
AUTHORS

DETAILS

Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press.  
(Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences.

Copyright © National Academy of Sciences. All rights reserved.

THE NATIONAL ACADEMIES PRESS

Visit the National Academies Press at NAP.edu and login or register to get:

–  Access to free PDF downloads of thousands of scientific reports

–  10% off the price of print titles

–  Email or social media notifications of new titles related to your interests

–  Special offers and discounts





BUY THIS BOOK

FIND RELATED TITLES

This PDF is available at    SHAREhttp://nap.edu/12955

The Prevention and Treatment of Missing Data in Clinical
Trials

162 pages | 6 x 9 | HARDBACK

ISBN 978-0-309-38686-9 | DOI 10.17226/12955

Panel on Handling Missing Data in Clinical Trials; National Research Council

http://cart.nap.edu/cart/cart.cgi?list=fs&action=buy%20it&record_id=12955&isbn=978-0-309-38686-9&quantity=1
http://www.nap.edu/related.php?record_id=12955
http://www.nap.edu/reprint_permission.html
http://nap.edu
http://api.addthis.com/oexchange/0.8/forward/facebook/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12955&pubid=napdigops
http://www.nap.edu/share.php?type=twitter&record_id=12955&title=The+Prevention+and+Treatment+of+Missing+Data+in+Clinical+Trials
http://api.addthis.com/oexchange/0.8/forward/linkedin/offer?pco=tbxnj-1.0&url=http://www.nap.edu/12955&pubid=napdigops
mailto:?subject=null&body=http://nap.edu/12955


Panel on Handling Missing Data in Clinical Trials

Committee on National Statistics

Division of Behavioral and Social Sciences and Education

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Govern-
ing Board of the National Research Council, whose members are drawn from the 
councils of the National Academy of Sciences, the National Academy of Engineer-
ing, and the Institute of Medicine. The members of the committee responsible for 
the report were chosen for their special competences and with regard for appropri-
ate balance.

This study was supported by contract number HHSF223200810020I, TO #1 
between the National Academy of Sciences and the U.S. Food and Drug Adminis-
tration. Support for the work of the Committee on National Statistics is provided 
by a consortium of federal agencies through a grant from the National Science 
Foundation (award number SES-0453930). Any opinions, findings, conclusions, 
or recommendations expressed in this publication are those of the author(s) and 
do not necessarily reflect the view of the organizations or agencies that provided 
support for this project.

International Standard Book Number-13: 978-0-309-15814-5
International Standard Book Number-10: 0-309-15814-1

Additional copies of this report are available from the National Academies Press, 
500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or  
(202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. 

Copyright 2010 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested citation: National Research Council. (2010). The Prevention and Treat-
ment of Missing Data in Clinical Trials. Panel on Handling Missing Data in Clinical 
Trials. Committee on National Statistics, Division of Behavioral and Social Sciences 
and Education. Washington, DC: The National Academies Press.

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


The National Academy of Sciences is a private, nonprofit, self-perpetuating society 
of distinguished scholars engaged in scientific and engineering research, dedicated to 
the furtherance of science and technology and to their use for the general welfare. 
Upon the authority of the charter granted to it by the Congress in 1863, the Acad-
emy has a mandate that requires it to advise the federal government on scientific 
and technical matters. Dr. Ralph J. Cicerone is president of the National Academy 
of Sciences.

The National Academy of Engineering was established in 1964, under the charter 
of the National Academy of Sciences, as a parallel organization of outstanding 
engineers. It is autonomous in its administration and in the selection of its members, 
sharing with the National Academy of Sciences the responsibility for advising the 
federal government. The National Academy of Engineering also sponsors engineer-
ing programs aimed at meeting national needs, encourages education and research, 
and recognizes the superior achievements of engineers. Dr. Charles M. Vest is presi-
dent of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of 
Sciences to secure the services of eminent members of appropriate professions in 
the examination of policy matters pertaining to the health of the public. The Insti-
tute acts under the responsibility given to the National Academy of Sciences by its 
congressional charter to be an adviser to the federal government and, upon its own 
initiative, to identify issues of medical care, research, and education. Dr. Harvey V. 
Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sci-
ences in 1916 to associate the broad community of science and technology with the 
Academy’s purposes of furthering knowledge and advising the federal government. 
Functioning in accordance with general policies determined by the Academy, the 
Council has become the principal operating agency of both the National Academy 
of Sciences and the National Academy of Engineering in providing services to 
the government, the public, and the scientific and engineering communities. The 
Council is administered jointly by both Academies and the Institute of Medicine. 
Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, 
of the National Research Council.

