the
process bees use to find nectar, collect nectar, and then communicate
the location of the nectar to the hive.

Next, the children were asked to engage in “participatory model-
ing” of the bees collecting nectar, an idea first introduced as such by Uri
Wilensky and Mitchel Resnick.5 Children produced a skit in which they
represented flowers and bees and proceeded to demonstrate how a bee
goes about collecting nectar. Danish argued that this activity allows stu-
dents “to leverage their ability and make sense of talk and gesture and
body position as a way of refining their model and understanding the
parts of it that they may not have formal language for yet.”

For example, the students were able to refine their models through
repetition, “debug” their models through collaboration, and explore
sequencing. Danish described a boy representing a bee that had just
checked for nectar—his peers did not actually see him using a proboscis,

5 Uri Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems
Perspective to Making Sense of the World,”	 Journal	 of	 Science	 Education	 and	 Technology
8(1):3-19.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

and so “they were challenging his model, saying, we don’t see the part of
the bee that’s important for that part of the process.” The teacher is also
able to introduce the concepts of sequencing and algorithms by engaging
in a dialog with the student:

T: All right, well, there isn’t any nectar at that flower. So if you were
a bee, would you stay at the flower?

S: No.
T: What would you do?
S: I would go back, and not do a dance because I don’t know where

to find nectar.

According to Danish, this exchange illustrates how the student is

engaging “in a context where he’s able to talk about the sort of if-then
choices of the algorithm that the bees follow as they go back collecting
nectar. And that can then be phrased in a way that’s incredibly relevant
to him.”

In the third phase, students engaged in participatory simulation in
which they had to instruct other children to carry out the search for
nectar as the bees would. As they tried to act the instructions provided
by the scout bees, the children engaged in a real-time debugging process
by updating their instructions as they went along. This phase forces the
students into “thinking about the implications of their modeling choices.
As these students are running around and not quite finding the nectar,
it’s easy for this boy to say, ‘It’s by the red rake.’ So there’s some online
monitoring of whether or not his instructions or his program were suc-
cessful. But then there’s also some retroactive consideration, some nice
reflection on whether that model did the job. So the student’s then able
to say, ‘I should have said by the handle of the rake.’”

Only in the fourth phase did students encounter any actual computer
technology—with the help of an instructor, students modeled the process
and predicted outcomes using a program called BeeSign, developed to
provide a simulation environment for students to model bee searches.

A second example of computational thinking in a non-IT context was
provided by Ursula Wolz, who reported on an effort to teach computa-
tional thinking skills to middle school students through the journalistic
use of interactive media. She described the project as focusing on a “non-
didactic collaborative model of problem solving.” Journalism provides an
attractive context for students who do not consider themselves technically
inclined.

Wolz argued that journalism mirrors many of the processes involved
in working with computers, especially programming. “In journalism,
one must pitch a story, research it, interview, collect data, shoot video,

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

write, edit, send it to the editor, re-write, add sidebars, resubmit, fact
check, debug the story, and loop until the editor signs off on it. If one
assumes the computer acts as an editor, then one can take note of a very
familiar series of activities involved in computational thinking.” The stu-
dents had news teams, supervised by a teacher and guidance counselors,
that worked to produce an online magazine. The students researched,
interviewed, and wrote stories, and they created video and animation in
Scratch. They also successfully used the computing environment used
to support the course to collaborate, write, edit, and publish multimedia
stories as part of the journalism process.

A third example of computational thinking without computers was
provided by Tim Bell, who described the Computer Science Unplugged
Project.6 His talk included a couple of illustrations:

• User	interfaces. Students examine the interface provided in a digital
watch. In many digital watches, a button is included that turns the watch
face from a clock to a stop watch, and another button that starts and stops
the stop watch. According to Bell, “Suddenly the kids realize that this is
a very simple interface, which they probably didn’t even think was an
interface, on their wrist.” This realization empowers them to recognize
interfaces in other objects and apply learned concepts when interacting
with those objects. User interfaces are an important element of compu-
tational thinking because they create a well-defined decoupling between
the parts of the system that interact directly with users and the rest of the
system. User interfaces thus afford a structured and systematized method
of entering input into a program that in turn affects its behavior. User
interfaces also afford users such methods for seeing program outputs.

• Routing. Each student wears a T-shirt of a different color (Fig-
ure 2.3). Corresponding to each color are two pieces of fruit, and every
student except one starts with two pieces of fruit. One student starts with
only one piece of fruit of the appropriate color. The goal is to have both
pieces of fruit end up in the hands of the child with the corresponding
color shirt; that is, “the oranges go to the girl with the orange T-shirt and
the green apples go to the girl with the green T-shirt,” and so on. The
constraint on any method of passing fruit is that each student can only
pass something to someone who has an empty hand, and he or she can
only pass something to a neighbor. This puzzle is similar to the kinds of
problems that a computer scientist might face, and students can experi-
ment with different routing topologies. Routing is an important element

6 Tim Bell, Ian H. Witten, and Mike Fellows, 2006, Computer	Science	Unplugged:	An	Enrich-
ment	and	Extension	Programme	 for	Primary	Aged-Children. Canterbury, New Zealand: Com-
puter Science Unplugged.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

FIGURE 2.3 Routing fruit (packets). SOURCE: Tim Bell, University of Canterbury-
Christchurch, New Zealand.

of computational thinking because it encapsulates the idea of how infor-
mation can be passed in different paths through intermediate nodes to a
specified final destination.

A third example of computational thinking without the use of tech-
nology per se was provided in a personal anecdote from Owen Astrachan.
He described different solutions to a word puzzle in which the problem
solver must change a given five-letter word (e.g., “white”) to another five-
letter word (e.g., “house”) by making only a single letter change at each
step, subject to the constraint that each intermediate word must also be a
real dictionary word. Astrachan’s solution was based on making a graph
and doing a breadth-first search through that graph. His solution required
16 steps. His brother, an English major, solved the problem in 15 steps,
apparently without using computational thinking. Astrachan then asked
why, and saw that his brother’s solution was based on the fact that his
brother’s dictionary had more words in it—“sough” was in his brother’s
dictionary but not in his. With the addition of that word to Astrachan’s
solution, he was able to solve the problem in 14 steps. Astrachan said that
this story illustrates computational thinking in action and computational
thinking in context, and helps to demonstrate “what’s going on with
people around us who don’t think computationally.”

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

Allan Collins argued that one key feature of computational think-
ing is representational competence, which he described as the effective
application of computational means of representation of knowledge.
The illustration Collins offered was a low-tech experiment in develop-
ing representational competence in fourth graders who were asked to
“find representations for the heights” of various fast-growing plants.
The children were broken up into several groups, and each group of kids
would try to come up with its own representations. While there were a
number of ideas considered, the class eventually decided to “use a bar
graph with small ranges of plants . . . like from 10 inches to 12 inches,
and they would have a bar for each two inches.”7

And	then	in	terms	of	the	survey	results	that	we	got,	the	majority	.	.	.	said	
the	most	important	thing	they	learned	was	programming	and	video	edit-
ing.	And	half	 said	 that	 their	best	work	was	 in	programming.	And	unlike	
some	of	the	kids	that	Alan	[Kay]	and	Roy	[Pea]	were	talking	about,	these	
are	working-class	children	who	would	not	necessarily	have	access	to	this	
level	of	computing	unless	it	was	through	a	program	like	this.	

—Ursula	Wolz

As	 computation	 came	 in,	 it	 started	 producing	 all	 sorts	 of	 new	 forms	 of	
representation,	 both	 structural	 forms	 and	 process	 forms,	 particularly	 the	
dynamic	process	 forms	 .	 .	 .	 things	 like	production	 rules	and	 frames	and	
semantic	 networks	 and	 the	 constraint-satisfaction	 systems	 were	 all	 new	
ways	to	think	about	representing	knowledge.	.	.	.	And	so	my	claim	is	that	
one	of	the	things	that	we	should	be	concerned	about	is	how	to	get	this	kind	
of	representational competence.	We	need	to	start	thinking	more	seriously	
about	how	we	can	convey	some	of	that	power.

—Allan	Collins

7 Collins also cited the work of Rich Lehrer and Leona Schauble and their work with really
young kids and getting them to think about how to represent distributions and statistical
reasoning. See Richard Lehrer and Leona Schauble, 2004, “Modeling Natural Variation
Through Distribution,” American	Educational	Research	Journal 41(3):635-679.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

2.7 THE ROLE OF COMPUTERS AND TECHNOLOGy

An obvious question arises in the consideration of computational
thinking. How and to what extent do computers per se relate to compu-
tational thinking?

A first point is that the term ”computer” can refer to a mechanical or
an electronic computer, or to a human computer (indeed, the first con-
notation of the word ”computer” was that of a human who performed
mathematical computations). So a computer is an essential aspect of com-
putational thinking to the extent that it is an agent that can deterministi-
cally interpret a set of instructions in an unambiguous manner.

A more common interpretation of the question relates to whether or
not a competent computational thinker is necessarily facile with the use of
modern information technology to solve problems and to do other useful
things. Workshop participants observed that information technology has
advanced dramatically throughout its history, and rapid change is likely to
characterize future information technology. Moreover, computers and com-
putation will become increasingly important to society and across a number
of disciplines. As one participant put it, “I think we are here today to think
about what everybody should know” in the face of such rapid change.

Many participants argued that the ability to develop facility with
new technologies is a part of computational thinking. Computational
thinking in this view involves finding the right technology for a problem
and applying the technology to resolve the problem. This might require
learning how to use the appropriate technology, debugging the solution,
and communicating the outcome. For example, to represent a complex
phenomenon such as an ecosystem, the moves in a chess game, or the
trajectory of a baseball, the computational thinker might explore alterna-
tive technologies, select a candidate, and test its effectiveness. This skill is
essential in undergraduate programs, useful in everyday life, and grow-
ing in importance in precollege courses. In this view computers and other
computational devices enable computational thinking.

One participant argued that what makes computational thinking
especially relevant is that computers, whether mechanical or human, are
the agents for executing “computational thoughts,” and computers have
become partners and collaborators in discovery. Further, unlike household
appliances or an automobile, computers are relevant to a vast number of
different applications, such as searching for information, developing a
budget, tracking individuals, composing music, and so on. While not dis-
agreeing with this sentiment, others at the workshop argued strongly that
because computers are not restricted to mechanical computers but instead
can refer to human agents, computational thinking becomes relevant to
individuals outside the context of mechanical computers—and thus to a
much larger cross section of society.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

2.8 A COLLABORATIvE DIMENSION TO
COMPUTATIONAL THINKING

Modern information technology is at least as much about dispersed,
real-time communication as it is about automation. Edward Fox noted
that “what we see happening a lot today, especially with the Web and
multimedia and other things, is that the [computational thinking] reflec-
tion takes place with the help of other people, too. We can share videos
and we see what other people did and we comment on those. We have
Web 2.0 and so forth, where these become social processes, and debugging
becomes part of our society, as well as of solving our problems.”

Building on this notion, a number of participants suggested that com-
putational thinking could be regarded as a group phenomenon as well as an
individual one. That is, groups, too, can engage in computational thinking
to develop representations, debug processes, and so on, resulting in a col-
lective process of discovery that is richer than that of any single individual.
Ursula Wolz argued this point when she said that “one of the things that
annoys me is when we talk about some of the great discoveries that hap-
pened by an individual—they never happened by an individual. There is a
huge body of literature emerging, for example, in terms of what Leonardo
did and who was around, and the same thing about Newton. . . . We have
to keep reminding ourselves that it isn’t about ownership. It’s about the
community and the culture that’s around you that allows you to have the
ideas.”

Allan Collins related collaboration to the notion of computational
thinking as a fundamental skill analogous to reading and writing literacy.
He pointed out that developing reading and writing literacy is not simply
a matter of technical skills, but also arguably entails a social community.
In Collins’ words, “We learn from the company we keep. . . . People will
learn to read and write if the people they admire and care about, the
communities they belong to, are readers and writers.” Thus, he argued,
achieving a comparable literacy with respect to computational thinking
will require the fostering and development of communities that value
computational thinking—some of which exist today, though not in large
numbers and not widely accessible.

Kevin Ashley introduced an example of collaborative computational
thinking from the legal field. Over time, the legal community performs
testing and adaptation of laws in response to changing social contexts.
He pointed out, “Often the hypotheticals are informed by changes in
societal values over a period of time; this is dynamic. The old law has to
be reevaluated, reinterpreted in the context of the changing social values.
The hypotheticals—the specific examples that they try out to see how
that would be dealt with under the proposed rule and whether that is a

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

good outcome or not in light of those values—are the dynamic engine for
adapting the rules and interpretations to the new circumstances.”

In	some	sense,	I	think	the	message	that	Roy	[Pea]	is	delivering,	that	I,	[and]	
Mitchel	 [Resnick]	are	delivering,	 is	 that	we	need	 to	 start	 thinking	about	
how	to	create	communities	of	people	who	care	about	computational	think-
ing	and	who	are	doing	it.	

—Allan	Collins

2.9 WHAT COMPUTATIONAL THINKING IS NOT

Several participants suggested that it might be easier to articulate what
computational thinking is not. For example, Robert Constable argued that
computer literacy—traditionally seen as the ability to use specific programs
or features of given computer systems such as Word or Excel—does not
demonstrate the ability to engage in computational thinking. (By contrast,
he noted that one can know a great deal about computational thinking
and computing concepts without knowing much about computers beyond
how to get on the Internet and use an Internet browser.)

Along with a number of other workshop participants, Gerald Sussman
argued that computational thinking was also not equivalent to computer
science. Although computational thinking and computer science share
some elements, he said that “computational thinking is a certain part
of computer science. Mathematicians talk about mathematical	 thinking.
Statisticians talk about statistical	thinking. I think that computer scientists
should talk about computational	thinking.” To illustrate, he said that “scien-
tific thinking is about apples and oranges and how they may be different
or the same. Mathematical thinking is about spheres and where they have
areas and volume and the fact that they may involve a particularly high
number of dimensions. Computational thinking is about how a group of
people can cut and share an apple so that each person feels he or she got
a fair share of the apple.”

I	know	some	people	have	been	saying	things	like,	computational	thinking	
is	a	new	way	to	define	computer	science.	Computational	thinking	is	a	part	
of	computer	science,	but	is	not	the	whole	story.

—Peter	Denning

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

BOX 2.3
Great Principles of Computing

In	2003,	Peter	Denning	 initiated	 the	“Great	Principles	of	Computing”	project,	
whose	purpose	is	to	express	the	activities	of	computer	science	in	a	framework	that	
is	similar	 to	 that	which	guides	scientists	 in	other	domains	 in	expressing	what	 it	 is	
that	they	do.	During	the	workshop,	Denning	said	that	he	and	his	colleagues	are	very	
interested	in	“the	fundamentals	of	the	field,”	the	things	that	are	“timeless	and	.	.	.	also	
illustrate	the	depth	and	richness	of	the	discourse	that	we	have	built	up	in	computing	
over	 the	years.”	Denning’s	Great	Principles	of	Computing	break	down	 into	seven	
categories:	 computation,	 communication,	 coordination,	 recollection,	 automation,	
evaluation,	and	design.	

Denning’s	framework	portrays	computer	science	as	a	combination	of	engineering,	
mathematics,	and	science.	During	the	workshop,	Denning	argued	that	a	legitimate	
science	is	based	on	“knowledge,	experimental	methods,	reproducibility,	surprising	
predictions	complemented	by	performing	art,	and	studies	of	natural	objects,”	and	
hence	that	computer	science	should	be	included	under	this	rubric.	He	acknowledged	
that	 “there	has	always	been	controversy	about	whether	computer	 science	 studies	
natural	objects,”	but	expressed	the	belief	that	“other	fields	are	now	accepting	that	
information	processes	are	part	of	the	basic	aspects	of	nature.”	He	further	suggested	
that	this	acceptance	stems	from	evolving	the	definition	of	computer	science	away	
from	a	strict	 focus	on	computing	machines—“We	are	coming	to	see	computation	
as	the	principle	and	the	computer	as	the	tool.	Instead	of	the	computer	being	at	the	
center	of	what	we	study,	computation	is	at	the	center	of	what	we	study.	That	shift	in	
perspective	allows	us	to	see	computation	in	nature.”

Other participants felt that computational thinking was the outcome
of a natural evolution in our understanding of computer science. For
example, Peter Denning suggested that computational thinking is not the
same as previous conceptions of computer science, but rather another
instantiation of the discipline (Box 2.3).

Larry Snyder noted that computational thinking was not the same as
fluency with information technology (FIT)8 (Appendix C), although they
do share many commonalities (Box 2.4). For example, many of the fea-
tures often ascribed to computational thinking are also part of a fluency
curriculum that include both concepts and capabilities. These concepts
include algorithmic thinking, managing complexity, debugging, thinking
technologically, universality, and so on. Indeed, he suggested that the

8 NRC, 1999, Being	 Fluent	 with	 Information	 Technology, Washington, D.C.: The National
Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed
December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

BOX 2.4
On the Relationship Between Computational Thinking

and Fluency with Information Technology

A	 person	 who	 is	 highly	 capable	 of	 computational	 thinking—a	 computational	
thinker—is	 one	 who	 has	 adopted	 the	 thinking	 habits	 and	 reasoning	 methods	 of	
computer	scientists.	A	person	who	is	fluent	with	information	technology	is	one	who	
has	 adopted	 a	 specific	menu	of	 facts,	 concepts,	 and	 thinking	habits	 of	 computer	
scientists.	In	this	sense,	computational	thinking	is	broader	than	fluency.	

On	 the	 other	 hand,	 because	 the	 fluency	 menu	 includes	 algorithmic	 thinking	
and	 a	 variety	 of	 intellectual	 capabilities	 such	 as	 sustained	 logical	 reasoning	 and	
debugging,	 there	 is	 tremendous	overlap	between	computational	 thinking	and	flu-
ency.	When	discussing	specific	topics	(as	opposed	to	levels	of	understanding	of	a	
topic),	there	are	strong	similarities	between	the	intellectual	approaches	embedded	
in	each.	Both	emphasize	abstraction,	algorithmic	thinking,	problem	solving,	logical	
reasoning,	levels	of	abstraction,	universality,	debugging,	technological	point	of	view,	
representations,	and	so	on.	Such	strong	similarities	are	why	the	knowledge	needed	
and	acquirable	as	“basic	computational	thinking”	would	likely	approximate	what	is	
known	by	a	person	fluent	with	information	technology.

The	primary	difference	between	computational	thinking	and	fluency	is	in	focus.	
In	one	view	of	this	difference,	the	primary	emphasis	of	pedagogical	efforts	in	fluency	
is	quite	clearly	on	the	general	population,	and	there	is	relatively	little	emphasis	on	
its	applicability	to	advanced	topics	of	study.	By	contrast,	computational	thinking	is	
believed	to	be	valuable	across	the	board,	both	for	the	everyday	citizen	and	for	the	
advanced	professional.	Indeed,	many	of	the	examples	of	computational	thinking	that	
advocates	invoke	are	derived	from	the	application	of	computational	thinking	in	ser-
vice	of	these	advanced	professionals	in	a	variety	of	problem	domains.	Another	view	
of	the	difference	between	computational	thinking	and	fluency	sees	computational	
thinking	as	emphasizing	conceptual	understanding	and	fluency	as	emphasizing	appli-
cations	across	a	broad	range	of	topics	and	problem	domains.

Another	difference	is	that	whereas	fluency	prescribes	a	variety	of	skills	that	enable	
a	citizen	to	use	certain	computer-enabled	devices	daily,	computational	thinking	is	not	
concerned	at	all	with	such	skills—such	skills	are	assumed.	Fluency	does	include	a	set	
of	10	concepts	about	computing	and	10	intellectual	capabilities	that	include	many	of	
the	habits	of	mind	often	captured	in	descriptions	of	computational	thinking,	but	an	
important	purpose	of	including	these	concepts	and	capabilities	is	to	support	lifelong	
learning	about	computing.	

Computational	thinking	and	fluency	should	not	be	placed	in	opposition	to	each	
other,	 though	 they	are	definitely	not	 the	 same	 thing.	Computational	 thinking	 is	 a	
grand	vision	in	which	people	acquire	the	thinking	habits	of	computer	scientists	com-
mensurate	with	their	levels	of	education;	fluency,	though	not	originally	formulated	
this	way,	can	be	seen	as	a	practical	implementation	of	computational	thinking	for	
all	citizens.	This	difference	reflects	the	differing	origins	of	the	studies	involved—the	
Being Fluent	report	(National	Research	Council,	Being Fluent with Information Tech-
nology,	National	Academy	Press,	Washington	D.C.,	1999)	and	its	characterization	
of	fluency	with	 information	 technology	emerged	from	responding	 to	a	request	 for	
recommendations	on	what	the	public	should	know	about	information	technology,	
while	the	present	report	on	computational	thinking	emerged	from	a	vision	of	how	
beneficial	wider	use	of	thinking	like	a	computer	scientist	would	be.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

WHAT	IS	COMPUTATIONAL	THINKING?	 ��

primary difference was the fact that FITness includes a skills component,
which is designed to enable individuals to use common current applica-
tions. By contrast, computational thinking tends to put less emphasis on
specific technical skills in favor of broad problem-solving abilities.

Snyder also called attention to a philosophical evolution regarding
computing-related teaching. The FITness report was published in 1999,9

when it was controversial to teach conceptual material regarding informa-
tion technology to nonmajors. Snyder argued that today, such teaching
is routine, at least in 4-year university programs. He thus proposed the
following sketch for this philosophical evolution:

• The general public is uninformed about and indifferent to informa-

tion technology.
• The general public recognizes the need for computer literacy—how

to use a computer—a necessary skill as computers begin to penetrate into
everyday life.

• The general public begins to see the limitations of skills-only
training, which leads to a desire for FITness—fluency with information
 technology—that exposes citizens to the essential concepts and capa-
bilities of information technology. The skills of FITness are gradually
de-emphasized as the citizenry learns to pick up without formal instruc-
tion the skills needed to use computer applications.

• The general public is increasingly exposed to and literate with the
skills of how to use information technology, thus eliminating the need
for much formal instruction in skills. Computational thinking, which
to first order comprises FITness without the skills component, becomes
the emerging focus of formal education. Computational thinking then
expands the array of concepts and capabilities beyond those included in
the original 1999 formulation of FITness.

Others saw computational thinking as a way of thinking that is quali-
tatively distinct from fluency and emerging across a broad array of disci-
plines. The ubiquitous nature of computational tools impacts all aspects
of modern life and requires people to adopt new modes of thinking to use
these tools effectively. These modes of thinking are emerging not just in
computer science but in every field.

9 NRC, 1999, Being	 Fluent	 with	 Information	 Technology, Washington, D.C.: The National
Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed
December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

I	would	like	to	propose	that	this	is	actually	a	three-dimensional	problem.	
We	 have	 aspects	 of	 computational	 thinking	 or	 computing,	 we	 have	 the	
other	disciplines	that	we	are	talking	about	connecting	with,	and	we	have	
pedagogy,	 the	different	 levels	 and	 so	 forth.	We	are	 trying	 to	populate	 a	
three-dimensional	matrix	with	the	best	situations	in	each	of	these	different	
settings	and	figure	out	which	ones	are	the	ones	that	work.	

—Edward	Fox

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

3

Looking Outward

3.1 THE RELATIONSHIP OF COMPUTATIONAL
THINKING TO MATHEMATICS AND ENGINEERING

For some, computational thinking is careful reasoning about the
 methods of doing things that complements and combines mathematical
and engineering thinking. The special relationship of computational think-
ing to mathematics is historical, but looking toward the future, compu-
tational thinking will be critical in the social and life sciences as well.
Computational thinking currently plays an important role in psychology,
linguistics, graphics, and economics and is playing an increasing role in
complex engineering efforts such as nanoscience and health. Computa-
tional thinking will apply much more broadly than most of the other
scientific modes of thought. The conceptual space to which computational
thinking applies is much broader than most people imagine, and many of
the advances are independent of the usual constraints on natural science.

3.1.1 Mathematical Thinking

Computational thinking is closely related to, but not identical with,
mathematical thinking. Both are deeply involved with abstraction and
reasoning with recognized simplified models. Gerald Sussman argued
that computational thinking and mathematics both have an “underlying
linguistic structure . . . [that is] language for precise descriptions and about
how to do things and language describing the structure of things . . . such
languages are essential to clear thinking. But mathematical thinking is

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

more about abstract structure than abstract methodology.” Jeannette Wing
also added the qualifier that while similar to mathematical thinking in
many respects, computational thinking does have to consider the physical
constraints of the underlying computer (whether machine or human).

Paulo Blikstein highlighted that since both mathematics and computa-
tional thinking are tools for representation, there may be an opportunity to
use computational thinking to represent complex processes and relation-
ships in a more comprehensible manner than mathematics. One example
he provided came from his observations of how engineering courses were
taught. He immediately noticed that within a common engineering course,
mathematical equations appear “approximately one every 2 minutes.”
Blikstein added that often these equations are around 10 variables long,
and insufficient time is allocated to actually explain the equations. He
thinks that “this speaks to the failure of one particular way to think about
knowledge and one way to represent knowledge, which is representing
knowledge as differential equations and mathematical forms in general.
. . . Computational representations might offer a lot of advantages over
mathematical representations that we might be able to explore.”

Sussman gave an example of teaching students how to analyze elec-
trical circuits. He noted that the typical pedagogical approach for this
problem is to teach the node method—which in practice many students
find difficult to implement in any practical way in solving problems in cir-
cuit theory. However, presenting students with a well-written computer
program designed to solve such problems as an expert would enable
them to internalize the program themselves and execute it much as that
expert would.

3.1.2 Engineering

Several workshop participants recognized an overlap between engi-
neering and computational thinking. Even if it is not formally accepted
in the engineering community, engineering schools are “doing a lot of
computational thinking,” said Blikstein. Wing argued that both compu-
tational thinkers and engineers think about design, constraints, safety,
performance, and efficiency. Design issues considered include “simplicity,
elegance, usability, modifiability, maintainability, and cost. Wing said that
“computational thinking is guided by particular concerns/constraints
such as speed, space, and power [and computational thinking is] more
like physics and engineering in this respect. . . . [It is] these kinds of con-
cerns that determine how good an abstraction is. When we are defining
abstractions, of course, it is very similar to engineering thinking.”

At the same time, computational thinking is unlike engineering. As
Wing pointed out, “In software we can basically do anything; we can

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

LOOKING	OUTWARD	 ��

actually build virtual worlds that are unconstrained by physical reality.”
 Sussman argued that as contrasted to engineering involving physical
objects, “computational thinking is engineering where we are not given
a hard time by the fact that the physical world produces tolerances, that
there is error in the construction of parts. As a consequence, instead of
being limited as we are in mechanical or electrical engineering by toler-
ances and that sort of thing, we are only limited by the things we can think
about, by the complexity that we can control in our minds.” In other words,
computational thinking invents the abstractions that it manipulates.

Peter Lee noted that several of the 14 engineering grand challenges
for the 21st century identified by the National Academy of Engineering
had a strong information technology/computer science/computational
thinking flavor to them. These included reverse engineering of the human
brain; advancing personalized learning; securing cyberspace; enhancing
virtual reality; advancing health informatics; and engineering the tools of
scientific discovery.1

One important aspect of the computational thinking–engineering
connection is managing complexity. Engineered systems are becoming
more and more complex. But Bill Wulf noted that software engineering
was arguably the first field to face challenges related to complexity, and
the need to manage complexity is important in computational thinking.
As noted in the Being	Fluent	with	Information	Technology report,2 manag-
ing complexity entails tradeoffs. For example, one solution to a problem
may involve complex design but entail straightforward implementation,
whereas another may involve a simple design but a costly implementa-
tion. A solution will often result in components of a system interacting in
complex, unexpected ways, and the resources available to implement a
solution may be inadequate. Managing such dimensions of a problem’s
solution is an exercise in managing complexity.

So	 I	 like	 to	 think	 about	 computational	 thinking	 as	 complementing	 and	
combining	mathematical	and	engineering	thinking.	For	instance,	we	clearly	
draw	on	mathematics	as	our	foundations.	We	also	draw	on	engineering,	
since	our	systems	actually	operate	in	the	real	world.	

	—Jeanette	Wing

1 See National Academy of Engineering, “Grand Challenges for Engineering.” Available
at http://www.engineeringchallenges.org/. Accessed December 28, 2009.

2 NRC, 1999, Being	 Fluent	 with	 Information	 Technology. Washington, D.C.: The National
Academies Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed
December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

3.2 DISCIPLINARy APPLICATIONS OF
COMPUTATIONAL THINKING

Workshop participants shared their experiences in applying compu-
tational thinking in different fields to illustrate how computational think-
ing might be relevant. Brian Blake described the exchange as “trying to
understand how computational thinking, as it is embedded in computer
science or computational fields, is used in noncomputational fields to
see how what we know in the computational field can be used in other
fields.” The hope was expressed that by describing some of these different
applications, it would be possible to identify concepts of computational
thinking through its application in one discipline that could be utilized
to benefit another discipline and indeed to better define and describe
computational thinking.

• Medicine	 and	 health	 care. Peter Lee described how sequencing
techniques commonly employed in computational thinking can help to
improve the chance of success in matching organ donors. On a small scale,
the task of cross-matching multiple donors and patients is a relatively
simple computational thinking exercise. At the large scale at which the
medical profession would need to perform these matches to improve
donation matching across the nation, this type of matching poses a sig-
nificant intellectual challenge for computational thinking practitioners.
Ian Foster noted that the medical profession is currently trying to cope
with enormous amounts of crucial but confidential data. This information
must be easily accessed and transferred among medical professionals
to improve care but protected from access and misuse by those outside
the medical profession. Foster argued that with the advent of health	care	
informatics, “health care is arguably no longer a medical problem, but a
computing problem.”

• Archeology.	 Edward Fox works with archeologists attempting to
look at trends across different excavation sites. He said that the archeolo-
gists he collaborates with have come to realize that “if you are going to
study archaeological trends across different areas, and the commerce that
takes place between sites, then you have to merge the data and you have
to use common terminology.” For example, archeology often depends on
archived data, where differences in recording protocols, terms, measure-
ment units, and languages make accessibility a challenge.3 Moreover,
archeological researchers need to organize large amounts of qualitative
data so that they can be retrieved computationally. Computational think-
ing approaches to information retrieval, data fusion, and information

3 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner, Prasenjit
Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311 (5763):958-959.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

LOOKING	OUTWARD	 ��

integration are especially useful in this area, since there is a need “to
classify and search for numerical, textual, and visual data simultane-
ously” and a need for “an e-science that marries the interconnectedness
of digital research tools with the introspection enabled by traditional
recordkeeping.”4

• Traffic	 engineering. Modern-day traffic lights are usually run by
computer systems that alternate traffic signals based on algorithms and
embedded sensors and networks. The most effective traffic algorithms
are built using data collected on traffic patterns and other relevant vari-
ables in order to optimize flow. The processes by which these algorithms
are developed and tested involve computational thinking. The methods
skilled drivers may use to navigate them also reflect computational think-
ing. Christopher Hoffmann noted the example of the veteran bus driver:
“The bus driver should know that if he steps on it [the gas pedal] too fast,
he gets stuck at the next traffic light anyway.”

• Cancer	research. Peter Lee noted that agent-based modeling simu-
lations have helped researchers understand that a “tumor is not really a
simple group of cells that have their own agenda. They tend to live in
an environment where the cells nearby sort of form a nurturing matrix
for them and respond to various requests from the tumor for additional
blood vessels, for example, or nutrients or whatever. This is something
that invalidates a lot of the existing medical science and puts it more into
a systems-thinking context, something that I think we [computational
thinking scholars] can contribute to.”

• Public	 policy. An increasingly technology-based society creates
the need for techno-savvy policy makers. For example, important issues
related to information technology regarding privacy, copyright, and spec-
trum allocation are prominent on the public policy agenda, issues for
which an understanding of computational thinking is very helpful. Bob
Sproull illustrated the point by suggesting that a legislator might need an
understanding of computational thinking in order to be a smart customer
of a complicated IT system for the Social Security Administration or the
Internal Revenue Service.

• Music. Peter Lee described a summer program where young
 students attempt to write computer programs that allow computers to
compose original music. The program challenged students to write a
“computer program that could compose or a machine that could take as
input some description of Bach and then produce beautiful music.” The
process of building such systems makes use of computational thinking in
three ways. First, it requires that a programmer analyze and decompose

4 Dean R. Snow, Mark Gahegan, C. Lee Giles, Kenneth G. Hirth, George R. Milner, Prasenjit
Mitra, and James Z. Wang, 2009, “Cybertools and Archeology,” Science 311 (5763):958-959.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

musical qualities into abstract computational thinking concepts. Second,
the program must construct algorithms and programming language that
access and demonstrate the aforementioned musical qualities artificially.
Finally, by observing this process of decomposition and composition, one
can learn more about human intelligence and problem-solving processes.

• Law. Kevin Ashley discussed four ways computational thinking
applications advance the legal practice: logic debugging, testing, model-
ing, and information retrieval.

— Debugging through the reduction or elimination of “syntactic
ambiguity” or “logical ambiguity” is almost always present in any
kind of legal drafting. Whether in statutes, contracts, or insurance
policies, unintentional ambiguities in legal language are common
and must be debugged. Ashley commented that this process involves
“getting the logic right, in a manner that’s kind of similar to what
computer programmers have to do in getting the logic right in a line
of code.”

— The development of good test cases reflects an important simi-
larity between computational and legal thinking—both test proposi-
tions (or statements) against test cases. “Test cases are important in
debugging in programming as well [as in law]—real and hypothetical
counterexamples, exceptions, things like that.” Ashley pointed out
that they can help a legal professional anticipate how successful an
argument is likely to be by simulating the application across various
test cases.

— Modeling complex legal processes and flows can help legal
professionals to understand “the flow of control through a statute,
for the process of statutory interpretation, for predicting outcomes,
for structured arguments.”

— Information retrieval techniques are needed for legal informa-
tion systems that can represent the justifications and context in a
reasonable way. Ashley pointed to the role of precedent, or relevant
preceding judgments in similar cases, in legal arguments. Computa-
tional thinking can help lawyers to develop good targeted searches
based on complex criteria.

Ashley also expressed a caution that computational thinking might lead
to over-mechanization of complex processes. “Legal problem solving is
highly context-dependent in ways that may not be anticipated. As a law
professor, I have to be very cautious about recommending computational
thinking to law students, because it might lead them to focus more on a
mechanical application of a predefined method rather than on the context
and the opportunities in the actual problem to be solved. I have an obliga-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

LOOKING	OUTWARD	 ��

tion not to mislead. We don’t want mechanical jurisprudence here. I think
this caution probably applies in a lot of other areas as well.”

• Al Aho referred to Christos Papadimitriou’s talk “The Algorithmic
Lens: How the Computational Perspective Is Transforming the Sciences”5

as an exemplar of a compelling story about the power of computational
thinking. Briefly, Papadimitriou presented a number of vignettes from
mathematics, physics, biology, economics, and social science to show the
unifying power of computation across these disciplines:

— In mathematics, the classic P versus NP from theoretical com-
puter science was named as one of the seven Clay Institute Millen-
nium Problems,6 which pose the deepest, most fundamental, and
consequential open problems in the field.

— In physics, quantum computation provides a method for
exploring and testing the limits of quantum mechanics. Further, how
phase transitions can be explained in statistical mechanics turns out to
have deep similarities to the way that certain randomized algorithms
converge exponentially faster when their parameters are in the right
range (analogous to the temperature/pressure of a physical system
being at the critical point of a transition).

— In biology, understanding the mechanism of evolution can be
productively approached as an algorithmic problem. Using optimiza-
tion theory and search to compare simulated annealing and genetic
algorithms as ways to sketch landscapes of fitness functions, it can be
shown that genetic algorithms tend to find plateaus in the landscape,
while simulated annealing finds peaks. Plateaus in the landscape
have the characteristic of being relatively broad and thus relatively
stable for many genetic combinations. Since simulated annealing is
analogous to asexual reproduction and genetic algorithms to sexual
reproduction, this approach suggests that rather than maximization
of fitness, sexual reproduction favors adequacy, or more specifically
the ability of a genetic variant to function adequately in the presence
of a wide variety of genetic partners.

— In economics and social science, the Internet—an IT artifact
constructed but never designed—must be studied using the methods
of natural science (e.g., observation and experimentation) and in the
context of the complex social system it enables and serves. It is thus
an ideal test bed for sociological analysis and experimentation.

5 Christos H. Papadimitriou, 2009, “The Algorithmic Lens: How the Computational Per-
spective Is Transforming the Sciences.” Available at http://www.scivee.tv/node/10204.
 Accessed December 28, 2009.

6 For more information see Clay Mathematice Institute, “P vs NP Problem,” available at
http://www.claymath.org/millennium/P_vs_NP/, accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

Complementing these perspectives, a number of participants includ-
ing Bob Constable noted the importance of acknowledging a two-way
street for connecting computational thinking to various disciplines. That
is, it is not only that other disciplines can benefit from the use of compu-
tational thinking in their respective domains—it is also the case that the
computer science and information science disciplines from which much of
computational thinking is derived benefit from understanding the basis
of knowledge creation in those other disciplines. Indeed, those other disci-
plines provide a context for computational thinking that often leads to new
discoveries in computer science and information science themselves.

3.3 COMPUTATIONAL THINKING ACROSS
DIFFERENT DISCIPLINES

The subsections below are organized around different elements of
computational thinking that have widespread application in multiple
disciplines.