www.national-academies.org

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


v

PANEL ON HANDLING MISSING DATA IN CLINICAL TRIALS

RODERICk J.A. LITTLE (Chair), Department of Biostatistics, University 
of Michigan, Ann Arbor 

RALPH D’AGOSTINO, Department of Mathematics and Statistics, 
Boston University

kAy DICkERSIN, Department of Epidemiology, Johns Hopkins 
University 

SCOTT S. EMERSON, Department of Biostatistics, University of 
Washington, Seattle 

JOHN T. FARRAR, Department of Biostatistics and Epidemiology, 
University of Pennsylvania School of Medicine

CONSTANTINE FRANGAkIS, Department of Biostatistics, Johns 
Hopkins University

JOSEPH W. HOGAN, Center for Statistical Sciences, Program in Public 
Health, Brown University

GEERT MOLENBERGHS, International Institute for Biostatistics 
and Statistical Bioinformatics, Universiteit Hasselt and katholieke 
Universiteit Leuven, Belgium

SUSAN A. MURPHy, Department of Statistics, University of Michigan, 
Ann Arbor 

JAMES D. NEATON, School of Public Health, University of Minnesota
ANDREA ROTNITzky, Departmento de Economia, Universidad 

Torcuato Di Tella, Buenos Aires, Argentina
DANIEL SCHARFSTEIN, Department of Biostatistics, Johns Hopkins 

University 
WEICHUNG (JOE) SHIH, Department of Biostatistics, University of 

Medicine and Dentistry of New Jersey School of Public Health
JAy P. SIEGEL, Johnson & Johnson, Radnor, Pennsylvania
HAL STERN, Department of Statistics, University of California, Irvine

MICHAEL L. COHEN, Study Director
AGNES GASkIN, Administrative Assistant

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


vi

COMMITTEE ON NATIONAL STATISTICS 
2009-2010

WILLIAM F. EDDy (Chair), Department of Statistics, Carnegie Mellon 
University

kATHARINE G. ABRAHAM, Department of Economics and Joint 
Program in Survey Methodology, University of Maryland

ALICIA CARRIQUIRy, Department of Statistics, Iowa State University
WILLIAM DuMOUCHEL, Phase Forward, Inc., Waltham, Massachusetts
JOHN HALTIWANGER, Department of Economics, University of 

Maryland
V. JOSEPH HOTz, Department of Economics, Duke University
kAREN kAFADAR, Department of Statistics, Indiana University
SALLIE kELLER, George R. Brown School of Engineering, Rice 

University
LISA LyNCH, Heller School for Social Policy and Management, Brandeis 

University
DOUGLAS MASSEy, Department of Sociology, Princeton University
SALLy C. MORTON, Biostatistics Department, University of Pittsburgh
JOSEPH NEWHOUSE, Division of Health Policy Research and 

Education, Harvard University
SAMUEL H. PRESTON, Population Studies Center, University of 

Pennsylvania
HAL STERN, Department of Statistics, University of California, Irvine
ROGER TOURANGEAU, Joint Program in Survey Methodology, 

University of Maryland, and Survey Research Center, University of 
Michigan

ALAN zASLAVSky, Department of Health Care Policy, Harvard 
Medical School

CONSTANCE F. CITRO, Director

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


vii

I would like to express appreciation to the following individuals who 
provided valuable assistance in producing this report. Particular thanks to 
Robert O’Neill and Tom Permutt at the U.S. Food and Drug Administra-
tion (FDA) for initiating the project, providing excellent presentations at 
the first meeting of the panel, and continuing support in providing timely 
information. We also thank Frances Gipson, FDA’s technical representa-
tive, who assisted greatly in arranging the panel’s first meeting at FDA and 
acquiring FDA documents throughout the study. The following FDA staff 
members presented invaluable information to the panel at its first meeting: 
Sharon Hertz, Henry Hsu, Robert O’Neill, Tom Permutt, Bruce Schneider, 
Norman Stockbridge, Robert Temple, Steve Winitsky, Lilly yue, and Bram 
zuckerman. At the panel’s workshop on September 9, 2009, we benefited 
very much from the presentations of the following knowledgeable experts: 
Abdel Babiker, Don Berry, James Carpenter, Christy Chuang-Stein, Susan 
Ellenberg, Thomas Fleming, Dean Follmann, Joseph Ibrahim, John Lachin, 
Andrew Leon, Craig Mallinckrodt, Devan Mehrotra, Jerry Menikoff, David 
Ohlssen, and Edward Vonesh.

I am particularly indebted to the members of the Panel on Handling 
Missing Data in Clinical Trials. They worked extremely hard and were 
always open to other perspectives on the complicated questions posed by 
missing data in clinical trials. It was a real pleasure collaborating with all 
of them on this project.

I also thank the staff, especially our study director, Michael L. Cohen, 
who converted the musings of the panel into intelligible prose, arbitrated 
differences in opinion with good humor, and worked very hard on writing 

Acknowledgments

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


viii ACKNOWLEDGMENTS

and improving the report. I also thank Agnes Gaskin, who performed her 
usual exemplary service on all administrative matters. Eugenia Grohman 
provided extremely useful advice on presenting the material in this report, 
along with careful technical editing.

This report has been reviewed in draft form by individuals chosen for 
their diverse perspectives and technical expertise, in accordance with proce-
dures approved by the Report Review Committee of the National Research 
Council (NRC). The purpose of this independent review is to provide candid 
and critical comments that will assist the institution in making its published 
report as sound as possible and to ensure that the report meets institutional 
standards for objectivity, evidence, and responsiveness to the study charge. 
The review comments and draft manuscript remain confidential to protect 
the integrity of the deliberative process. We wish to thank the following 
individuals for their review of this report: Christy J. Chuang-Stein, Statistical 
Research and Consulting Center, Pfizer, Inc.; Shein-Chung Chow, Biostatistics 
and Bioinformatics, Duke University School of Medicine; Susan S. Ellenberg, 
Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania 
School of Medicine; Thomas Fleming, Department of Biostatistics, School of 
Public Health and Community Medicine, University of Washington; yulei 
He, Department of Health Care Policy, Harvard Medical School; Robin 
 Henderson, School of Mathematics and Statistics, University of Newcastle; 
Devan V. Mehrotra, Clinical Biostatistics, Merck Research Laboratories; 
Donald B. Rubin, Department of Statistics, Harvard University; and Steve 
Snapinn, Global Biostatistics and Epidemiology, Amgen, Inc.

Although the reviewers listed above have provided many constructive 
comments and suggestions, they were not asked to endorse the conclusions 
or recommendations nor did they see the final draft of the report before its 
release. The review of this report was overseen by Gilbert S. Omenn, Center 
for Computational Medicine and Biology, University of Michigan Medical 
School and Joel B. Greenhouse, Department of Statistics, Carnegie Mellon 
University. Appointed by the NRC’s Report Review Committee, they were 
responsible for making certain that an independent examination of this report 
was carried out in accordance with institutional procedures and that all 
review comments were carefully considered. Responsibility for the final con-
tent of this report rests entirely with the authoring panel and the institution.

Finally, the panel recognizes the many federal agencies that support 
the Committee on National Statistics directly and through a grant from the 
National Science Foundation. Without their support and their commitment 
to improving the national statistical system, the work that is the basis of 
this report would not have been possible.