3.3.1 Problem Solving/Debugging

Several speakers emphasized debugging of systems as an important
application of computational thinking. In the real world, people often
encounter systems with which they are unfamiliar and whose internal
workings they do not understand. Robert Sproull pointed out that when
humans encounter such systems, they often attempt to establish “a known
state” of the system or a state of functionality that they find familiar or
intuitive. This behavior is an aspect of modeling the unfamiliar system in
their minds, despite the fact they may not necessarily know what sorts of
algorithms are inside.

To develop these models and identify known states, an individual
(or group) builds on previous experience and encounters with similar
systems to generate hypotheses about how it works, about what its parts
are, and so on. Debugging can then be done in a variety of ways. One can,
for instance, adjust parameter settings to attempt to debug a system.

You	know	something	about	debugging	that	you	have	learned	from	dealing	
with	even	more	complex	things.	It	carries	over	as	a	set	of	techniques,	not	
just	because	it	was	your	computer	program	that	you	were	debugging	rather	
than	a	dishwasher.	

—Robert	Sproull

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

LOOKING	OUTWARD	 ��

3.3.2 Testing

In the sense used here, testing refers to empirical activities that provide
information about whether and how a software artifact or system performs
in accordance with its performance requirements. For all but the simplest
artifacts, it is not feasible to test a system for all possible inputs, and so
good testing procedures call for test suites, which generally involve typi-
cal cases, boundary cases, and potential failure conditions. For a listing
of different kinds of testing appropriate at different stages in an artifact’s
lifetime, see http://www.softwareqatest.com/qatfaq1.html#FAQ1_10.

Children encounter many opportunities to engage in testing. One
participant used the example of a robotics competition to explain how
students engage in testing. Robots are designed to perform specific tasks,
and designers must test their performance. Even if there is no computing
inside the robot, Sproull noted, “even if it’s just a joystick driving a servo,
you have to figure out how to test it.”

3.3.3 Data Mining and Information Retrieval

Popular culture often describes the modern society in a constant state
of information overload. Computational thinking provides intellectual
tools to help manage information. For example, a computational thinker
will understand a variety of ways for retrieving information. Edward Fox
commented that computational thinking can help people who are access-
ing lots of information from a number of data sources to represent it in
some common way and to find ways to communicate their results.

 3.3.4 Concurrency and Parallelism

Ursula Wolz described a number of ways to expose students to the
computational concepts of concurrency and parallelism. For example,
a college junior majoring in music took Wolz’s introductory course to
fulfill a quantitative reasoning requirement. Wolz’s course uses Scratch,
an application for manipulating animated characters, and according to
Wolz, “the first thing he ran up against was the problem of synchronicity
between music and animation.” With a few simple examples (offered by
a more advanced student), the music major said, “I get it.” Wolz offered
a second example of a sixth-grade student who worked on animation of
comparable sophistication using PowerPoint. In both cases, Wolz sug-
gested that their successes in understanding concurrency and parallelism
were due not so much to the Scratch graphical environment as to the
metaphors that help convey understanding of the underlying concept.

Mitchel Resnick described a simple programming exercise in which
the user choreographs a dance for an animated cat. The “code” is struc-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

tured to represent interlocking blocks. Each block contains a specific set
of instructions. For example, if a user wants the sound of drums followed
by the cat moving forward, then she would take the drum block, inter-
lock the forward step block, and indicate the number of steps forward.
In this particular activity, users can see for themselves how program-
ming, sequencing, algorithmic thinking, and parallel thinking play out.
In Resnick’s words, “Parallelism comes very naturally. If I say, while it’s
doing that, I also want to keep changing the color . . . [then] I just have
another stack that says I want to forever change the color. So it takes some
of the computational ideas of sequencing, and parallelism, and tries to
make it very easy to put together and explore these ideas.”

3.3.5 Modeling

To illustrate computational thinking, Mitchel Resnick used a personal
example based on his standing Monday tennis match. Every week, he and
his partner Ken record who wins how many games in each set, the number
of games, and the number of sets. At the end of the year, they have a record
of the number of games and the number of sets that each player won. One
year, they noticed that Ken had won 54 percent of the games but 71 percent
of the sets, and they asked, “What’s the explanation behind that?”

Coming from very different disciplines—Ken in biology and Mitchel in
computer science/education—each player conceptualized and approached
this question very differently. Ken’s explanation the next week was based
on handwritten calculations involving expansions of a binomial expres-
sion. Mitchel’s explanation was based on a simulation of matches and
replicating the data using children’s instructional software called Scratch.
The program was developed to determine “randomly for each game that
Ken has a 55 percent chance of winning [and] I have a 45 percent chance
of winning.” As the simulation was repeatedly run, the total wins-to-losses
ratio closely reflected the real-life outcome.

More generally, modeling is a means by which one represents a sys-
tem or a process in order to learn more about it and manage complex-
ity. One participant mentioned the power of computational thinking to
improve the effective development of complex models through knowl-
edge of scale. Peter Lee argued that a computational thinker “under-
stands the consequences of scale” and can thus “think very big and very
small and understand the tipping points at each point.” As more data are
gathered, the more sophisticated the model one can build to describe a
system. If there is sufficient fidelity in a model, one can perform necessary
testing within the model itself. Computers and computation can dramati-
cally increase the amount of data represented in these models and thus
a model’s fidelity. An example using computational thinking to model
plane crash testing is shown in Figure 3.1.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

LOOKING	OUTWARD	 ��

FIGURE 3.1 Modeling of an airplane crash. (Top) Image of a crash test measur-
ing the force of impact on an actual F-4 Phantom airplane; image courtesy of
Sandia National Laboratories. (Bottom) Image of a computational model of the
force of impact on an aircraft; image courtesy of Christopher Hoffmann, Purdue
University.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

Paulo Blikstein complemented this perspective when he described
bifocal modeling, wherein the physical and the virtual were blended in
 models, sometimes by using the physical world as inputs to a model, by
calibrating a model, or by comparing the output of model mechanisms to
sensor data. He argued that such blending was becoming more common
in the practice of science and was also a powerful means of engaging
students.

Yasmin Kafai noted an example of the importance of understanding
models and their limitations: “Government authorities often use models to
make predictions, but people often don’t understand how these models
were made, what the parameters are, or what kind of assumptions are
underlying them . . . here we have a really great example . . . [in talking]
about computational thinking for everyone and kind of as a goal for
citizenship [in] that citizens need to also understand how decisions are
being made and what some of the pitfalls in the models will be.” Wilensky
added that computational thinking involves more than using models,
experimenting with models, or even constructing them; it also involves
creating a culture of model critique.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

4

Relationship to Past and
Ongoing Efforts

4.1 PREvIOUS WORK

A number of past activities and reports have argued for introduc-
ing computational thinking to populations broader than undergraduates
and graduate students matriculating in computer science or information
technology. In addition, several reports have sought to identify what com-
puter scientists believe is the intellectual core of their discipline.

4.1.1 LOGO

In the 1960s, Seymour Papert introduced the notion of a computer-
based microworld that could serve as an environment in which a child
could learn “to manipulate, to extend, to apply to projects, thereby gain-
ing a greater and more articulate mastery of the world, a sense of the
power of applied knowledge and a self-confidently realistic image of
himself as an intellectual agent.” He argued that computation could have
“a profound impact by concretizing and elucidating many previously
subtle concepts in psychology, linguistics, biology, and the foundations
of logic and mathematics” by giving a child the ability “to articulate the
working of his own mind and particularly the interaction between himself
and reality in the course of learning and thinking.”1

1 Seymour Papert, 1975, “Teaching Children Thinking,” Journal	 of	 Structural	 Language
4:219-29.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

As an example, Papert offered mathematics. He argued that many
children never see the point of the formal use of language, which is
what much of mathematics teaches. They also rarely, if ever, have the
experience of designing a formalism of their own adapted to a particular
personally meaningful task. But anyone who programs a computer does
these things routinely. Through the construction of specialized formal
microworlds, the LOGO environment is intended to provide appropri-
ate terminology and concepts that facilitate the formal use of language
and the child-driven extension of that language in useful ways. By pro-
gramming the computer to do interesting things, Papert argued, children
can become highly sophisticated and articulate in the art of developing
 models and developing formal systems.

A number of workshop participants, Uri Wilenksy among them, also
pointed out that although many of the intellectual ideas introduced by
the LOGO movement are quite similar to those underlying the advocacy
of computational thinking, there are many significant differences in the
larger environment in which these activities were and are embedded. Forty
years ago, when LOGO was first introduced, computational infrastruc-
ture was expensive, and access to networking and personal computing
was non-existent for all practical purposes. Today, computational devices
are everywhere, and access to networking and personal computing are
quite commonplace. Moreover, the idea that computational technology
could have a deep impact on everyday life for most citizens—outlandish
then—is now easily accepted, and thus the ubiquitous presence of com-
putational devices in our lives is an important motivator for systems of
formal education to provide individuals with appropriate intellectual
tools for managing and using such devices effectively.

4.1.2 Fluency with Information Technology (FIT)

The 1999 report Being	Fluent	with	Information	Technology, also known
as the FITness report or the fluency report, was an effort by the Com-
puter Science and Telecommunications Board of the National Research
Council to articulate what everyone should know about information
technology.2

In formulating the relevant knowledge base, this effort identified
three equally important categories of knowledge: cognitive/intellectual
capabilities, computational concepts, and IT skills. Capabilities focus on
logical reasoning and problem solving such as debugging. Concepts rep-

2 NRC, 1999, Being	Fluent	with	Information	Technology.	Washington, D.C.: National Academy
Press. Available at http://www.nap.edu/catalog.php?record_id=6482. Accessed Decem-
ber 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

resent the fundamental ideas that underlie technology, such as program-
ming and algorithms. Finally, skills are the actual knowledge required
when using information technology, such as creating a Word document
or sending an e-mail.

The attempt to define “everyone” was more problematic—although
the members of the responsible committee likely believed, as individuals,
that all K-12 students should be exposed to the elements of IT fluency, and
indeed should become fluent with information technology, none of the
committee members had any particular standing to make such an asser-
tion, and in the end the committee limited the scope of its recommenda-
tions to all graduates of 4-year colleges and universities.

The executive summary of Being	Fluent	with	Information	Technology is
reprinted as Appendix C.

I	think	the	goals	of	the	fluency	report	were	[answering	the	question]	what	
should	everybody	know	to	be	a	more	effective	user	of	technology?	And	I	
think	that	computational	thinking	focuses	more	on	[the]	intellectual	activi-
ties	that	apply	to	all	of	the	sciences	and	engineering	that	we	talked	about,	
and	[also]	all	those	other	areas	that	could	benefit	from	computation.	So	it	
seems	to	me	that	they’re	slightly	different	objectives.	I	don’t	see	them	as	
in	conflict.	.	.	.	They	overlap	a	lot	because	they	do	speak	to	a	similar	set	
of	phenomena.

	—Lawrence	Snyder	

4.1.3 Computing the Future

In 1992, the National Research Council issued the report Computing	
the	Future,3 which was (among other things) the first Academy effort to
articulate the nature of computer science and engineering as an intellec-
tual discipline. That report noted the following (pp. 19-24):

 Intellectually, the “science” in “computer science and engineering”
connotes understanding of computing activities, through mathematical
and engineering models and based on theory and abstraction. The term
“engineering” in “computer science and engineering” refers to the prac-

3 NRC, 1992, Computing	the	Future:	A	Broader	Agenda	for	Computer	Science	and	Engineering.
Washington, D.C.: National Academy Press. Available at http://www.nap.edu/catalog.
php?record_id=1982. Accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

tical application, based on abstraction and design, of the scientific prin-
ciples and methodologies to the development and maintenance of com-
puter systems—be they composed of hardware, software, or both. [The
notion of CS&E as a discipline based on theory, abstraction, and design is
described in Peter Denning, Douglas E. Comer, David Gries, Michael C.
Mulder, Allen Tucker, Joe Turner, and Paul R. Young, 1989, “Computing as
a Discipline,” Communications	of	the	ACM, 32(1):9-23, January.] Thus both
science and engineering characterize the approach of CS&E professionals
to their object of study.
 What is the object of study? For the physicist, the object of study may
be an atom or a star. For the biologist, it may be a cell or a plant. But
computer scientists and engineers focus on information, on the ways
of representing and processing information, and on the machines and
systems that perform these tasks.
 The key intellectual themes in CS&E are algorithmic thinking, the
representation of information, and computer programs. An algorithm is
an unambiguous sequence of steps for processing information, and com-
puter scientists and engineers tend to believe in an algorithmic approach
to solving problems. In the words of Donald Knuth, one of the leaders of
CS&E:

CS&E is a field that attracts a different kind of thinker. I believe
that one who is a natural computer scientist thinks algorithmically.
Such people are especially good at dealing with situations where
different rules apply in different cases; they are individuals who can
rapidly change levels of abstraction, simultaneously seeing things
“in the large” and “in the small.” [Personal communication to the
NRC Committee to Assess the Scope and Direction of Computer
Science and Technology, Donald Knuth, March 10, 1992, letter.]

 The second key theme is the selection of appropriate representations
of information; indeed, designing data structures is often the first step in
designing an algorithm. Much as with physics, where picking the right
frame of reference and right coordinate system is critical to a simple solu-
tion, picking one data structure or another can make a problem easy or
hard, its solution slow or fast.
 The issues are twofold: (1) how should the abstraction be represented,
and (2) how should the representation be properly structured to allow
efficient access for common operations? A classic example is the problem
of representing parts, suppliers, and customers. Each of these entities is
represented by its attributes (e.g., a customer has a name, an address, a
billing number, and so on). Each supplier has a price list, and each cus-
tomer has a set of outstanding orders to each supplier. Thus there are five
record types: parts, suppliers, customers, price, and orders. The problem
is to organize the data so that it is easy to answer questions like: Which
supplier has the lowest price on part P?, or, Who is the largest customer
of supplier S? By clustering related data together, and by constructing

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

auxiliary indices on the data, it becomes possible to answer such ques-
tions quickly without having to search the entire database.
 The two examples below also illustrate the importance of proper
representation of information:

 • A “white pages” telephone directory is arranged by name: know-
ing the name, it is possible to look up a telephone number. But a “criss-
cross” directory that is arranged by number is necessary when one needs
to identify the caller associated with a given number. Each directory
contains the same information, but the different structuring of the infor-
mation makes each directory useful in its own way.
 • A circle can be represented by an equation or by a set of points. A
circle to be drawn on a display screen may be more conveniently repre-
sented as a set of points, whereas an equation is a better representation
if a problem calls for determining if a given point lies inside or outside
the circle.

 A computer program expresses algorithms and structures information
using a programming language. Such languages provide a way to repre-
sent an algorithm precisely enough that a “high-level” description (i.e.,
one that is easily understood by humans) can be mechanically translated
(“compiled”) into a “low-level” version that the computer can carry out
(“execute”); the execution of a program by a computer is what allows the
algorithm to come alive, instructing the computer to perform the tasks
the person has requested. Computer programs are thus the essential link
between intellectual constructs such as algorithms and information rep-
resentations and the computers that enable the information revolution.
 Computer programs enable the computer scientist and engineer to
feel the excitement of seeing something spring to life from the “mind’s
eye” and of creating information artifacts that have considerable practi-
cal utility for people in all walks of life. Fred Brooks has captured the
excitement of programming:

The programmer, like the poet, works only slightly removed from
pure thought-stuff. He builds castles in the air, creating by the exer-
tion of the imagination. . . . Yet the program construct, unlike the
poet’s words, is real in the sense that it moves and works, produc-
ing visible outputs separate from the construct itself. . . . The magic
of myth and legend has come true in our time. One types the cor-
rect incantation on a keyboard, and a display screen comes to life,
showing things that never were, nor could be. [Frederick Brooks,
1975, The	Mythical	Man-Month, Reading, Mass.: Addison-Wesley.]

 Programmers are in equal portions playwright and puppeteer, work-
ing as a novelist would if he could make his characters come to life
simply by touching the keys of his typewriter. As Ivan Sutherland, the
father of computer graphics, has said,

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

Through computer displays I have landed an airplane on the deck
of a moving carrier, observed a nuclear particle hit a potential
well, flown in a rocket at nearly the speed of light, and watched
a computer reveal its innermost workings. [Ivan Sutherland, 1970,
“Computer Displays,” Scientific	American 222(6):56-81.]

 Programming is an enormously challenging intellectual activity. Apart
from deciding on appropriate algorithms and representations of informa-
tion, perhaps the most fundamental issue in developing computer pro-
grams arises from the fact that the computer (unlike other similar devices
such as non-programmable calculators) has the ability to take different
courses of action based on the outcome of various decisions. Here are
three examples of decisions that programmers convey to a computer:

 • Find a particular name in a list and dial the telephone number asso-
ciated with it.
 • If this point lies within this circle then color it black; otherwise
color it white.
 • While the input data are greater than zero, display them on the
screen.

 When a program does not involve such decisions, the exact sequence
of steps (i.e., the “execution path”) is known in advance. But in a pro-
gram that involves many such decisions, the sequence of steps cannot
be known in advance. Thus the programmer must anticipate all possible
execution paths. The problem is that the number of possible paths grows
very rapidly with the number of decisions: a program with only 10 “yes”
or “no” decisions can have over 1000 possible paths, and one with 20
such decisions can have over 1 million. . . .
 The themes of algorithms, programs, and information representation
also provide material for intellectual study in and of themselves, often
with important practical results. The study of algorithms within CS&E
is as challenging as any area of mathematics; it has practical importance
as well, since improperly chosen algorithms may solve problems in a
highly inefficient manner, and problems can have intrinsic limits on how
many steps are needed to solve them. The study of programs is a broad
area, ranging from the highly formal study of mathematically proving
programs correct to very practical considerations regarding tools with
which to specify, write, debug, maintain, and modify very large software
systems (otherwise called software engineering). Information representa-
tion is the central theme underlying the study of data structures (how
information can best be represented for computer processing) and much
of human-computer interaction (how information can best be repre-
sented to maximize its utility for human beings).

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

4.1.4 Reflections on the Field

The 2004 NRC report Computer	Science:	Reflections	on	the	Field,	Reflec-
tions	 from	 the	 Field	 included an essay by Gerald Sussman entitled “The
Legacy of Computer Science.”4 Quoting from that essay (pp. 181-183):

Computer Science is not a science, and its ultimate significance has
little to do with computers. The computer revolution is a revolu-
tion in the way we think and in the way we express what we think.
The essence of this change is the emergence of what might best
be called procedural epistemology—the study of the structure of
knowledge from an imperative point of view, as opposed to the
more declarative point of view taken by classical mathematical
subjects. Traditional mathematics provides a framework for deal-
ing precisely with notions of “what is.” Computation provides a
framework for dealing precisely with notions of “how to.” [Harold
Abelson, Gerald Jay Sussman, with Julie Sussman, 1985, Structure	
and	 Interpretation	 of	 Computer	 Programs (1st edition), Cambridge,
Mass., MIT Press.]