Roderick J.A. Little, Chair
Panel on Handling Missing Data in Clinical Trials

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


ix

GLOSSARy xiii

SUMMARy 1

1 INTRODUCTION AND BACkGROUND 7
 Randomization and Missing Data, 8
 Three kinds of Trials as Case Studies, 12
  Trials for Chronic Pain, 12
  Trials for the Treatment of HIV, 13
   Trials for Mechanical Circulatory Devices for Severe  

 Symptomatic Heart Failure, 14
 Clinical Trials in a Regulatory Setting, 16 
  Domestic and International Guidelines on Missing Data in  

 Clinical Trials, 18
 Report Scope and Structure, 19

2  TRIAL DESIGNS TO REDUCE THE FREQUENCy OF  
MISSING DATA 21

 Trial Outcomes and Estimands, 22
 Minimizing Dropouts in Trial Design, 27
 Continuing Data Collection for Dropouts, 30
 Reflecting Loss of Power from Missing Data, 31
 Design Issues in the Case Studies, 32
  Trials for Chronic Pain, 32
  Trials for Treatment of HIV, 34

Contents

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


x CONTENTS

  Trials for Mechanical Circulatory Devices for Severe  
 Symptomatic Heart Failure, 36

3  TRIAL STRATEGIES TO REDUCE THE FREQUENCy OF 
MISSING DATA 39

 Reasons for Dropouts, 39
 Actions for Design and Management Teams, 40
 Actions for Investigators and Site Personnel, 41
 Targets for Acceptable Rates of Missing Data, 43

4 DRAWING INFERENCES FROM INCOMPLETE DATA 47
 Principles, 48
 Notation, 49
 Assumptions About Missing Data and Missing Data Mechanisms, 50
  Missing Data Patterns and Missing Data Mechanisms, 50
  Missing Completely at Random, 51
  Missing at Random, 51
  MAR for Monotone Missing Data Patterns, 52
  Missing Not at Random, 53
   Example: Hypertension Trial with Planned and Unplanned  

 Missing Data, 54
  Summary, 54
 Commonly Used Analytic Methods Under MAR, 54
  Deletion of Cases with Missing Data, 55
  Inverse Probability Weighting, 56
  Likelihood Methods, 59
  Imputation-Based Approaches, 65
  Event Time Analyses, 70
 Analytic Methods Under MNAR, 70
   Definitions: Full Data, Full Response Data, and Observed  

 Data, 71
  Selection Models, 72
  Pattern Mixture Models, 73
   Advantages and Disadvantages of Selection and Pattern  

 Mixture Models, 74
  Recommendations, 76
  Instrumental Variable Methods for Estimating Treatment  

 Effects Among Compliers, 78
 Missing Data in Auxiliary Variables, 81

5 PRINCIPLES AND METHODS OF SENSITIVITy ANALySES 83
 Background, 83
 Framework, 85

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


CONTENTS xi

 Example: Single Outcome, No Auxiliary Data, 86
  Pattern Mixture Model Approach, 88
  Selection Model Approach, 89
 Example: Single Outcome with Auxiliary Data, 91
  Pattern Mixture Model Approach, 91
  Selection Model Approach, 94
 Example: General Repeated Measures Setting, 96
  Monotone Missing Data, 98
  Nonmonotone Missing Data, 103
 Comparing Pattern Mixture and Selection Approaches, 103
 Time-to-Event Data, 104
 Decision Making, 105
 Recommendation, 106

6 CONCLUSIONS AND RECOMMENDATIONS 107
 Trial Objectives, 108
 Reducing Dropouts Through Trial Design, 108
 Reducing Dropouts Through Trial Conduct, 109
 Treating Missing Data, 110
  Understanding the Causes and Degree of Dropouts in Clinical 

 Trials, 111

REFERENCES 115

APPENDIXES

A Clinical Trials: Overview and Terminology 123
B Biographical Sketches of Panel Members and Staff 139

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


xiii

Glossary

Active Control: In situations where the experimental therapy is to be an 
alternative to some existing standard of care, ethical or logistical con-
straints may dictate that the experimental therapy be tested against that 
“active” therapy that has previously shown evidence in an adequate and 
well-controlled clinical trial as an effective therapy. The ideal would be 
that patients would be randomized in a double blind fashion to either the 
experimental therapy or the active control, though the logistical difficulties 
of producing placebos for each treatment sometimes precludes a double 
blind study structure.
Contrasted with Placebo control: In situations where the experimental 
therapy is to be added to some existing standard of care, it is best to ran-
domize subjects in a double-blind fashion to either the experimental therapy 
or a placebo control that is similar in appearance.