 Computation provides us with new tools to express ourselves. This
has already had an impact on the way we teach other engineering sub-
jects. For example, one often hears a student or teacher complain that the
student knows the “theory” of the material but cannot effectively solve
problems. We should not be surprised: the student has no formal way to
learn technique. We expect the student to learn to solve problems by an
inefficient process: the student watches the teacher solve a few problems,
hoping to abstract the general procedures from the teacher’s behavior
with particular examples. The student is never given any instructions on
how to abstract from examples, nor is the student given any language
for expressing what has been learned. It is hard to learn what one cannot
express.
 In particular, in an introductory subject on electrical circuits we show
students the mathematical descriptions of the behaviors of idealized
circuit elements such as resistors, capacitors, inductors, diodes, and tran-
sistors. We also show them the formulation of Kirchoff’s laws, which
describe the behaviors of interconnections. From these facts it is possible,
in principle, to deduce the behavior of an interconnected combination
of components. However, it is not easy to teach the techniques of circuit
analysis. The problem is that for most interesting circuits there are many
equations and the equations are quite complicated. So it takes organiza-

4 NRC, 2004, “The Legacy of Computer Science,” pp. 181-183 in Computer	Science:	Reflec-
tions	on	the	Field,	Reflections	from	the	Field.	Washington, D.C.: The National Academies Press.
Available at http://www.nap.edu/catalog.php?record_id=11106. Accessed December 28,
2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

tional skills and judgment to effectively formulate the useful equations
and to deduce the interesting behaviors from those equations.
 Traditionally, we try to communicate these skills by carefully solv-
ing selected problems on a blackboard, explaining our reasoning and
organization. We hope that the students can learn by emulation, from
our examples. However, the process of induction of a general plan from
specific examples does not work very well, so it takes many examples
and much hard work on the part of the faculty and students to transfer
the skills.
 However, if I can assume that my students are literate in a computer
programming language, then I can use programs to communicate ideas
about how to solve problems: I can write programs that describe the
general technique of solving a class of problems and give that program
to the students to read. Such a program is precise and unambiguous—it
can be executed by a dumb computer! In a nicely designed computer
language a well-written program can be read by students, who will then
have a precise description of the general method to guide their under-
standing. With a readable program and a few well-chosen examples it
is much easier to learn the skills. Such intellectual skills are very hard
to transfer without the medium of computer programming. Indeed, “a
computer language is not just a way of getting a computer to perform
operations but rather it is a novel formal medium for expressing ideas
about methodology. Thus programs must be written for people to read,
and only incidentally for machines to execute.” [Harold Abelson, Gerald
Jay Sussman, with Julie Sussman, 1985, Structure	 and	 Interpretation	 of	
Computer	Programs (1st edition), Cambridge, Mass., MIT Press.]
 I have used computational descriptions to communicate method-
ological ideas in teaching subjects in electrical circuits and in signals
and systems. Jack Wisdom and I have written a book and are teaching
a class that uses computational techniques to communicate a deeper
understanding of classical mechanics. Our class is targeted for advanced
undergraduates and graduate students in physics and engineering. In
our class computational algorithms are used to express the methods used
in the analysis of dynamical phenomena. Expressing the methods in a
computer language forces them to be unambiguous and computationally
effective. Students are expected to read our programs and to extend them
and to write new ones. The task of formulating a method as a computer-
executable program and debugging that program is a powerful exercise
in the learning process. Also, once formalized procedurally, a mathemati-
cal idea becomes a tool that can be used directly to compute results.

4.1.5 Engineering in K-12 Education

The National Academy of Engineering (NAE) and its Committee on
K-12 Engineering Education issued a report arguing that an engineering
component has been largely missing in recent attempts to improve sci-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

ence, technology, engineering, and mathematics (STEM) education.5 The
NAE committee found this fact particularly troubling in light of its view
that “. . . K-12 engineering education may improve student learning and
achievement in science and mathematics; increase awareness of engineer-
ing and the work of engineers; boost youth interest in pursuing engineering
as a career; and increase the technological literacy of all students.” That
committee also hypothesized that the “future of K-12 engineering educa-
tion” will depend on whether engineering becomes a more interconnected
component of STEM education or remains a separate subject.

The report noted that unlike mathematics and science education in the
K-12 years, engineering education does not have much in the way of teach-
ing standards, testing and assessment, or teacher professional develop-
ment. More broadly, the committee held that there is “no widely accepted
vision of what K-12 engineering education should include or accomplish.
This lack of consensus reflects the ad hoc development of educational
materials in engineering and that no major effort has been made to define
the content of K-12 engineering in a rigorous way. . . . These shortcomings
may be the result, at least in part, of the absence of a clear description of
which engineering knowledge, skills, and habits of mind are most impor-
tant, how they relate to and build on one another, and how and when (i.e.,
at what age) they should be introduced to students.”

To improve engineering education, the report noted the importance
of emphasizing engineering design, incorporating important and devel-
opmentally appropriate mathematics, science, and technology knowledge
skills (among which were certain “computational methods”), and pro-
moting engineering habits of mind (i.e., the values, attitudes, and think-
ing skills associated with engineering). Such considerations are relevant
to the discussion of this workshop report because of the strong connec-
tions between many such engineering habits of mind and computational
thinking. The report also called for research on various dimensions of engi-
neering education (including its connection to other STEM fields) and for
the initiation of a national dialogue on preparing K-12 educators to address
the special challenges of engineering education at the K-12 level.

4.1.6 Technically Speaking

In 2002, the National Academy of Engineering and the NRC issued
the report Technically	 Speaking:	 Why	 All	 Americans	 Need	 to	 Know	 More	

5 National Academy of Engineering and National Research Council, 2009, Engineering	in	
K-��	Education:	Understanding	the	Status	and	Impro�ing	the	Prospects.	Washington, D.C.: The
National Academies Press. Available at http://www.nap.edu/catalog.php?record_id=12635.
Accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

About	 Technology6 and its companion website.7 This report advanced a
view of technological literacy that encompasses three interdependent
 dimensions—knowledge, ways of thinking and acting, and capabilities
with the goal of providing people “with tools to participate intelligently
and thoughtfully in the world around them”:

• Knowledge for technological literacy consists of a recognition of the
pervasiveness of technology in everyday life, an understanding of basic
engineering concepts, an understanding of the limitations of the engi-
neering process, a knowledge of ways technology has shaped human
history and vice versa, a recognition that technology reflect the values
and culture of society, a recognition of technology risk, both anticipated and
 unanticipated, and an awareness that technology development involves
cost/benefit tradeoffs.

• Ways of thinking and acting for technological literacy include
questioning oneself and others regarding benefits and risks associated
with technology, actively seeking information about new technologies,
and actively taking part in decisions about the development and use of
technology.

• Some of the basic capabilities the report points to as characteristic
in a technically literate person include certain hands-on technical skills
like word processing or navigating online, an ability to identify and fix
simple technical malfunctions, and an ability to think about benefits and
risk in basic mathematical terms.

These three dimensions have approximate mappings to the tripartite
framework of FITness (foundational concepts, intellectual capabilities,
and contemporary skills), as discussed in Box 2.2.

4.2 SOME DRIvERS OF CHANGE

Workshop participants described a number of ongoing efforts to
revise and reform computing-related education. Implicit in these efforts
is a presumption that they will all have to address computational thinking
in some form, but for the most part, their efforts had not converged on a
common definition of the term.

6 National Academy of Engineering and National Research Council, 2002, Technically	
Speaking:	Why	All	Americans	Need	to	Know	More	About	Technology.	Washington, D.C.: National
Academy Press. Available at http://www.nap.edu/catalog.php?record_id=10250. Accessed
December 28, 2009.

7 For the companion website, see National Academy of Engineering, “Technically Speak-
ing,” available at http://www.nae.edu/techlit, accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

4.2.1 The National Science Foundation CPATH Program

In 2008, the Computer and Information Science and Engineering
(CISE) Directorate of the National Science Foundation launched a pro-
gram entitled “CISE Pathways to Revitalized Undergraduate Comput-
ing Education” (CPATH).8 This program emphasizes the development
of student competencies in computing concepts, methods, technologies,
and tools (which collectively constitute what the program calls computa-
tional thinking) in approaches that promise to revitalize undergraduate
education.

Founded on the importance of preparing a globally competitive U.S.
workforce that is able to apply computational thinking to a broad range
of societal challenges and opportunities, the program seeks to contrib-
ute to the development of a globally competitive U.S. workforce with
computational thinking competencies essential to U.S. leadership in the
global innovation enterprise; to increase the number of students develop-
ing computational thinking competencies by infusing opportunities for
learning computational thinking into undergraduate education in the core
computing fields—computer and information science and engineering—
and in other fields of study; and to demonstrate transformative com-
putational-thinking-focused undergraduate education models that are
replicable across a variety of institutions.

Although aimed primarily at revitalizing undergraduate education,
the program also encourages the exploration of new models that extend
from institutions of higher education into the K-12 environment. Activi-
ties that engage K-12 teachers and students to facilitate the seamless
transition of secondary students into undergraduate programs focused
on computational thinking are particularly encouraged.

4.2.2 The Computing Research Association Education Committee

Andrew Bernat described for workshop participants some of the
present-day efforts (2009) of the Computing Research Association (CRA)
Education Committee.9 Stressing the importance of revitalizing comput-
ing education and noting the centrality of computers and computing to

8 For more information, see NSF Directorate for Computer and Information Science and
Engineering (CISE), “CISE Pathways to Revitalized Undergraduate Computing Education
(CPATH) FAQ Site,” available at http://www.nsf.gov/cise/funding/cpath_faq.jsp, accessed
December 28, 2009, and CISE Pathways to Revitalized Undergraduate Computing Educa-
tion (CPATH) Program Summary,” available at http://www.nsf.gov/funding/pgm_summ.
jsp?pims_id=500025&org=CNS&from=home, accessed December 28, 2009.

9 For more information, visit the Computing Research Association at http://www.cra.
org/, accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

a number of fields—art, music, history, and archeology, as well as the
traditional sciences and engineering—Bernat said that these efforts focus
on “the computing education that a researcher in any discipline needs
to know and think about and understand. It is not intended to be the
undergraduate curriculum that someone going on to do computer science
should be exposed to or should learn. It’s about researchers in any disci-
pline. What are the core things about computing that everyone needs to
understand?” Bernat further emphasized that in contrast to groups such
as the ACM that are focusing on education in computer science, the CRA
intends to focus its efforts on computing skill, knowledge, and impact
outside the computer science discipline.

4.2.3 Advanced Placement Computer Science—
NSF Broadening Participation Program and the College Board

Jan Cuny described for workshop participants the NSF/College Board
collaboration to redesign and revitalize the high school Advanced Place-
ment (AP) Computer Science (CS) curriculum.10,11 According to Cuny,
the current CS AP course is inaccessible to students and fails to introduce
the fundamental concepts of computational thinking. Cuny expressed the
hope that a new “gold-standard” AP course that addresses these concepts
will revive the flagging interest of high school students in computer sci-
ence, information technology, and mathematics and will provide a foun-
dation for future study in computing.

She pointed out that developing the curriculum for this new course
is not the most challenging aspect. The hardest part is to gain entry into
“resource-strapped schools.” Nevertheless, Cuny hopes that this new
gold-standard CS AP course can be introduced into 10,000 schools (with
a complement of 10,000 teachers trained to teach the course) by 2014.
She was not unmindful of the challenges, pointing out that most of these
teachers are not computer scientists themselves. “Most of them are from
math or from physics or from chemistry and they know how to program
. . . but they don’t know about computability. They don’t know about
algorithm design. There’s a whole lot of stuff that they don’t know. So
it’s not just in-service preparation, meaning bring them in for a week. It’s
really significant training that we have to provide. And we have to figure
out how to make that palatable for them.”

10 The College Board, “National Science Foundation Awards $1.8 Million to College
Board to Redesign AP Science Courses.” Available at http://www.collegeboard.com/press/
releases/51572.html. Accessed December 28, 2009.

11 NSF Directorate for Computer and Information Science and Engineering (CISE), “Broad-
ening Participation in Computing (BPC).” Available at http://www.nsf.gov/funding/pgm_
summ.jsp?pims_id=13510&org=CNS&from=home. Accessed December 28, 2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

RELATIONSHIP	TO	PAST	AND	ONGOING	EFFORTS	 ��

Finally, Cuny raised the related point that it is important to distin-
guish between ideas and concepts that can be tested on a standardized
exam and what it means to assess whether students can think computa-
tionally. In the absence of a consensus on the scope and nature of compu-
tational thinking, she noted that it would be very difficult to develop an
appropriate assessment tool for the latter.

4.2.4 Carnegie Mellon University’s Center
on Computational Thinking

Carnegie Mellon University’s Center for Computational Thinking
is the home to a number of projects that focus on using computational
thinking to tackle broad social and interdisciplinary issues. According to
Peter Lee, these projects—known as PROBlem-oriented Explorations, or
PROBEs in the local vernacular—cover a wide range of ongoing research
projects, all of which are designed to demonstrate the critical importance
of computational thinking. These projects typically engage the sciences,
the arts, and literature.12

• During the workshop, Lee pointed to the Optimal Kidney Exchange
PROBE, which uses novel algorithm design and database networking to
identify optimal kidney matches between donors based on a complex
set of criteria. Traditionally, kidney matching is done manually by medi-
cal experts based on blood type, organ size, patient condition, and so
on. The manual methods used by most physicians also tend to look at a
small number of donors and patients—paired donations (involving two
donors coordinating their donations) are the most common. By using
larger numbers of coordinated donors (8 or 10 or 12 donors at a time),
the number of organs made available that can match the needs of indi-
vidual recipients can be vastly increased. However, the complexity of
coordinating larger numbers of donors is quite daunting, unless efficient
computational algorithms can be used to perform the search. The result
is that medical experts can match kidneys among a much larger number
of patients and donors in a number of kidney exchange programs more
rapidly. More effective kidney exchanges can improve the quality of life
for those on dialysis currently awaiting kidneys, save millions in medical
costs for dialysis treatments, and save thousands of lives.

• Discussed on the center’s website, the Performer PROBE is an
interactive music system for live performance that is capable of composing

12 See the Center for Computational Thinking, Carnegie Mellon University, “PROBEs,”
available at http://www.cs.cmu.edu/~CompThink/probes.html, accessed December 28,
2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

and accompanying live music in different genres, such as classical, rock,
and Latin.13 Unlike systems that merely accompany human-performed
music and require a strict adherence to beat and score, Performer will
be able to interact with other human musicians, change tempo, and
even change styles in a manner that is similar to how a human would
behave in such a situation. Performer employs modeling, sequencing,
 synchronicity, algorithms, human-computer interaction theory, sensors,
and data management theory to dissect nuances of music composition
and music performance.

• The center’s website also discusses the PROBE on Understanding
and Harnessing Ensemble Behavior,14 which uses the “programming”
metaphor to understand how the behavior of components aggregate to
produce behavior in complex systems, whether natural or man-made.
Although the complex system is “just” the aggregation of its constituent
components, the capabilities of the system far exceed the aggregate of
the capabilities of those components. Using a specially developed pro-
gramming language called Meld, the project demonstrates abstraction,
programming, logic, ensemble engineering, self-organization, robotics,
and programming in the context of understanding emergent behavior.
Meld is designed to streamline the process of programming for ensemble
systems, and it works by propagating the commands that input through
every node in the system, thus saving the programmer the time needed
to propagate the command herself.

13 See the Center for Computational Thinking, Carnegie Mellon University, “PROBEs,”
available at http://www.cs.cmu.edu/~CompThink/probes.html, accessed December 28,
2009.

14 See the Center for Computational Thinking, Carnegie Mellon University, “PROBEs,”
available at http://www.cs.cmu.edu/~CompThink/probes.html, accessed December 28,
2009.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

5

Open Questions

As noted in the preface, NRC workshops are not designed to produce
consensus. However, although there was little general agreement among
workshop participants about the essential nature of computational think-
ing, a number of questions did emerge that are worthy of attention in the
future.

5.1 WHAT IS THE STRUCTURE OF
COMPUTATIONAL THINKING?

Throughout the course of the workshop, participants expressed a host
of different views about the scope and nature of computational think-
ing. But even though workshop participants generally did not explicitly
disagree with views of computational thinking that were not identical
to their own, almost every participant held his or her own perspective
on computational thinking that placed greater emphasis on particular
aspects or characteristics of importance to that individual. (These different
perspectives are described in Chapter 2.)

Given this divergence in individual emphases, one possibility con-
cerning structure is that computational thinking is simply the union of
these different views—a laundry list of different characteristics. On the
other hand, such a perspective would be both incoherent and deeply
unsatisfying to most workshop participants, and there was general agree-
ment that a more coherent perspective is needed. Further thought about

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

many questions emerging from the workshop is thus warranted; these
questions include:

• What is the core of computational thinking?
• What are the elements of computational thinking?
• What is the sequence or trajectory of development of computa-

tional thinking?
• Does computational thinking vary by discipline?

 Some of the logical subquestions that follow include:

 — What are the logical relationships between the various elements of
computational thinking?

 — What elements of computational thinking were not discussed in
the workshop that should be included in subsequent discussions?

 — How and to what extent, if any, is the ability to program an essen-
tial aspect of computational thinking? What should be the definition
of “programming” in this context?

Answers to these questions would provide some structure to com-
putational thinking as a systematized mode of thought. In a 2007 article,1
Thomas Cortina of Carnegie Mellon University suggests that David
Harel’s Algorithmics:	The	Spirit	of	Computing� is a good point of departure
for developing a coherent structure for how different elements of compu-
tational thinking relate to one another.

5.2 HOW CAN A COMPUTATIONAL THINKER BE RECOGNIzED?

Workshop participants grappled with the question of how to deter-
mine an individual’s competence with computational thinking. Some
workshop participants asked how one would determine that a student
has mastered basic elements of computational thinking, just as one might
master basic reading, writing, or arithmetic skills. Others asked how
one might certify teachers as having both competence in computational
thinking and the ability to teach computational thinking. In Ursula Wolz’s
words, “What does it mean to create teachers who have that kind of

1 Thomas Cortina, 2007, “An Introduction to Computer Science for Non-majors Using
Principles of Computation,” Technical Symposium on Computer Science Education, Proceed-
ings of the 38th SIGCSE Technical Symposium on Computer Science Education, Covington,
Kentucky. ACM Special Interest Group on Computer Science Education, March 7-10, 2007,
pp. 218-222.

2 David Harel, 1987, Algorithmics:	 The	 Spirit	 of	 Computing, 1st ed. Reading, Mass.:
Addison-Wesley.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

OPEN	QUESTIONS	 ��

 literacy, both to read the languages and so that they can think about it and
express it to their students, and also so that they become facile writers? . . .
to make sure that what we are doing is teaching them how to read and
write, not how to do phonics.”

Several workshop participants noted the importance of context in
computational thinking, expressing the view that just as learning arith-
metic goes beyond more than knowing the algorithms of addition and
multiplication to being able to apply these algorithms in real-world situ-
ations, being a competent computational thinker must include the ability
to apply computational thinking to actual problems. That is, even if it is
feasible to articulate clearly the content of computational thinking, such
content becomes meaningful only in some specific context. One must use
computational thinking in a context and must understand the nature of
the context to apply computational thinking skills effectively.

The question of generalizability is also important. Experts in one
field are not necessarily successful in exploring other fields. Experts
may be more facile at learning in related domains than students who are
not yet expert in any particular domain, but a lack of understanding of
the related domain will limit the success even of experts. So, arguably,
another part of computational thinking is the ability to apply its content
to multiple domains and to recognize the connections between those
applications.

Along these lines, Richard Lipton expressed this sentiment as follows:
“The greatest challenge to a computational thinker, to any thinker, is stat-
ing the problem in a way that will allow a solution.” What are you really
trying to accomplish? The ability to recognize when “the same question
is being asked” or “the same problem presented” can facilitate use of
computational thinking in new disciplines.

5.3 WHAT IS THE CONNECTION BETWEEN
TECHNOLOGy AND COMPUTATIONAL THINKING?

Workshop participants were divided on the centrality of technol-
ogy to computational thinking. Some expressed the view that at its core,
computational thinking was independent of technology—that being a
competent computational thinker did not necessarily imply anything
about one’s ability to use modern information technology. Some par-
ticipants argued that computational thinking is an emergent property of
technological advance. As technologies develop they enable new forms
of computational thinking. Others believed that the connections between
information technology and computational thinking were so deep that it
effectively makes no sense to regard the two as separate. In this view, the
computer—and notions of computer programming—can make the con-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

cepts, principles, methods, models, and tools of computational thinking
tangible, in much the same spirit that LOGO was first inspired.

5.4 WHAT IS THE BEST PEDAGOGy FOR
PROMOTING COMPUTATIONAL THINKING?

A great deal of education research in recent years suggests (1) that stu-
dents can learn thinking strategies such as computational thinking as they
study a discipline, (2) that teachers and curricula can model these strate-
gies for students, and (3) that appropriate guidance can enable students to
learn to use these strategies independently. In many cases, a key element of
“appropriate guidance” consists of the capabilities afforded by a suitable
computational environment and toolkits, such as programming languages
for computing and modeling languages for noncomputing domains that
are particularly helpful in promoting computational thinking.

Recent exploratory research on technology-enhanced learning sug-
gests that computers can facilitate this process by guiding students as they
explore complex problems, use scientific visualization, and collaborate with
peers.3 Such learning environments may also increase the effectiveness of
teachers by synthesizing results from embedded assessments, allowing
teachers to monitor progress in real time, and by handling routine tasks.

Exploring these questions will be a major focus of the committee’s
second workshop.

3 See, for example, Uri Wilensky and Kenneth Reisman, 2006, “Thinking Like a Wolf, a
Sheep, or a Firefly: Learning Biology Through Constructing and Testing Computational
Theories—an Embodied Modeling Approach,” Cognition	and	Instruction 24(2):171-209; Uri
Wilensky and Mitchel Resnick, 1999, “Thinking in Levels: A Dynamic Systems Approach
to Making Sense of the World,” Journal	 of	 Science	 Education	 and	 Technology 8(1):3-19; Uri
Wilensky, 2001, “Modeling Nature’s Emergent Patterns with NetLogo,” Proceedings	 of	 the	
Eurologo	�00�	Conference, Linz, Austria; J.L. Kolodner et al., 2003, “Problem-Based Learning
Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by
Design into Practice,” Journal	of	the	Learning	Sciences	12(4):495-548; S. Puntambekar and J.L.
Kolodner, 2005, “Toward Implementing Distributed Scaffolding: Helping Students Learn
Science by Design,” Journal	 of	 Research	 in	 Science	 Teaching 42(2):185-217; Y. Kali and M.C.
Linn, 2009, “Designing Effective Visualizations for Elementary School Science,” Elementary	
School	Journal 109(5):181-198; M.C. Linn, H.S. Lee, R. Tinker, F. Husic, and J.L. Chiu, 2006,
“Teaching and Assessing Knowledge Integration in Science,” Science 313:1049-1050; Y.B.
Kafai, 2006, “Playing and Making Games for Learning: Instructionist and Constructionist
Perspectives for Game Studies,” Games	and	Culture 1(1):36-40; and Y.B. Kafai and C.C. Ching,
2001, “Affordances of Collaborative Software Design Planning for Elementary Students’
Science Talk,” Journal	of	the	Learning	Sciences 10(3):323-363. The papers listed in this footnote
represent a small fraction of the research performed on technology-enhanced learning in the
last decade—what is common to the papers above is that because their authors included,
to a considerable extent, members of the NRC committee for the workshop reported in this
volume, they were more familiar to the committee.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

OPEN	QUESTIONS	 ��

5.5 WHAT IS THE PROPER INSTITUTIONAL ROLE
OF THE COMPUTER SCIENCE COMMUNITy WITH

RESPECT TO COMPUTATIONAL THINKING?

Although there is obviously a close (though not fully understood)
cognitive and intellectual connection between computational thinking
and computer science as a subject of study, the role of computer science
as a discipline and as a community of individuals who call themselves
computer scientists in defining and structuring the content of computa-
tional thinking is much less clear.

For example, Robert Constable noted that today, university-level dis-
cussions regarding computational thinking education (or, more precisely,
computing) are usually set forward by a department of X that believes in
the value of computing as a tool for effective study of X—and thus focus
on computational thinking in the context of X. But these efforts rarely
focus on the abstractions and concepts that computer scientists believe cut
across specific disciplinary applications of computational thinking.

Constable further pointed out that even in colleges of computing
and information, the discussion of computational thinking does not
always reach out to the entire university. This disconnect occurs despite
the attempts of some of these colleges to “teach every undergraduate”
about computing and digital information by way of general education
requirements.

Given this disconnect, he argued, it is thus not surprising that the
development of K-12 computational thinking education has a certain
inchoate quality—if the leading schools of computing and departments
of computer science don’t know how to talk about computational think-
ing, how can others define the content of “computational thinking for
everyone”?

A second issue relates to disciplinary “ownership” of computational
thinking. Because computational thinking is a critical skill in many dis-
ciplines, there are already a few stakes in the ground from a range of
 disciplines, such as biology, statistics, and physics. This fact led several
workshop participants to note the importance of refraining from turf
wars over which disciplines own what with respect to computational
thinking.

They felt that there were a number of areas of overlap and that this
was a positive sign. These speakers were reassured by the overlap, believ-
ing that it might be a strength that everyone wants to claim computational
thinking for their own field.

Another set of workshop participants noted concern that a lack of
disciplinary ownership could make it difficult to build support and a
community sense of responsibility for the education of the next genera-
tion. They were concerned that other disciplines claiming ownership of

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

key components of computational thinking can slow its development as
a scientific paradigm in and of itself.

Some argued that computational thinking can help advance a number
of disciplines and encourage innovation. The inverse situation—lack of
deep computational understanding and lack of technical communication
skills—might even give rise to the stifling of innovation. This is a key
concern according to columnist Adam C. Engst. In the article entitled
“Have We Entered a Post-Literate Technological Age?” he states, “My
more serious concern with our society’s odd fluency with a technology
that we cannot easily communicate about is that it might slowly stifle
innovation.”4 As an example, he notes that a person who is able to fluidly
navigate an application does not necessarily understand anything about
what is going on underneath the hood.

Others argued that computational thinking is inherently multi-
disciplinary. To engage in computational thinking, one must reason
about something. By claiming that computational thinking can benefit
all disciplines, one endorses the idea that computational thinking will
evolve as it is used in varied disciplines. In addition, the disciplines
using computational thinking will develop in novel directions as a result
of using computational thinking.

4 Adam C. Engst, 2009, “Have We Entered a Post-Literate Technological Age?” August 18,
TidBITS.com. Available at http://db.tidbits.com/article/10493.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

6

Next Steps

Discussions held at the February 2009 workshop did not reveal gen-
eral agreement among workshop participants about the precise content
of computational thinking, let alone its structure. Nevertheless, the lack
of explicit disagreement about its elements could be taken as reflecting a
shared intuition among workshop participants that computational think-
ing, as a mode of thought, has its own distinctive character.

Building on this shared intuition, it is fair to say that most workshop
participants agreed that more deliberation is necessary to achieve greater
clarity about what is encompassed under the rubric of computational
thinking and how these elements are structured relative to each other.
Toward this end, workshop participants thought that the second work-
shop would have value. Scheduled to occur in early 2010 and devoted
to exploring pedagogy and how best to expose students to the ideas of
computational thinking, the deliberations of this follow-on workshop will
be valuable in shedding additional light on the content and structure of
computational thinking for three reasons.

First, the diversity of views on the nature of computational thinking
allows a great deal for exploration and innovation within the boundaries
of a shared intuition, even if that intuition was not made precise in the
first workshop.

Second, when designing courses, educators often reveal their beliefs
about what is central to the subjects in question. Thus, a consideration of
provocative and innovative examples of courses and curricular material

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

related to computational thinking is likely to provide valuable further
insights into individual perspectives on that topic.

Last, and as noted at the end of Section 4.1.1, the technological sub-
strate has proliferated by orders of magnitude since the late 1960s. Young
people today—the targets of K-12 education—are correspondingly far
more familiar with various manifestations of information technology and
thus also more familiar with different contexts in which computational
thinking can be relevant. It is hoped that the pedagogical focus of the
second workshop will shed additional light on some of these different
contexts.

For these reasons, the committee looks forward to the second work-
shop with anticipation.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

Appendixes

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

A

Workshop Agenda

FEBRUARy 19, 2009

8:30-8:45 AM Welcome and Housekeeping
	 	 	Marcia	Linn,	Uni�ersity	of	California,	Berkeley,	Committee	

Chair

8:45-10:30 AM Panel 1—The Scope and Nature of Computational
Thinking

	 •	 	How is computational thinking different from math-
ematical thinking?

	 •	 How is it different from quantitative reasoning?
	 •	 How is it different from scientific thinking?
	 •	 	How is it different from fluency with information

technology?

 Presenters:
 Jeannette	Wing,	National	Science	Foundation	
	 	 Wm.	Wulf,	Uni�ersity	of	Virginia
	 	 Gerald	Sussman,	Massachusetts	Institute	of	Technology
	 	 Peter	Lee,	Carnegie	Mellon	Uni�ersity

 Committee respondent: Larry	Snyder

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

10:30-12:15 PM Panel 2—Computational Thinking Everywhere (Part I)

	 •	 	What kinds of problems require computational think-
ing? What are some examples?

	 •	 	How, if at all, does computational thinking vary by
discipline? What would be the nature of computa-
tional thinking for physicists, biologists, engineers,
lawyers, physicians, historians, sociologists, teachers,
accountants, homemakers, bus drivers, and so on?

	 •	 	What are the exposures and experiences needed to
develop the level of computational thinking needed
in various disciplines?

	 •	 	What are contemporary issues facing the nation that
would benefit from greater development of compu-
tational thinking?

	 •	 	What is the value of computational thinking for
nonscientists?

	 •	 	How, if at all, would widespread facility with com-
putational thinking enhance the productivity of U.S.
workers?

	 •	 	How do we best illustrate the power of computa-
tional thinking?

 Presenters:
	 	 Ke�in	Ashley,	Uni�ersity	of	Pittsburgh
	 	 Chris	Hoffmann,	Purdue	Uni�ersity	
	 	 Alan	Kay,	Viewpoints	Research	Institute,	Inc.
	 	 Richard	Lipton,	Georgia	Tech	
	 	 Robert	Sproull,	Sun	Microsystems,	Inc.

 Committee respondent: M.	Brian	Blake

12:15-1:15 PM Working Lunch—Other Related Ongoing Efforts

	 	 Andrew	Bernat:	CRA	Education	Committee
	 	 	Peter	Denning:	Great	Principles	of	Computing	(�ia	�ideo-

conference)

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	A	 ��

1:15-3:00 PM Panel 3—Computational Thinking Everywhere (Part II)

 Presenters:
	
	 	 Andrew	McGettrick,	Uni�ersity	of	Strathclyde	(in�ited)
	 	 Edward	Fox,	Virginia	Tech
	 	 	Ian	 Foster,	 Argonne	 National	 Laboratory/Uni�ersity	 of		

	 Chicago	(�ia	conference	call)
	 	 Paulo	Blikstein,	Northwestern	Uni�ersity
	 	 Eric	Roberts,	Stanford	Uni�ersity	

 Committee respondent:	Robert	Constable

3:00-3:10 PM Break

3:10-4:40 PM Panel 4—Technology and Computational Thinking
(Show and Tell)

	 •	 	What affordances are provided by new technologies
for computational thinking?

 •	 	What is the role of information technology in impart-
ing computational thinking skills?

 •	 	What parts of computational thinking can be taught
without the use of computers? Without the skills of
computer programming?

 Participants:
	 	 Mitchel	Resnick,	Massachusetts	Institute	of	Technology
	 	 Ken	Kahn,	Oxford	Uni�ersity	
	 	 Da�id	Moursund,	Uni�ersity	of	Oregon

 Committee respondent: Janet	Kolodner

4:40-4:45 PM Break

4:45-5:15 PM Other Related Ongoing Efforts
	 	 	Tim	Bell,	New	Zealand	Computer	Science	Unplugged	(�ia	

	 �ideoconference)

5:15-5:30 PM Wrap-up

5:30 Adjourn Day-One Public Sessions

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

5:30-6:15 PM Reception

6:15-8:15 PM Working Dinner in Small Groups

	 •	 	Homework assignment—What is the core of compu-
tational thinking? What are the fundamental prin-
ciples of computational thinking? What concepts are
derivative from the fundamentals?

 •	 	Are there multiple decompositions of computational
thinking into fundamental and derivative parts?
What are some examples?

 •	 	How, if at all, can computational thinking be decom-
posed into an intellectual hierarchy?

FEBRUARy 20, 2009

8:30-8:35 AM Welcome and Housekeeping
	 Marcia	Linn,	Uni�ersity	of	Berkeley,	Committee	Chair

8:35-10:00 AM Panel 5—Report-back on homework assignments:

 Committee respondent: Alfred	Aho

10:00-10:15 AM Break

10:15-11:45 AM Panel 6—Bridging into Education

	 •	 	Are the fundamental principles of computational
thinking the easiest to grasp? If so, why? If not, why
not?

	 •	 	Are the fundamental principles the logical starting
point for the teaching of computational thinking? If
so, why? If not, why not?

 Participants:
	 	 Dor	Abrahamson,Uni�ersity	of	California,	Berkeley
	 	 Owen	Astrachan,	Duke	Uni�ersity	
	 	 Lenore	Blum,	Carnegie	Mellon	Uni�ersity	
	 	 Andy diSessa, Uni�ersity of California, BerkeleyAndy	diSessa,	Uni�ersity	of	California,	Berkeley	

 Committee respondent: Uri	Wilensky

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	A	 ��

11:45-12:45 PM Working Lunch—Computer Science Advanced Place-
ment Efforts

	 	 Jan	Cuny,	National	Science	Foundation

12:45-2:15 PM Panel 7—Related Best Practices in Teaching/Pedagogy

	 •	 	How do we engage all learners in computational
thinking?

	 •	 		What are the exposures and experiences needed to
develop computational thinking?

	 •	 	What is the role of the computer in instruction? Where
does programming fit into computational thinking?

 Presenters:
	 	 Roy	Pea,	Stanford	Uni�ersity
	 	 Allan	Collins,	Northwestern	Uni�ersity
	 	 Ursula	Wolz,	The	College	of	New	Jersey
	 	 Joshua	Danish,	Indiana	Uni�ersity

 Committee respondent: Yasmin	Kafai

2:15-2:30 PM Break

2:30-4:30 PM Discussion and Wrap-up

	 •	 	Committee members summarize their individual
reactions

	 •	 	Floor opened to other workshop participants

4:30 PM Adjourn

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

B

Short Biographies of Committee
Members, Workshop

Participants, and Staff

B.1 COMMITTEE

Marcia C. Linn (Chair) is a professor specializing in education in math-
ematics, science, and technology in the Graduate School of Education
at the University of California, Berkeley. She directs the NSF-funded
Technology-Enhanced Learning in Science (TELS) center. She is a mem-
ber of the National Academy of Education and a fellow of the American
Association for the Advancement of Science, the American Psychological
Association, and the Center for Advanced Study in Behavioral Sciences.
Board service includes the American Association for the Advancement
of Science board, the Graduate Record Examination Board of the Edu-
cational Testing Service, the McDonnell Foundation Cognitive Studies
in Education Practice board, and the Education and Human Resources
Directorate at the National Science Foundation. Linn earned a Ph.D. in
educational psychology from Stanford University.

Alfred v. Aho (NAE) is the Lawrence Gussman Professor of Computer Sci-
ence and vice chair of undergraduate education for the Computer Science
Department at Columbia University. Previously, he conducted research
at Bell Laboratories from 1963 to 1991, and again from 1997 to 2002 as
vice president of the Computing Sciences Research Center. Aho’s current
research interests include quantum computing, programming languages,
compilers, and algorithms. He is part of the Language and Compilers
research group at Columbia. He is widely known for his development
of the AWK programming language with Peter J. Weinberger and Brian

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

 Kernighan (the “A” stands for “Aho”), and for his co-authorship of Com-
pilers:	Principles,	Techniques,	and	Tools (the “Dragon book”) with Ravi Sethi
and Jeffrey Ullman. He wrote the initial versions of the Unix tools egrep
and fgrep. He is also a co-author (along with Jeffrey Ullman and John
 Hopcroft) of a number of widely used textbooks on several areas of com-
puter science, including algorithms and data structures, and the founda-
tions of computer science. He is a past president of ACM’s Special Interest
Group on Algorithms and Computability Theory. Aho has chaired the
Advisory Committee for the Computer and Information Sciences Director-
ate of the National Science Foundation. He has received many prestigious
honors, including the IEEE’s John von Neumann Medal and membership
in the American Academy of Arts and Sciences. Aho was elected to the
National Academy of Engineering in 1999 for contributions to the fields
of algorithms and programming tools. Aho earned his Ph.D. in electrical
engineering and computer science from Princeton University.