Common Analysis Estimands:
Per Protocol: In a per-protocol analysis, the analysis may be restricted to 
participants who had some minimum exposure to the study treatments, 
who met inclusion/exclusion criteria, and for whom there were no major 
protocol violations. The specific reasons for excluding randomized par-
ticipants from a per-protocol analysis should be specified in advance of 
unblinding the data. 
Intention to Treat: In an intention-to-treat analysis, all participants that 
satisfy the exclusion criteria are analyzed as belonging to the treatment 
arms to which they were randomized, regardless of whether they received 
or adhered to the allocated intervention for the full duration of the trial.
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xiv GLOSSARY

As Treated: In an as-treated analysis, the participants are grouped according 
to the treatment regimen that they received, which is not necessarily the 
treatment to which they were initially assigned. 

Complier-Averaged Causal Effect (CACE): A parameter used to estimate 
the average effect of the treatment in the subpopulation of individuals 
that could remain on study or control treatments for the full length of the 
study.

Dropout: Treatment dropout is the result of a participant in a clinical trial 
discontinuing treatment; analysis dropout is the result of the failure to 
measure the outcome of interest for a trial participant. 

Enrichment: Treatments are often only tolerated by or are only efficacious 
for a subset of the population. To avoid problems associated with treatment 
discontinuation, and to test a treatment on the subpopulation that can most 
benefit from it, it can be advantageous to determine whether a potential 
trial participant is a member of the subpopulation that can either tolerate 
or benefit from a treatment. This pretesting and selection of participants 
for trial participation prior to randomization into the treatment and con-
trol arms is called enrichment, and can include (1) selecting people with 
potentially responsive disease, (2) selecting people likely to have an event 
whose occurrence is the outcome of interest, (3) selecting people likely to 
adhere to the study protocol, and (4) selecting people who show an early 
response to the test drug.

Last Observation Carried Forward (LOCF): A single imputation technique 
that imputes the last measured outcome value for participants who either 
drop out of a clinical trial or for whom the final outcome measurement is 
missing. Baseline Observation Carried Forward (BOCF): A single imputa-
tion technique that imputes the baseline outcome value for participants who 
either drop out of a clinical trial or for whom the final outcome measure-
ment is missing. 

Noninferiority vs. Superiority Trials: A noninferiority clinical trial com-
pares the experimental therapy to some active control with the aim of estab-
lishing that the experimental therapy is not unacceptably worse than an 
active control that showed evidence as an effective treatment in previously 
conducted adequate and well-controlled clinical trials. A noninferiority 
trial is often conducted in a setting in which (1) the experimental therapy, 
if approved, would be used in place of some existing treatment that was 
previously found to show evidence of effect, (2) it is not ethical or feasible 
to conduct a placebo controlled trial, (3) it would be clinically appropri-
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GLOSSARY xv

ate to approve a new treatment that is only approximately equivalent to a 
current standard therapy with respect to some primary clinical outcome, 
and (4) the new experimental therapy might have other advantages such 
as a better adverse event profile, ease of administration, etc. Rather than 
rejecting a null hypothesis of equality between the experimental therapy 
and control treatment, a noninferiority clinical trial is designed to reject 
a null hypothesis that the experimental therapy is some specified amount 
(“the noninferiority margin”) worse than the active control. Selection of the 
noninferiority margin must consider such issues as the magnitude of effect 
estimated for the active control in prior clinical trials, any bias that might 
be present in those previous trials relative to the effect of the active control 
in the population and setting used in the noninferiority trials, the propor-
tion of effect that must be preserved for any approved treatment, etc. 
A Superiority clinical trial is one in which an experimental therapy would 
be approved only if that therapy showed statistically credible evidence of 
superiority over a clinically relevant control therapy in an adequate and 
well-controlled clinical trial. The superiority trial is designed to reject a null 
hypothesis of equality between the experimental and control therapies.

Randomized Withdrawal: A clinical trial design in which all participants are 
initially provided the study treatment. Then, participants that have a posi-
tive response to the study treatment are randomly selected either to remain 
on the study treatment or to be switched to a placebo. Positive indications 
are when those that continue on study treatment are observed to have better 
outcomes than those who are switched to the placebo. 

Run-In Design: Similar to an enrichment design, a run-in design is a design 
incorporating an initial period in which a subset of the participants are 
selected given indications as to their likelihood of compliance or the mag-
nitude of their placebo effect. The key difference between a run-in design 
and an enrichment design is that the active treatment is not used to identify 
the subset of participants for study.

Titration: In opposition to a fixed dose protocol, titration is the adjustment 
of dosage to increase the treatment benefit and tolerability for participants 
during the course of a clinical trial. 

Washout: (Placebo) washout is a period of time without active treatment 
that is scheduled before the beginning of use of study treatment, often used 
to eliminate any residual effects that might remain after a previous period 
on active treatment.
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�

Summary1

Randomized clinical trials are the primary tool for evaluating new 
medical interventions. More than $7 billion is spent every year in evalu-
ating drugs, devices, and biologics. Randomization provides for a fair 
comparison between treatment and control groups, balancing out, on aver-
age, distributions of known and unknown factors among the participants. 
Unfortunately, a substantial percentage of the measurements of the outcome 
or outcomes of interest is often missing. This “missingness” reduces the 
benefit provided by the randomization and introduces potential biases in 
the comparison of the treatment groups. 

In light of this problem, the Panel on the Handling of Missing Data in 
Clinical Trials was created at the request of the U.S. Food and Drug Admin-
istration (FDA) to prepare “a report with recommendations that would be 
useful for FDA’s development of a guidance for clinical trials on appropriate 
study designs and follow-up methods to reduce missing data and appropri-
ate statistical methods to address missing data for analysis of results.” 

The panel’s work focused primarily on Phase III confirmatory clinical 
trials that are the basis for the approval of drugs and devices. For these 
trials, the bar of scientific rigor is set high; however, many of our recom-
mendations are applicable to all randomized trials. 

Missing data can arise for a variety of reasons, including the inability 
or unwillingness of participants to meet appointments for evaluation. And 
in some studies, some or all of data collection ceases when participants 

1 This Summary contains the highest priority recommendations. For a complete list of recom-
mendations in the report, see Chapter 6.
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� MISSING DATA IN CLINICAL TRIALS

discontinue study treatment. Existing guidelines for the design and conduct 
of clinical trials, and the analysis of the resulting data, provide only limited 
advice on how to handle missing data. Thus, approaches to the analysis of 
data with an appreciable amount of missing values tend to be ad hoc and 
variable. 

The panel concludes that a more principled approach to design and 
analysis in the presence of missing data is both needed and possible. Such 
an approach needs to focus on two critical elements: (1) careful design and 
conduct to limit the amount and impact of missing data, and (2) analysis 
that makes full use of information on all randomized participants and is 
based on careful attention to the assumptions about the nature of the miss-
ing data underlying estimates of treatment effects. In addition to the highest 
priority recommendations here, in the body of the report the panel offers 
additional recommendations on the conduct of clinical trials and techniques 
for analysis of trial data. 

Modern statistical analysis tools—such as maximum likelihood, mul-
tiple imputation, Bayesian methods, and methods based on generalized 
estimating equations—can reduce the potential bias arising from miss-
ing data by making principled use of auxiliary information available for 
nonrespondents. The panel encourages increased use of these methods. 
However, all of these methods ultimately rely on untestable assumptions 
concerning the factors leading to the missing values and how they relate to 
the study outcomes. Therefore, the assumptions underlying these methods 
need to be clearly communicated to medical experts so that they can assess 
their validity. Sensitivity analyses are also important to assess the degree to 
which the treatment effects rely on the assumptions used.

TRIAL DESIGN

There is no “foolproof” way to analyze data subject to substantial 
amounts of missing data; that is, no method recovers the robustness and 
unbiasedness of estimates derived from randomized allocation of treat-
ments. Hence, the panel’s first set of recommendations emphasizes the 
role of design and trial conduct to limit the amount and impact of missing 
data. 