M. Brian Blake is a professor of computer science and associate dean
of engineering at the University of Notre Dame. His research interests
include the investigation of automated approaches to sharing informa-
tion and software capabilities across organization boundaries, some-
times referred to as enterprise integration. His investigations cover the
spectrum of software engineering: design, specification, proof of cor-
rectness, implementation/experimentation, performance evaluation,
and application. Blake’s long-term vision is the creation of adaptable
software entities or software agents that can be deployed on the Inter-
net and, using existing resources, can manage the creation of new pro-
cesses, sometimes referred to as interorganizational workflow. He has
several ongoing projects that make incremental progress toward this
long-term vision. In addition, he conducts experimentation in the areas
of software engineering education and software process and improve-
ment to determine the most effective methods for training students and
professionals to develop module systems that by nature are distributed.
Blake has consulted for such companies as General Electric, Lockheed
 Martin, General Dynamics, and the MITRE Corporation. He has pub-
lished more than 95 refereed journal papers and conference proceedings
in the areas of service-oriented computing, agents and workflow, enter-
prise integration, component-based software engineering, distributed
data management, and software engineering education. Blake’s work
has been funded by the Federal Aviation Administration, the MITRE
Corporation, the National Science Foundation, DARPA, the Air Force
Research Laboratory, SAIC, and the National Institutes of Health. He
earned his doctorate in information technology and computer science
from George Mason University.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

Robert Constable is the dean of the Faculty of Computing and Infor-
mation Science at Cornell University. Formerly he was the chair of the
Computer Science Department for 6 years. He also heads a research
group in automated reasoning and formal methods in the Computer
Science Department, where he is a professor. Constable is a graduate of
Princeton University, where he worked with Alonzo Church, one of the
pioneers of computer science. He did his Ph.D. work at the University
of Wisconsin with Stephen Cole Kleene, a Ph.D. student of Church and
another pioneer of computer science. Church traces his mathematical
lineage back to Gottfried Wilhelm Leibniz, one of the first logicians
interested in mechanical computation and the digitization of human
knowledge. Constable joined the Cornell University faculty in 1968. He
has supervised more than 43 Ph.D. students in computer science. He
is known for work in connecting programs and mathematical proofs
that has led to new ways of automating the production of reliable soft-
ware. This work is known by the slogan “proofs as programs,” and it is
embodied in the Nuprl (“new pearl”) theorem prover. He has written
three books on this topic as well as numerous research articles. Since
1980 he has headed a project that uses Nuprl to design and verify soft-
ware systems, instances of which are still operational in industry and
science. Currently he is working on extending this programming method
to concurrent processes, realizing the notion of “proofs as processes.” In
1999 he became the first dean of the Faculty of Computing and Informa-
tion Science, a unit that includes the Computer Science Department, the
Department of Statistical Science, the Information Science Program, and
the Program in Computer Graphics. It also sponsors the undergraduate
major and graduate field in computational biology.

yasmin B. Kafai is a professor at the Graduate School of Education, Uni-
versity of Pennsylvania. In addition, she spent more than a decade on
the faculty at the UCLA Graduate School of Education and Information
 Studies. As a learning scientist, she has researched and developed media-
rich software tools and environments—most recently Scratch, together
with researchers at the MIT Media Lab—that support youth in schools
and community centers in becoming designers of games, simulations,
and virtual worlds. As part of her policy initiatives, she wrote Under	the	
Microscope:	A	Decade	of	Gender	Equity	Inter�entions	in	the	Sciences (2004) and
participated in the national commission that produced the report Tech-
Sa��y	Girls:	Educating	Girls	 in	the	Computer	Age (2000) for the American
Association of University Women. She also briefed the Computer Science
and Telecommunications National Research Council report Being	Fluent	
with	Information	Technology (National Academy Press, Washington, D.C.,
1999). While conducting research at the Massachusetts Institute of Tech-

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

nology Media Laboratory, she received her Ed.D. in human development
and psychology from Harvard University.

Janet L. Kolodner is a Regents’ Professor in the School of Interactive
Computing at Georgia Institute of Technology. Her research over the past
30 years has addressed a wide variety of issues in learning, memory, and
problem solving, both in computers and in people. During the 1980s, she
pioneered the computer method called case-based reasoning, which allows
a computer to reason and learn from its experiences. The first case-based
design aids (CBDAs) came from her lab. Archie-2, for example, helped
architecture students with conceptual design. During the early 1990s, she
used the cognitive model implied by case-based reasoning to address
issues in creative design. JULIA planned meals, Creative JULIA figured
out what to do with leftover rice, IMPROVISOR did simple mechanical
design, and ALEC simulated Alexander Graham Bell in his invention of
the telephone. Later in the 1990s, she used the cognitive model in case-
based reasoning to guide the design of a science curriculum for middle
school. Learning by Design™ is a design-based learning approach and
an inquiry-oriented project-based approach to science learning that has
children learn science from their design experiences. The sequencing of
activities in the classroom encourages students to reflect on their design
and science experiences in ways that case-based reasoning says are appro-
priate for integrating them well into memory. Learning by Design cur-
riculum units and the sequencing structures in Learning by Design are
being integrated into a full 3-year middle-school science curriculum called
Project-Based Inquiry Science (PBIS). Most recently, Kolodner’s research
uses what she learned in designing Learning by Design to create informal
learning environments to help middle schoolers come to think of them-
selves as competent scientific reasoners. In Kitchen Science Investigators,
fifth and sixth graders learn science in the context of cooking. In Hovering
Around, they learn about motion and forces, about airflow, and about
how to explain in the context of designing hovercraft. Kolodner is found-
ing editor in chief of the Journal	of	the	Learning	Sciences and is a founder
and first executive officer of the International Society for the Learning
Sciences. She has headed up the Cognitive Science Program at Georgia
Tech and headed an organization called EduTech in the mid-1990s whose
mission was to use what is known about cognition to design educational
software and integrate it appropriately into educational environments.
She has a B.S. from Brandeis University in math and computer science and
an M.S. and a Ph.D. in computer science from Yale University.

Lawrence Snyder is a professor of computer science and engineering at
the University of Washington in Seattle. Snyder’s research has focused on

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

parallel computation, including architecture, algorithms, and languages.
He has served on the faculties of Yale and Purdue universities and has
had visiting appointments at UW, Harvard, MIT, Sydney University, the
Swiss Technological University, the University of Auckland, and Kyoto
University. In 1980 he invented programmable interconnect, a method
to dynamically configure on-chip components, and a technology used
today for FPGAs. In 1990 he was co-designer of Chaos Router, a ran-
domizing adaptive packet router. He was the principal investigator of
the ZPL language design project, the first high-level parallel language to
achieve “performance portability” across all parallel computer platforms.
Snyder is the author of Fluency	with	Information	Technology:	Skills,	Concepts	
and	Capabilities, a textbook for non-techie college freshmen that teaches
fundamental computing concepts; the book is in its third edition. With
former Ph.D. student Calvin Lin (University of Texas, Austin), he has
written Principles	of	Parallel	Programming, published in 2008. Snyder was a
three-term member of the Computer Research Association Board of Direc-
tors, developing a series of best-practices white papers. He chaired the
NSF CISE Advisory Board as well as several CISE directorate oversight
panels and numerous review panels. The two National Research Council
 studies that he chaired produced influential reports—Academic	Careers	for	
Experimental	Computer	Scientists	and	Engineers (1994) and Being Fluent	with	
Information	Technology	(1999).	He served three terms on the NRC’s Army
Research Laboratory Technical Advisory Board. He serves on ACM’s
Education Board, has been general chair or program committee chair of
several ACM and IEEE conferences, and is a fellow of both the ACM and
the IEEE. He received a B.A. from the University of Iowa in mathematics
and economics and his Ph.D. from Carnegie Mellon University as a stu-
dent of A. Nico Habermann.

Uri Wilensky is a professor of learning sciences and computer science at
Northwestern University and holds appointments in the cognitive science
program and in complex systems. He is the founder and current director
of the Center for Connected Learning and Computer-Based Modeling and
also a founder and member of the governing board of the Northwestern
Institute on Complex Systems (NICO). His most recent projects focus
on developing tools that enable users (both researchers and learners)
to simulate, explore, and make sense of complex systems. His NetLogo
agent-based modeling software is in widespread use worldwide. Prior to
coming to Northwestern, he taught at Tufts University and MIT and was a
research scientist at Thinking Machines Corporation. Wilensky is a founder
and an executive editor of the International	Journal	of	Computers	for	Mathe-
matical	Learning. His research interests include computer-based modeling
and agent-based modeling, STEM education, mathematics in the context

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

of computation, and complex systems. He is a recipient of the National
Science Foundation’s Career Award as well as the Spencer Foundation’s
Post-Doctoral Award. He has directed numerous NSF research projects
focused on developing computer-based modeling tools and studying
their use. Among these tools are multi-agent modeling languages such as
StarLogoT and NetLogo, model-based curricula such as GasLab, ProbLab,
NIELS, and BEAGLE Evolution, and Participatory Simulation Toolkits
such as Calc-HubNet and Computer-HubNet. The tools enable learners
to explore and create simulations of complex phenomena across many
domains of the natural and social sciences and, through creating and
exploring such simulations, deepen their understanding of core scien-
tific concepts. Many of these tools are also in use by researchers across a
wide variety of domains including the natural sciences, social sciences,
business, and medicine. By providing a “low-threshold” language for
exploring and constructing models, Wilensky hopes to promote modeling
literacy—the sharing and critiquing of models in the scientific community,
in education, and in the public at large. Wilensky did his undergraduate
and graduate studies in mathematics, philosophy, and computer science
at Brandeis and Harvard universities and received his Ph.D. in media arts
and sciences from the Massachusetts Institute of Technology.

B.2 WORKSHOP PARTICIPANTS

Dor Abrahamson specializes in the study of mathematical intuition,
reasoning, and learning from the synergistic perspectives of cognitive
and sociocultural theory. He investigates in particular the roles that medi-
ated, reflexive interaction with a range of technologies plays in students’
 content-focused and intellectual development, which he views as trajec-
tories from intuition to inscription. A core aspect of Abrahamson’s profes-
sional practice is the design, production, implementation, and evaluation
of innovative mixed-media concept-targeted curricular artifacts aligned
with the emerging empiricism of individual cognition in social context.
Operating in design-based research methodology, Abrahamson is particu-
larly interested in instances of spontaneous multimodal coordination of
distributed epistemic and material resources and in the roles of teachers
in facilitating conceptual insight. Abrahamson also explores the impact of
complexity studies’ perspectives and methodologies on education research
and has been arguing for the use of agent-based modeling to advance theo-
ries of individual learning in social context. During his tenure as a Spencer
Postdoctoral Fellow, Abrahamson developed computer-based modules
for learning probability. He has published in the Handbook	of	Mathematical	
Cognition, International	Journal	of	Computers	for	Mathematical Learning (and
is a member of the editorial board), Educational	 Studies	 in	 Mathematics,	

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

	Cognition	&	Instruction, For	the	Learning	of	Mathematics, Mathematics	Teach-
ing	in	the	Middle	School, and the Journal	of	Statistics	Education, and he con-
tributes regularly to major international conferences. He received his M.A.
in cognitive psychology in 2000 from Tel Aviv University, Israel, and a
Ph.D. in learning sciences in 2004 from Northwestern University.

Kevin Ashley holds interdisciplinary appointments as a faculty mem-
ber of the Graduate Program in Intelligent Systems at the University of
Pittsburgh, a senior scientist at the Learning Research and Development
Center, a professor of law, and an adjunct professor of computer science.
His goals are to contribute to artificial intelligence (AI) research on case-
based and analogical reasoning, argumentation, and explanation and to
develop instructional and information retrieval systems for professionals
in case-based domains such as law and ethics. Currently, he and his
students are pursuing research projects in automatically indexing legal
case texts, engaging law students in online argumentation dialogues,
intelligent retrieval of ethics codes and cases, and Web-based tutoring to
help students get more from reading ethics cases. For his Ph.D., he devel-
oped an AI CBR system, HYPO, which reasons by analogy to past legal
cases, makes arguments about legal fact situations, and poses hypothetical
cases. MIT Press/Bradford Books published his book, based on his dis-
sertation, entitled Modeling	Legal	Argument:	Reasoning	with	Cases	and	Hypo-
theticals. In April 1990, the National Science Foundation selected Professor
Ashley as a Presidential Young Investigator, and in 2002 he was selected
as a fellow of the American Association of Artificial Intelligence. From
June 1988 through July 1989, he was a visiting scientist at the Thomas J.
Watson Research Center, Yorktown Heights, New York. For 4 years prior
to his computer science graduate work, he was an associate attorney
at White & Case, a large Wall Street law firm. While a philosophy major at
Princeton, he was a research assistant for Professor Walter Kaufmann. He
received a B.A. in philosophy (magna cum laude) from Princeton Univer-
sity in 1973, a J.D. (cum laude) from Harvard Law School in 1976, and a
Ph.D. in computer science in 1988 from the University of Massachusetts,
where he held an IBM Graduate Research Fellowship.

Owen Astrachan is a professor of the practice of computer science at
Duke University and the department’s director of undergraduate studies
for teaching and learning. He received an NSF CAREER award in 1997 to
incorporate design patterns in undergraduate computer science curricula,
received an IBM Faculty Award in 2004 to support componentization in
both software and curricula, and was one of two inaugural NSF CISE
Distinguished Education Fellows in 2007, awarded to revitalize computer
science education using case- and problem-based learning. Astrachan’s

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

research interests have been built on understanding how best to teach
and learn about object-oriented programming, software design, and com-
puter science in general; he is now working on developing a portfolio of
substantial, interdisciplinary problems that help explain how computer
science is relevant to students in the social and natural sciences. Astrachan
received Duke University’s 1995 Robert B. Cox Distinguished Teaching
in Science Award, an Outstanding Instructor Award while teaching on
sabbatical at the University of British Columbia in 1998, and Duke’s
2002 Richard K. Lublin Award for “ability to engender genuine intellec-
tual excitement, ability to engender curiosity, knowledge of the field and
 ability to communicate that knowledge.” He earned his A.B. degree with
distinction in mathematics from Dartmouth and an MAT (Math), an M.S.,
and a Ph.D. in computer science from Duke.

Tim Bell is an associate professor in the Department of Computer Science
and Software Engineering at the University of Canterbury in Christchurch,
New Zealand. His current research interests include computers and music,
public understanding of (computer) science, and educational applications
of podcasting. He received the Science Communicator Award from the NZ
Association of Scientists in 1999, and an inaugural New Zealand Tertiary
Teaching Excellence Award in 2002. He has appeared with his “Com-
puter Science Unplugged” show at the Edinburgh International Science
Festival, the Dunedin International Science Festival, and the Australian
Science Festival. He is also a qualified musician and performs regularly
on instruments that have black-and-white keyboards. He is co-author of
the books Text	Compression and Managing	Gigabytes.

Andrew Bernat was a founding member and chair of the Computer Sci-
ence Department at the University of Texas at El Paso (spending 20 years
there) and a former NSF program director. He is currently the executive
director of the Computing Research Association, whose mission is to
strengthen research and education in the computing fields, expand oppor-
tunities for women and minorities, and improve the public’s and policy
makers’ understanding of the importance of computing and computing
research in our society. In recognition of “his success in creating arguably
the strongest computer science department at a minority-serving institu-
tion,” the Computing Research Association honored him with the 1997 A.
Nico Habermann Award.

Paulo Blikstein is an assistant professor at Stanford University’s School of
Education, with a courtesy appointment in the Computer Science Depart-
ment. His research focuses on computational literacy, low-cost educa-
tional technologies for low-income settings, and STEM education. His

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

work cuts across age groups—he has worked extensively with inner-city
students in developing countries, such as Brazil, Mexico, Senegal, and
Costa Rica, but also with undergraduates in elite U.S. institutions. His
research tries to bring the most cutting-edge computational tools to the
classroom, creating environments for students to authentically engage in
advanced, deep scientific inquiry.

Lenore Blum is Distinguished Career Professor of Computer Science at
Carnegie Mellon University, where she co-directs the ALADDIN Center for
Algorithm Adaptation, Dissemination and Integration, is a faculty advisor
to the student organization Women@SCS, and is the principal investigator
for the Google-funded CS4HS program for high school teachers. Her most
recent creation and passion is Project Olympus, a high-tech innovation
center that she directs at Carnegie Mellon. In 2009, the impact of this work
was acknowledged by the Carnegie Science “Catalyst” award. Blum’s
research, from her early work in model theory and differential fields (logic
and algebra) to her more recent work in developing a theory of computa-
tion and complexity over the real numbers (mathematics and computer
science), has focused on merging seemingly unrelated areas. She received
her doctorate in mathematics from MIT the same year that Princeton Uni-
versity first allowed women to enter its graduate program. She then taught
at the University of California, Berkeley, and at Mills College, where she
founded the Department of Mathematics and Computer Science (the first
computer science department at a women’s college), served as its head or
co-head for 13 years, and became the first holder of the Letts-Villard Chair.
In 1988 she joined the Theory Group of the newly formed International
Computer Science Institute in Berkeley and from 1992 to 1996 also served
as deputy director of the Mathematical Sciences Research Institute. Blum
spent 2 years, 1996-1998, spanning the historic handover of Hong Kong
from Britain to China, at CityU of Hong Kong as a visiting professor of
mathematics and computer science, and she completed her book, Complex-
ity	and	Real	Computation, there with her colleagues. She has served the pro-
fessional community in numerous capacities, including as president of the
Association for Women in Mathematics, as vice president of the American
Mathematical Society, and as a member of numerous committees, includ-
ing the MIT Visiting Committee for Mathematics and the ACM SIGACT
Committee for the Advancement of Theoretical Computer Science. She is
a fellow of the American Association for the Advancement of Science. She
received her Ph.D. in mathematics from MIT in 1968.

Allan Collins is a professor emeritus of education and social policy at
Northwestern University. He is a member of the National Academy of Edu-
cation and a fellow of the American Association for Artificial Intelligence,

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

the Cognitive Science Society, the American Educational Research Associa-
tion, and the American Association for the Advancement of Science. He
served as a founding editor of the journal Cogniti�e	Science and as first chair
of the Cognitive Science Society. He has studied teaching and learning for
more than 30 years and has written extensively on related topics. He is
best known in psychology for his work on how people answer questions,
in artificial intelligence for his work on reasoning and intelligent tutoring
systems, and in education for his work on situated learning, inquiry teach-
ing, design research, and cognitive apprenticeship. From 1991 to 1994 he
was co-director of the U.S. Department of Education’s Center for Technol-
ogy in Education.

Jan Cuny is a program officer at the National Science Foundation, head-
ing the Broadening Participation in Computing program. Before coming
to NSF in 2004, she was a faculty member in computer science at Purdue
University, the University of Massachusetts, and the University of Oregon.
Cuny has been involved for many years in efforts to increase the participa-
tion of women in computing research. She was a longtime member of the
Computing Research Association’s Committee on the Status of Women
(CRA-W), serving, among other activities, as a CRA-W co-chair, a mentor
in its Distributed Mentoring program, and a lead on its Academic Career
Mentoring Workshop, Grad Cohort, and Cohort for Associated Professors
projects. She was also a member of the Advisory Board for the Anita Borg
Institute for Women and Technology, the leadership team of the National
Center for Women in Technology, the executive committee of the Coalition
to Diversify Computing, and the ACM Education Council. She was pro-
gram chair of the 2004 Grace Hopper Conference and the general chair of
the 2006 conference. For her efforts with underserved populations, Cuny
was a recipient of one of the 2006 ACM President’s Awards and the CRA’s
2007 A. Nico Habermann Award.