A requisite for consideration of trial design is to clearly define the target 
population, and the outcomes that will form the basis for decisions about 
efficacy and safety. The treatment of missing data depends on how these 
outcomes are defined, and lack of clarity in their definition translates into a 
lack of clarity in how to deal with missing data issues. In addition, given the 
difficulties of adequately addressing missing data at the analysis stage, 
the design process needs to pay more attention to the potential hazards 
arising from substantial numbers of missing values. 
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SUMMARY �

Recommendation 2: Investigators, sponsors, and regulators should 
design clinical trials consistent with the goal of maximizing the number 
of participants who are maintained on the protocol-specified interven-
tion until the outcome data are collected.

DROPOUTS

A major source of missing data in clinical trials occurs when partici-
pants discontinue their assigned treatment. The two most common reasons 
for participants’ dropping out are reactions to the treatment—it is ineffec-
tive, has unacceptable side effects, or is perceived as having worked—or 
moving to a different location where the treatment is not available. We call 
these “treatment dropouts,” and distinguish them from analysis dropouts, 
which arise when the study outcomes are not measured, and are therefore 
unable to be included in the data analysis.

In some trials, protocols are written so that treatment dropout leads to 
analysis dropout because the sponsor may see no need to record study out-
comes after a participant deviates from the study protocol. This approach 
can seriously undermine any inferences that can be drawn about effects. 
The panel concludes that it is important not only to obtain information 
about dropouts to the extent possible, but also to anticipate and plan for 
missing data in trial protocols. 

Recommendation 3: Trial sponsors should continue to collect informa-
tion on key outcomes on participants who discontinue their protocol-
specified intervention in the course of the study, except in those cases 
for which a compelling cost-benefit analysis argues otherwise, and this 
information should be recorded and used in the analysis.

The techniques we suggest to limit the amount of missing data 
include 

• choices of study sites, investigators, participants, study outcomes, 
time in study and times of measurement, and the nature and frequency of 
follow-up to limit the amount of missing data; 

• the use of rescue therapies or alternative treatment regimens, to 
allow meaningful analysis of individuals who discontinue the assigned 
treatment; 

• limiting participant burden in other ways, such as making follow-
up visits easy in terms of travel and child care; 

• providing frequent reminders of study visits; 
• training of investigators on the importance of avoiding missing 

data; 
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� MISSING DATA IN CLINICAL TRIALS

• providing incentives to investigators and participants to limit drop-
outs; and

• monitoring of adherence and in other ways dealing with partici-
pants who cannot tolerate or do not adequately respond to treatment. 

Recommendation 6: Study sponsors should explicitly anticipate poten-
tial problems of missing data. In particular, the trial protocol should 
contain a section that addresses missing data issues, including the 
anticipated amount of missing data, and steps taken in trial design and 
trial conduct to monitor and limit the impact of missing data. 

DATA ANALYSIS

Despite efforts to minimize missing data in the design and conduct 
of clinical trials, the statistical analysis often has to deal with a non-
trivial amount of missing data. There is no single correct method for han-
dling missing data. All methods require untestable assumptions because 
the missingness mechanism involves assumptions about the relationships 
among variables with missing values and results often vary depending on 
the assumptions made about these relationships. Crucially, the validity of 
these assumptions cannot generally be determined from the collected data. 
Consequently, the critical need is to understand the assumptions associated 
with any particular analysis, and those assumptions need to be expressed 
in as transparent a manner as possible so that researchers and practicing 
clinicians are able to assess their validity in any given setting. 

Recommendation 9: Statistical methods for handling missing data 
should be specified by clinical trial sponsors in study protocols, and 
their associated assumptions stated in a way that can be understood 
by clinicians.

The panel believes that in nearly all cases, there are better alternatives 
to last observation carried forward and baseline observation carried for-
ward imputation, which are based on more reasonable assumptions and 
hence result in more reliable inferences about treatment effects.

Recommendation 10: Single imputation methods like last observation 
carried forward and baseline observation carried forward should not be 
used as the primary approach to the treatment of missing data unless 
the assumptions that underlie them are scientifically justified. 