Joshua Danish’s research examines the role of external representations,
such as drawings, maps, and computer simulations, in supporting cog-
nition and learning. To study learning and development in classroom
contexts, he employs cultural historical activity theory to articulate the
influence of various mediators—the physical tools, rules, division of
labor, and local community—on students’ activities as they learn and
develop. Recent research has included the development and study of Bee-
Sign, a computer simulation and accompanying curriculum that engages
kindergarten and first-grade students in learning about the nectar-gath-
ering behavior of honeybee hives; the Community Mapping Project, in
which seventh-grade students learned basic statistics concepts using the
MyWorld Geographical Information Systems mapping software to study

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

local community issues; and the Semiotic Pivots and Activity Spaces for
Elementary Science project, which takes advantage of sensing technolo-
gies and augmented reality tools to support first- and second-grade stu-
dents in learning about physical science concepts.

Peter J. Denning is a Distinguished Professor at the Naval Postgraduate
School in Monterey, California. He chairs the Computer Science Depart-
ment and directs the Cebrowski Institute, an interdisciplinary research
center for innovation and information superiority. In the 1990s he was
at George Mason University, where he was vice provost, associate dean,
Computer Science Department chair, and founder of the Center for the
New Engineer. In the 1980s, he was the founding director of the Research
Institute for Advanced Computer Science at NASA-Ames and was co-
founder of CSNET. He received a Ph.D. from MIT and a B.E.E. from
Manhattan College. He was president of the Association for Computing
Machinery (ACM) in 1980-1982. As chair of the ACM publications board
in 1992-1998, he was project leader for the ACM digital library, now the
ACM’s crown jewel. In 1967 he discovered the locality principle for ref-
erencing storage objects and used it to invent the influential working set
model for program behavior; his original paper was named to the ACM
SIGOPS Hall of Fame in 2005. He helped establish virtual memory as a
permanent part of operating systems. He contributed important extensions
to operational analysis, an approach to computer system performance
prediction. He leads the Great Principles of Computing project, which
is identifying the scientific theories of computing and applying them to
curriculum innovation. He also co-leads an Innovation project that has
identified and teaches the seven foundational practices of innovation. He
has published seven books and 315 articles on computers, networks, and
their operating systems. He is working on two more books, one on the
foundational practices of innovation and the other on the great principles
of computing. In 2002, he was named one of the top five best teachers at
George Mason University and the best teacher in the School of Informa-
tion Technology and Engineering. In 2003, he received one of Virginia’s
10 outstanding faculty awards. He holds three honorary degrees, three
professional society fellowships, two best-paper awards, three distin-
guished service awards, the ACM Outstanding Contribution Award, the
ACM SIGCSE Outstanding CS Educator Award, and the prestigious ACM
Karl Karlstrom Outstanding Educator Award. In 2007 ACM gave him a
special award for 40 years of continuous volunteer service, and the NSF
gave him one of two Distinguished Education Fellow awards.

Andrea diSessa is the Corey Professor of Education and a member of
the National Academy of Education. His research centers on conceptual

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

and experiential knowledge in physics, and large-scale and deep impli-
cations of the use of computers in education (“new literacies”). His cur-
rent work focuses on student ideas concerning patterns of behavior and
control—aka dynamical systems theory. He was a fellow at the Center for
Advanced Study in the Behavioral Sciences in 1997-1998 and 2007-2008.
He wrote the books Changing	 Minds:	 Computers,	 Learning	 and	 Literacy
(2000) and Turtle	Geometry:	The	Computer	as	a	Medium	for	Exploring	Math-
ematics (with H. Abelson, 1981), and he edited the volume Computers	and	
Exploratory	Learning (with C. Hoyles, R. Noss, and L. Edwards, 1995). He
received his Ph.D. in physics from MIT, and an A.B., also in physics, from
Princeton University.

Ian Foster has been appointed director of the Computation Institute.
The Computation Institute was created by the University of Chicago and
Argonne National Laboratory in 1999 in recognition of the increasingly
central role that computation plays in many disciplines of the sciences,
medicine, and the humanities. Foster joined Argonne’s Mathematics and
Computer Science Division in 1989 and has most recently served as asso-
ciate division director and senior scientist. He is also the Arthur Holly
Compton Distinguished Service Professor of Computer Science at the Uni-
versity of Chicago. His research interests are in distributed and parallel
computing, and computational science. He has published six books and
more than 300 articles and technical reports in these areas. The Distrib-
uted Systems Laboratory that he heads at Argonne and Chicago pursues
research in these areas and also development of the Globus toolkit, open-
source Grid software used widely in business and science.

Edward Fox, after almost a year devoted to running the computer opera-
tions at the International Institute for Tropical Agriculture, Ibadan, Nige-
ria, started teaching at Virginia Tech in 1983. Since 1987 he has worked
on electronic theses and dissertations; he is executive director of the
Networked Digital Library of Theses and Dissertations. His research,
teaching, and service have focused on information, including search-
ing, multimedia/hypertext, and digital libraries. Fox is starting his 103rd
funded research grant; these have included working with many disci-
plines, including animal care, archeology, auto parts, chemistry, electronic
publishing, fisheries, geography, gerontology, health, library and informa-
tion science, physics, and sociology. Two current NSF grants supporting
education include (1) “Living in the Knowledge Society (LIKES),” which
promotes connecting computing with all other disciplines to ensure better
preparation of college students, and (2) “Ensemble,” an NSDL pathways
project that aims to help “K-gray” learning related to computing. Fox
completed his B.S. in electrical engineering and computer science in 1972

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

at MIT. He also pursued graduate degrees in information retrieval at
Cornell University from 1978 to 1982.

Christopher Hoffmann is well known for his work in geometric comput-
ing and geometric constraint solving. The simulations of the 9/11 attacks
on the Pentagon and on the WTC-1 building generated worldwide media
attention. His current projects include shape modeling for traumatic brain
injury simulations, and the NSF-supported SECANT project teaching
computational thinking to science majors.

Ken Kahn is a senior researcher at Oxford University and the London
Knowledge Laboratory. His interest in programming languages for chil-
dren was sparked while he was a Ph.D. student at the MIT AI Labora-
tory in the 1970s. While at the MIT AI Lab, he worked with Seymour
Papert and others in the Logo Group. After 15 years as a researcher in
programming languages and AI, he returned to children’s programming
languages when he founded Animated Programs to develop ToonTalk.
ToonTalk is an advanced programming language that looks like a video
game. Children as young as 3 have successfully used it to create programs
by training virtual robots to do actions such as giving birds messages to
deliver, loading up trucks, and putting things in boxes. Kahn participated
in two large-scale European projects in which children built computer
games using ToonTalk. More recently he has been designing and building
construction kits that enable students to build computer simulations by
composing transparent modules.

Alan Kay, president of Viewpoints Research Institute, Inc., is one of the
earliest pioneers of object-oriented programming, personal computing,
and graphical user interfaces. His contributions have been recognized
with the Charles Stark Draper Prize of the National Academy of Engi-
neering “for the vision, conception, and development of the first practical
networked personal computers”; the Alan. M. Turing Award from the
Association for Computing Machinery “for pioneering many of the ideas
at the root of contemporary object-oriented programming languages,
leading the team that developed Smalltalk, and for fundamental contri-
butions to personal computing”; and the Kyoto Prize from the Inamori
Foundation “for creation of the concept of modern personal computing
and contribution to its realization.” This work was done in the rich con-
text of the Advanced Research Projects Agency (ARPA) and the Xerox
Palo Alto Research Center (PARC) with many talented colleagues. He is
an elected fellow of NAE and AAAS, as well as a member of RSA, ACM,
and CHM. At Viewpoints Research Institute he and his colleagues con-
tinue to explore advanced systems and programming design by aiming

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

for a “Moore’s law” advance in software creation of several orders of mag-
nitude. Kay and Viewpoints are also deeply involved in the One Laptop
Per Child initiative that seeks to create a Dynabook-like “$100 laptop” for
every child in the world (especially in the third world). Kay has a B.A.
in mathematics and biology, with minor concentrations in English and
anthropology, from the University of Colorado, 1966. He also holds an
M.S. and a Ph.D. in computer science (1968 and 1969, both with distinc-
tion) from the University of Utah.

Peter Lee is the head of the Computer Science Department at Carnegie
Mellon University. In this capacity, he oversees a computing organization
whose research and education programs are consistently ranked among
the top four in the nation. Prior to assuming his current position, Lee was
the vice provost for research, providing administrative oversight and
strategic guidance for Carnegie Mellon’s research activities, an enterprise
that exceeds $400 million annually in sponsored research. Lee is an active
researcher, educator, administrator, and servant to the academic com-
munity. For his research, he has received several awards, including the
ACM SIGOPS Hall of Fame Award, and election as an ACM Fellow. He is
a member of the board of directors of the Computing Research Associa-
tion (where he chairs the Government Affairs Committee), the Computing
Community Consortium Council, the Computer Science and Telecommu-
nications Board of the National Research Council, and the DARPA Infor-
mation Science and Technology Board (of which he is the vice chair).

Richard Lipton is a member of the National Academy of Engineering.
His professional career has been primarily in academia. He held faculty
appointments at Yale University, the University of California, Berkeley,
and Princeton University before joining the faculty in the college of Com-
puting at Georgia Tech. In addition to his computer science academic
appointments, Lipton was the founding director of a computer science
research laboratory for the Panasonic Corporation and is currently a chief
consulting scientist at Telcordia (formerly known as Bellcore). Lipton’s
research is focused primarily, but not exclusively, on theory. In a recent
paper on the power of automata-based proof systems, he explored one
way to address the NP = co-NP questions that considered the length of
proofs of tautologies in various proof systems. In this joint work with
A. Viglas he considered proof systems defined by appropriate classes
of automata. Lipton found that in general, starting from a given class
of automata, it was possible to define a corresponding proof system in
a natural way. One new and more powerful proof system was based
on the class of push-down automata. In this work, Lipton presented an
exponential lower bound for oblivious read-once branching programs

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

that resulted in a proof system more powerful than oblivious regular
resolution. He has also made important contributions in the areas of
program testing, software engineering, and, most recently, DNA comput-
ing, combining molecular biology and computer science. It is generally
acknowledged that Richard Lipton was one of the original pioneers in the
field of DNA computing, along with Len Adleman.

Andrew McGettrick studied pure mathematics at the University of
Glasgow. He was awarded a scholarship to Peterhouse, Cambridge,
obtaining his Ph.D. in pure mathematics and, later, Diploma in com-
puter science. Throughout his career he has been at the University of
 Strathclyde; he was promoted to professor in 1984 and served for many
years as the head of the Department of Computer and Information Sci-
ences. He is a fellow of the Royal Society of Edinburgh, of the Institution
of Engineering and Technology, and of the British Computer Society,
where he is also vice president, Qualifications and Standards. McGettrick
is the chair of the ACM Education Board and Education Council, which
provides curriculum guidelines for the key subdisciplines of computing.
He also chairs the IET/BCS Competency Liaison Group. McGettrick holds
the ACM SIGCSE Award for Lifetime Service.

David Moursund is professor emeritus at the University of Oregon. He
founded the International Society for Technology in Education and served
as its executive officer for 19 years. He served 6 years as the first head of
the Computer Science Department at the University of Oregon. He is the
major or co-major professor of six Ph.D. students in mathematics and
70 in the College of Education. He is the author or co-author of more than
50 books and more than 200 articles. Currently, Moursund runs a nonprofit
organization named Information Age Education. Its activities include a
Wiki, a website, and a free twice-a-month newsletter. He received his
doctorate in mathematics from the University of Wisconsin-Madison.

Roy Pea is Stanford University Professor of the Learning Sciences and
director of the Stanford Center for Innovations in Learning. He has pub-
lished widely on such topics as distributed cognition, learning, and educa-
tion fostered by advanced technologies including scientific visualization,
online communities, digital video collaboratories, and wireless handheld
computers. Much of this work concerns aspects of computational thinking
on the part of tool users. His current work is developing a new paradigm
for everyday networked video interactions for learning and communica-
tions, and for how informal and formal learning can be better understood
and connected, as co-principal investigator of the LIFE Center funded by
the National Science Foundation as one of several large-scale national

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

Science of Learning Centers. He is co-editor of the 2007 volume Video	
Research	 in	 the	Learning	Sciences. He was co-author of the 2000 National
Research Council volume How	People	Learn. Pea founded and served as
the first director of the learning sciences doctoral programs at North-
western University (1991) and Stanford University (2001). He is a fellow
of the National Academy of Education, the Association for Psychological
Science, the Center for Advanced Study in the Behavioral Sciences, and
the American Educational Research Association. In 2004-2005, he was
president of the International Society for the Learning Sciences.

Mitchel Resnick, a professor of Learning Research at the MIT Media
Laboratory, develops new technologies to engage people (especially chil-
dren) in creative learning experiences. His research group developed the
“programmable bricks” that were the basis for the LEGO MindStorms
robotics construction kits. Resnick co-founded the Computer Clubhouse
project, an international network of after-school learning centers for youth
from low-income communities. Resnick’s group recently developed a new
programming language, called Scratch, which makes it easier for children
to create their own interactive stories, games, and animations—and to
share their creations on the Web. In the process, children learn to think
creatively, reason systematically, and work collaboratively. He worked for
5 years as a science and technology journalist for Business	Week magazine,
and he has consulted around the world on the uses of new technologies
in education. Resnick earned a B.S. in physics from Princeton University,
and an M.S. and a Ph.D. in computer science from MIT.

Eric Roberts is a professor of computer science at Stanford University
and past chair of the ACM Education Board. His research focuses on
computer science education, and is he the author of five textbooks that
have been used widely throughout the world. From 1998 to 2005, Roberts
was principal investigator for the Bermuda Project, which developed the
computer science curriculum for Bermuda’s public secondary schools.
Roberts has also been active in professional organizations dedicated to
computer science education. From 2005 to 2007, he served as co-chair of
the Education Board of the Association for Computing Machinery (ACM)
and was for many years on the board of the ACM Special Interest Group
on Computer Science Education (SIGCSE). From 1998 to 2001, Roberts
served as co-chair and principal editor for the ACM/IEEE CS Joint Task
Force on Computing Curricula 2001, which published a detailed set of
curriculum guidelines in December 2001. He also chaired the ACM Java
Task Force from 2004 to 2006. In 2003, Roberts received the SIGCSE Award
for Outstanding Contribution to Computer Science Education. Professor
Roberts is a fellow of the ACM and the American Association for the

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�0	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

Advancement of Science. He received his A.B., M.S., and Ph.D. degrees
in applied mathematics from Harvard University.

Robert Sproull is a vice president and fellow at Sun Microsystems. He
founded and led the Massachusetts branch of Sun Microsystems Labora-
tories for more than 10 years and is currently serving as interim director
of Sun Microsystems Laboratories. Since undergraduate days, he has
been building hardware and software for computer graphics: clipping
hardware, an early device-independent graphics package, page descrip-
tion languages, laser printing software, and window systems. He has also
been involved in VLSI design, especially of asynchronous circuits and
systems. Before joining Sun in 1990, he was a principal with Sutherland,
Sproull & Associates, an associate professor at Carnegie Mellon Uni-
versity, and a member of the Xerox Palo Alto Research Center. He is a
coauthor with William Newman of the early text Principles	of	Interacti�e	
Computer	Graphics. He is an author of the recently published book Logical	
Effort, which deals with designing fast CMOS circuits. Sproull was elected
in 1997 to the National Academy of Engineering for his work in computer
graphics and digital printing. He is a fellow of the American Academy of
Arts and Sciences and has served on the U.S. Air Force Scientific Advisory
Board. Sproull received a B.A in physics from Harvard College in 1968,
and an M.S. and a Ph.D. in computer science from Stanford University,
in 1970 and 1977.

Gerald Jay Sussman is the Panasonic (formerly Matsushita) Professor of
Electrical Engineering at the Massachusetts Institute of Technology. Since
1964, he has worked on artificial intelligence research at MIT. He has also
worked in computer languages and in computer architecture and VLSI
design. Using the Digital Orrery he designed, Sussman has worked with
Jack Wisdom to discover numerical evidence for chaotic motions in the
outer planets. Sussman is coauthor (with Hal Abelson and Julie Sussman)
of the introductory computer science textbook used at MIT from 1985
through 2007. The textbook (Harold Abelson, Gerald Jay Sussman, and Julie
Sussman, 1985, Structure	and	Interpretation	of	Computer	Programs, 1st edition,
Cambridge, Mass., MIT Press) has been translated into French, German,
Polish, Chinese, and Japanese. Sussman has pioneered the use of computa-
tional descriptions to communicate methodological ideas in teaching sub-
jects in electrical circuits and in signals and systems. Over the past decade
Sussman and Wisdom have developed a subject that uses computational
techniques to communicate a deeper understanding of advanced classical
mechanics. Computational algorithms are used to express the methods
used in the analysis of dynamical phenomena. Expressing the methods in
a computer language forces them to be unambiguous and computationally

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

effective. Sussman and Wisdom, with Meinhard Mayer, have produced a
textbook, Structure	and	Interpretation	of	Classical	Mechanics, to capture these
ideas. Sussman is a fellow of the Institute of Electrical and Electronics Engi-
neers. He is a member of the National Academy of Engineering and is also
a fellow of the American Association for the Advancement of Science, the
American Association for Artificial Intelligence, the Association for Com-
puting Machinery (ACM), the American Academy of Arts and Sciences,
and the New York Academy of Sciences. He received his S.B. and Ph.D. in
mathematics from the Massachusetts Institute of Technology in 1968 and
1973, respectively.

Jeannette M. Wing is the President’s Professor of Computer Science in the
Computer Science Department at Carnegie Mellon University. She received
her S.B., S.M., and Ph.D. from the Massachusetts Institute of Technology.
From 2004-2007, she was head of the Computer Science Department at
Carnegie Mellon. Currently on leave from CMU, she is the assistant direc-
tor of the Computer and Information Science and Engineering Directorate
at the National Science Foundation. Wing’s general research interests are
in the areas of specification and verification, concurrent and distributed
systems, programming languages, and software engineering. Her current
focus is on the foundations of trustworthy computing, with specific inter-
ests in security and privacy. She published a viewpoint article in the March
2006 issue of Communications	 of	 the	 Association	 for	 Computing	 Machinery
entitled “Computational Thinking.”

Ursula Wolz is the College of New Jersey (TCNJ) Associate Professor of
Computer Science and Interactive Multimedia. Wolz is also the princi-
pal investigator for the NSF Broadening Participation in Computing via
Community Journalism for Middle Schoolers program, and she was the
principal investigator of a Microsoft Research project on multidisciplinary
game development. She is a recognized computer science educator with a
broad range of publications who has taught students including disabled
children, urban teachers, and elite undergraduates for more than 30 years.
She is a co-founder of the Interactive Multimedia Program at TCNJ. She
has a background in computational linguistics, with a Ph.D. in computer
science from Columbia University, a master’s degree in computing in
education from Columbia Teachers College, and a bachelor’s degree from
MIT, where she was part of Seymour Papert’s Logo group at the very
beginning of research on constructivist computing environments.

Wm. A. Wulf is a computer scientist notable for his work in programming
languages and compilers. As of 2007, he is a professor at the University of
Virginia. Wulf’s research has included computer architecture, computer

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

security, and hardware-software codesign. While at Carnegie Mellon Uni-
versity, he designed the BLISS programming language and developed a
groundbreaking optimizing compiler for it. Wulf is a former president
of the National Academy of Engineering and has previously chaired
the Computer Science and Telecommunications Board of the National
Research Council. He serves on the Council of the ACM and is a review-
ing editor of Science. In 1994 he was inducted as a fellow of the ACM. In
1993, Wulf was elected to the National Academy of Engineering for pro-
fessional leadership and for contributions to programming systems and
computer architecture. He attended the University of Illinois, receiving a
B.S. in engineering physics and an M.S. in electrical engineering, and then
achieved a Ph.D. in computer science from the University of Virginia.

B.3 STAFF

Herbert S. Lin, the study director, is chief scientist for the National
Research Council’s Computer Science and Telecommunications Board,
where he has been a study director for major projects on public policy and
information technology. These studies include a 1996 study on national
cryptography policy (Cryptography’s	Role	in	Securing	the	Information	Soci-
ety), a 1991 study on the future of computer science (Computing	the	Future),
a 1999 study of Defense Department systems for command, control, com-
munications, computing, and intelligence (Realizing	 the	 Potential	 of	 C�I:	
Fundamental	Challenges), a 2000 study on workforce issues in high tech-
nology (Building	a	Workforce	for	the	Information	Economy), a 2002 study on
protecting kids from Internet pornography and sexual exploitation (Youth,	
Pornography,	and	the	Internet), a 2004 study on aspects of the FBI’s informa-
tion technology modernization program (A	Re�iew	of	the	FBI’s	Trilogy	IT	
Modernization	Program), a 2005 study on electronic voting (Asking	the	Right	
Questions	About	Electronic	Voting), a 2005 study on computational biology
(Catalyzing	Inquiry	at	the	Interface	of	Computing	and	Biology), a 2007 study
on privacy and information technology (Engaging	Pri�acy	and	Information	
Technology	in	a	Digital	Age), a 2007 study on cybersecurity research (Toward	
a	Safer	and	More	Secure	Cyberspace), a 2009 study on health care information
technology (Computational	Technology	for	Effecti�e	Health	Care), and a 2009
study on cyberattack (Technology,	 Policy,	 Law,	 and	 Ethics	 Regarding	 U.S.	
Acquisition	and	Use	of	Cyberattack	Capabilities). Before his NRC service, he
was a professional staff member and staff scientist for the House Armed
Services Committee (1986-1990), where his portfolio included defense
policy and arms control issues. He received his doctorate in physics from
MIT. Apart from his CSTB work, he is published in cognitive science, sci-
ence education, biophysics, and arms control and defense policy. He also
consults on K-12 math and science education.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	B	 ��

Enita A. Williams is an associate program officer with the Computer Sci-
ence and Telecommunications Board of the National Research Council.
She formerly served as a research associate for the Air Force Studies
Board of the National Academies where she supported a number of
 projects, including a standing committee for the Special Operations Com-
mand (SOCOM) and standing committee for the intelligence community
(TIGER). Prior to her work at the National Academies, she served as a
program assistant with the Scientific Freedom, Responsibility and Law
Program of AAAS, where she drafted the human enhancement workshop
report. Ms. Williams graduated from Stanford University with a B.A. in
public policy with a focus on science and technology policy, and an M.A.
in communications.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

C

Executive Summary from
Being	Fluent	with	Information	Technology

 Information technology is playing an increasingly important role in
the work and personal lives of citizens. Computers, communications,
digital information, software—the constituents of the information age—
are everywhere.
 Between those who search aggressively for opportunities to learn more
about information technology and those who choose not to learn anything
at all about information technology, there are many who recognize the
potential value of information technology for their everyday lives and
who realize that a better understanding of information technology will
be helpful to them. This realization is based on several factors:

 • Information technology has entered our lives over a relatively brief
period of time with little warning and essentially no formal educational
preparation for most people.
 • Many who currently use information technology have only a lim-
ited understanding of the tools they use and a (probably correct) belief
that they are underutilizing them.
 • Many citizens do not feel confident or in control when confronted
by information technology, and they would like to be more certain of
themselves.
 • There have been impressive claims for the potential benefits of
information technology, and many would like to realize those benefits.

NOTE: Reprinted from National Research Council, 1999, Being	Fluent	with	Information	Tech-
nology, Washington, D.C.: National Academy Press, pp. 1-5.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	C	 ��

 • There is concern on the part of some citizens that changes implied
by information technology embody potential risks to social values, free-
doms or economic interests, etc., obligating them to become informed.

And, naturally, there is simple curiosity about how this powerful and
pervasive technology works.
 These various motivations to learn more about information tech-
nology raise the general question, What should everyone know about
information technology in order to use it more effectively now and in
the future? Addressing that question is the subject of this report.
 The answer to this question is complicated by the fact that informa-
tion technology is changing rapidly. The electronic computer is just over
50 years old, “PC,” as in personal computer, is less than 20 years old,
and the World Wide Web has been known to the public for less than five
years. In the presence of rapid change, it is impossible to give a fixed,
once-and-for-all course that will remain current and effective.
 Generally, “computer literacy” has acquired a “skills” connotation,
implying competency with a few of today’s computer applications, such
as word processing and e-mail. Literacy is too modest a goal in the pres-
ence of rapid change, because it lacks the necessary “staying power.”
As the technology changes by leaps and bounds, existing skills become
antiquated and there is no migration path to new skills. A better solution
is for the individual to plan to adapt to changes in the technology. This
involves learning sufficient foundational material to enable one to acquire
new skills independently after one’s formal education is complete.
 This requirement of a deeper understanding than is implied by the
rudimentary term “computer literacy” motivated the committee to adopt
“fluency” as a term connoting a higher level of competency. People fluent
with information technology (FIT persons) are able to express themselves
creatively, to reformulate knowledge, and to synthesize new information.
Fluency with information technology (i.e., what this report calls FITness)
entails a process of lifelong learning in which individuals continually
apply what they know to adapt to change and acquire more knowledge
to be more effective at applying information technology to their work
and personal lives.
 Fluency with information technology requires three kinds of knowl-
edge: contemporary skills, foundational concepts, and intellectual capa-
bilities. These three kinds of knowledge prepare a person in different
ways for FITness.

 • Contemporary skills, the ability to use today’s computer applica-
tions, enable people to apply information technology immediately. In the
present labor market, skills are an essential component of job readiness.
Most importantly, skills provide a store of practical experience on which
to build new competence.
 • Foundational concepts, the basic principles and ideas of com-
puters, networks, and information, underpin the technology. Concepts

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

explain the how and why of information technology, and they give
insight into its opportunities and limitations. Concepts are the raw mate-
rial for understanding new information technology as it evolves.
 • Intellectual capabilities, the ability to apply information technology
in complex and sustained situations, encapsulate higher-level thinking
in the context of information technology. Capabilities empower people
to manipulate the medium to their advantage and to handle unintended
and unexpected problems when they arise. The intellectual capabilities
foster more abstract thinking about information and its manipulation.

 For specificity, the report enumerates the ten highest-priority items
for each of the three types of knowledge. (Box ES.1 lists these ten
items for each type of knowledge.) The skills, linked closely to today’s
computer usage, will change over time, but the concepts and capabili-
ties are timeless.
 Concepts, capabilities, and skills—the three different types of knowl-
edge of FITness—occupy separate dimensions, implying that a particular
activity involving information technology will involve elements of each
type of knowledge. Learning the skills and concepts and developing
the intellectual capabilities can be undertaken without reference to each
other, but such an effort will not promote FITness to any significant
degree. The three elements of FITness are co-equal, each reinforcing the
others, and all are essential to FITness.
 FITness is personal in the sense that individuals fluent with informa-
tion technology evaluate, distinguish, learn, and use new information
technology as appropriate to their own personal and professional activi-
ties. What is appropriate for an individual depends on the particular
applications, activities, and opportunities for being FIT that are associ-
ated with the individual’s area of interest or specialization.
 FITness is also graduated and dynamic. It is graduated in the sense
that FITness is characterized by different levels of sophistication (rather
than a single fluent/not fluent judgment). And, it is dynamic in that
 FITness entails lifelong learning as information technology evolves.
 In short, FITness should not be regarded as an end state that is inde-
pendent of domain, but rather as something that develops over a lifetime
in particular domains of interest and that has a different character and
tone depending on which domains are involved. Accordingly, the peda-
gogic goal is to provide students with a sufficiently complete foundation
of the three types of knowledge that they can “learn the rest of it” on
their own as the need arises throughout life.
 Because FITness is fundamentally integrative, calling upon an indi-
vidual to coordinate information and skills with respect to multiple
dimensions of a problem and to make overall judgments and decisions
taking all such information into account, a project-based approach to
developing FITness is most appropriate. Projects of appropriate scale and
scope inherently involve multiple iterations, each of which provides an
opportunity for an instructional checkpoint or intervention. The domain

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	C	 ��

BOX ES.1
The Components of Fluency with Information Technology

Intellectual Capabilities

  1. Engage in sustained reasoning. 
  2. Manage complexity.
  3. Test a solution.
  4. Manage problems in faulty solutions.
  5. Organize and navigate information structures and evaluate information.
  6. Collaborate.
  7. Communicate to other audiences.
  8. Expect the unexpected.
  9. Anticipate changing technologies.
10. Think about information technology abstractly.

Information Technology Concepts

  1. Computers 
  2. Information systems
  3. Networks
  4. Digital representation of information
  5. Information organization
  6. Modeling and abstraction
  7. Algorithmic thinking and programming
  8. Universality 
  9. Limitations of information technology
10. Societal impact of information and information technology

Information Technology Skills

  1. Setting up a personal computer
  2. Using basic operating system features 
  3. Using a word processor to create a text document
  4.  Using a graphics and/or an artwork package to create illustrations, slides, 

or other image-based expressions of ideas
  5. Connecting a computer to a network
  6. Using the Internet to find information and resources
  7. Using a computer to communicate with others
  8. Using a spreadsheet to model simple processes or financial tables
  9. Using a database system to set up and access useful information 
10.  Using  instructional  materials  to  learn  how  to  use  new  applications  or 

 features

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

of a project can be tailored to an individual’s interest (e.g., in the depart-
ment of a student’s major), thereby providing motivation for a person
to expend the (non-trivial) effort to master the concepts and skills of
FITness. In addition, a project of appropriate scope will be sufficiently
complex that intellectual integration is necessary to complete it. Note
also that much of the infrastructure of existing skills-based computer
or information technology literacy efforts (e.g., hardware, software, net-
work connections, support staff) will be important elements of efforts to
promote FITness.
 Although the essentials of FITness are for the most part not depen-
dent on sophisticated mathematics, and should therefore generally be
accessible in some form to every citizen, any program or effort to make
individuals more FIT must be customized to the target population.
Because the committee was composed of college and university faculty,
the committee chose to focus its implementational concerns on the four-
year college or university graduate as one important starting point for
the development of FITness across the citizenry. Further, the commit-
tee believes that successful implementation of FITness instruction will
requires serious rethinking of the college and university curriculum. It
will not be sufficient for individual instructors to revisit their course con-
tent or approach. Rather, entire departments must examine the question
of the extent to which their students will graduate FIT. Universities need
to concern themselves with the FITness of students who cross discipline
boundaries and with the extent to which each discipline is meeting the
goals of universal FITness.
 In summary, FIT individuals, those who know a starter set of IT skills,
who understand the basic concepts on which IT is founded, and who
have engaged in the higher-level thinking embodied in the intellectual
capabilities, should use information technology confidently, should come
to work ready to learn new business systems quickly and use them effec-
tively, should be able to apply IT to personally relevant problems, and
should be able to adapt to the inevitable change as IT evolves over their
lifetime. To be FIT is to possess knowledge essential to using information
technology now and in the future.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

��

D

Supplemental Bibliography

Barron, Brigid. 2006. “Interest and Self-Sustained Learning as Catalysts of Development: A
Learning Ecology Perspective.” Human	De�elopment 49:193-224.

Bell, Philip. 2005. “Reflections on the Cognitive and Social Foundations of Information and
Communication Technology Fluency.” Paper read at Workshop on ICT Fluency and High
School Graduation Outcomes, October 23-24, 2005, Washington, D.C.

Bell, Tim, Ian H. Witten, and Mike Fellows. 2006. Computer	Science	Unplugged:	An	Enrich-
ment	 and	 Extension	 Programme	 for	 Primary-Aged	 Children. Canterbury, New Zealand:
Computer Science Unplugged.

Blikstein, Paulo, and Uri Wilensky. 2007. “Bifocal Modeling: A Framework for Combining
Computer Modeling, Robotics and Real-World Sensing.” Paper presented at the annual
meeting of the American Educational Research Association (AERA 2007), April 9-13,
2007, Chicago.

Blum, Lenore, and Thomas J. Cortina. 2007. “CS4HS: An Outreach Program for High School
CS Teachers.” Paper read at ACM Special Interest Group on Computer Science Educa-
tion, March 7-10, 2007, Covington, Kentucky.

Blum, Lenore, and Richard J. Lipton. 2009. “Algorithms: Tiny Yet Powerful—and We
Can’t Live Without Them.” Available at http://rjlipton.wordpress.com/2009/02/13/
algorithms-tiny-yet-powerful/.

Carnegie Mellon University, Center for Computational Thinking. See http://www.cs.cmu.
edu/~CompThink/.

Denning, Peter. 2004. “Great Principles in Computing Curricula.” Paper read at ACM Special
Interest Group on Computer Science Education, March 3-7, 2004, Norfolk, Virginia.

Denning, Peter. 2009. “Beyond Computational Thinking: A CACM IT Profession Column.”
Communications	of	the	ACM 52(6):28-30.

diSessa, Andrea. 2008. “Can Students Re-Invent Fundamental Scientific Principles?: Evaluat-
ing the Promise of New-Media Literacies.” In Children’s	Learning	in	a	Digital	World, edited
by T. Willoughby and E. Wood. Oxford, United Kingdom: Blackwell Publishing.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

�00	 REPORT	OF	A	WORKSHOP	ON	COMPUTATIONAL	THINKING

diSessa, Andrea. 2005. “Systemics of Learning for a Revised Pedagogical Agenda.” In Foun-
dations	for	the	Future	in	Mathematics	Education, edited by R. Lesh. Mahwah, New Jersey:
Lawrence Erlbaum Associates.

Glass, Robert L. 2006. “Call It Problem Solving, Not Computational Thinking.” Communica-
tions	of	the	ACM 49(9):13.

Goldman, Shelley, Roy Pea, Heidy Maldonado, Lee Martin, Toby White, and WILD Team
of Stanford University. 2004. “Functioning in the Wireless Classroom.” Paper read at
2nd IEEE International Workshop on Wireless and Mobile Technologies in Education
(WMTE ’04), March 23-25, 2004, Washington, D.C.

Goldman, Shelley, Roy Pea, Heidy Maldonado, and WILD Team of Stanford University. 2004.
“Emerging Social Engineering in the Wireless Classroom.” Paper read at International
Conference on Learning Sciences, Proceedings of the 6th International Conference on
Learning Sciences, June 22-26, 2004, Santa Monica, Calif.

Hazzan, Orit, Judith Gal-Ezer, and Lenore Blum. 2008. “A Model for High School Computer
Science Education: The Four Key Elements That Make It!” Paper read at SIGCSE 2008,
March 12-15, Portland, Oregon.

Kay, Alan. 2005. “Squeak Etoys, Children & Learning.” In Viewpoints	Research	Institute,	VPRI	
Research	Note	RN-�00�-00�. Available at http://www.vpri.org/pdf/rn2005001_learning.
pdf.

Levy, Sharona T., and David Mioduser. 2008. “Does It ‘Want’ or ‘Was It Programmed to’. . .?
Kindergarten Children’s Explanations of an Autonomous Robot’s Adaptive Function-
ing.” International	Journal	of	Technology	and	Design	Education	18:337-359.

Moursund, Dave. 2006. Computational	Thinking	and	Math	Maturity:	Impro�ing	Math	Education	
in	K-�	Schools. Eugene, Oregon: University of Oregon Press.

National Research Council. 1999. Being	Fluent	with	Information	Technology. Washington, D.C.:
National Academy Press.

National Research Council. 2004. “The Essential Character of Computer Science.” In Com-
puter	 Science:	 Reflections	 on	 the	 Field,	 Reflections	 from	 the	 Field. Washington, D.C.: The
National Academies Press.

National Research Council. 2004. “The Legacy of Computer Science.” In Computer	Science:	
Reflections	on	the	Field,	Reflections	from	the	Field. Washington, D.C.: The National Acad-
emies Press.

National Research Council. 2005. “ICT Fluency and High Schools: A Workshop Summary.”
Paper read at Workshop on ICT Fluency and High School Graduation Outcomes, Octo-
ber 23-24, 2005, Washington, D.C.

Phillps, Pat. 2007. Presentation: “Computational Thinking: A Problem-Solving Tool for
Every Classroom.” Microsoft. Available at http://www.cs.cmu.edu/~CompThink/
resources/ct_pat_phillips.pdf.

Resnick, Mitchel, John Maloney, Andrés Monroy Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin
Kafai. 2009. “Scratch: Programming for All.”	Communications	of	the	ACM 52(11):60-67.

SECANT: Science Education in Computational Thinking, Purdue University, http://secant.
cs.purdue.edu/.

Stonedahl, Forrest, Michelle Wilkerson-Jerde, and Uri Wilensky. 2009. “Re-conceiving Intro-
ductory Computer Science Curricula Through Agent-Based Modeling.” Proceedings	of	
the	EduMAS	Workshop	at	AAMAS	�00�. Evanston, Illinois: Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University.

Sysło, Maciej M., and Anna Beata Kwiatkowska. 2008. “The Challenging Face of Informatics
Education in Poland.” Paper read at Informatics Education—Supporting Computa-
tional Thinking: Third International Conference on Informatics in Secondary Schools—
 Evolution and Perspectives, July, Torun, Poland.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

APPENDIX	D	 �0�

Wing, Jeannette M. 2008. “Computational Thinking and Thinking About Computing.” Philo-
sophical	Transactions	of	the	Royal	Society	A	366:3717-3725.

Wing, Jeannette M. 2008. “Five Deep Questions in Computing.” Communications	of	the	ACM
51(1):58-60.

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

Report of a Workshop on the Scope and Nature of Computational Thinking

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12840

	FrontMatter
	Preface
	Acknowledgment of Reviewers
	Contents
	1 Introduction
	2 What Is Computational Thinking?
	3 Looking Outward
	4 Relationship to Past and Ongoing Efforts
	5 Open Questions
	6 Next Steps
	Appendixes
	Appendix A: Workshop Agenda
	Appendix B: Short Biographies of Committee Members, Workshop Participants, and Staff
	Appendix C: Executive Summary from *Being Fluent with Information Technology*
	Appendix D: Supplemental Bibliography