Especially when the degree of missingness is appreciable and informa-
tion about the characteristics of participants with missing data is limited, 
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the sensitivity of the inference to reasonable departures from the assump-
tions of the missing data method needs to be assessed. This additional 
uncertainty in the regulatory environment should motivate manufacturers 
of drugs, devices, and biologics to pay much greater attention to the use 
of techniques for reducing the frequency of missing data (see Chapters 2 
and 3).

Recommendation 15: Sensitivity analyses should be part of the primary 
reporting of findings from clinical trials. Examining sensitivity to the 
assumptions about the missing data mechanism should be a mandatory 
component of reporting.

NEW RESEARCH AND USE OF EXISTING RESEARCH

The FDA has a very large database of clinical trials that has not been 
tapped for its potential to inform the best practices for clinical trials. At the 
same time, there are a wide range of techniques that have been very thor-
oughly explored both theoretically and in practice over the past 20 years 
that are not being used in clinical trials. There seems to be a reticence on 
the part of analysts in both industry and the FDA to adopt those techniques. 
This reticence may be due in part to a lack of training and education. 

Recommendation 16: The U.S. Food and Drug Administration and 
the National Institutes of Health should make use of their extensive 
clinical trial database to carry out a program of research, both internal 
and external, to identify common rates and causes of missing data in 
different domains and how different models perform in different set-
tings. The results of such research can be used to inform future study 
designs and protocols. 

Recommendation 17: The U.S. Food and Drug Administration (FDA) 
and drug, device, and biologic companies that sponsor clinical trials 
should carry out continued training of their analysts to keep abreast 
of up-to-date techniques for missing data analysis. FDA should also 
encourage continued training of their clinical reviewers to make them 
broadly familiar with missing data terminology and missing data 
methods.

Recommendation 18: The treatment of missing data in clinical trials, 
being a crucial issue, should have a higher priority for sponsors of 
statistical research, such as the National Institutes of Health and the 
National Science Foundation.  There remain several important areas in 
which progress is particularly needed, namely: (1) methods for sensitiv-
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ity analysis and principled decision making based on the results from 
sensitivity analyses, (2) analysis of data where the missingness pattern 
is nonmonotone, (3) sample size calculations in the presence of missing 
data, (4) design of clinical trials, in particular plans for follow-up after 
treatment discontinuation (degree of sampling, how many attempts are 
made, etc.), and (5) doable robust methods, to more clearly understand 
their strengths and vulnerabilities in practical settings. The develop-
ment of software that supports coherent missing data analyses is also 
a high priority. 
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Randomized clinical trials (RCTs) currently occupy a central role in 
assessing the effectiveness of proposed interventions to prevent and treat 
disease. Clinical trials are sponsored by the pharmaceutical and device 
industries, by government organizations such as the National Institutes of 
Health (NIH), by academic organizations, and by private organizations. 
The design and conduct of clinical trials and the analysis of the resulting 
data are carried out and/or overseen by the trial sponsor. However, for new 
drugs and devices, oversight, approval, and ultimate decision authority, in 
the form of regulation, is the purview of the U.S. Food and Drug Admin-
istration (FDA). Currently, more than $7 billion (Drennan, 2003) is spent 
annually on clinical trials by U.S. pharmaceutical and device companies to 
evaluate the safety and effectiveness of new drugs, devices, and biologics. 
(Given the date of this estimate, it is reasonable to assume that the current 
total is higher.) An NIH panel estimated that clinical trials represented one-
third of NIH’s expenditures for clinical research (see Nathan and Wilson, 
2003). 

At the request of FDA, the National Research Council convened the 
Panel on the Handling of Missing Data in Clinical Trials, under the Com-
mittee on National Statistics, to prepare “a report with recommendations 
that would be useful for FDA’s development of a guidance for clinical trials 
on appropriate study designs and follow-up methods to reduce missing data 
and appropriate statistical methods to address missing data for analysis of 
results.” The charge further specified: 

1

Introduction and Background
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[t]he panel will use as its main information-gathering resource a workshop 
that will include participation from multiple stakeholders, including clini-
cal trialists, statistical researchers, appropriate experts from the National 
Institutes of Health and the pharmaceutical industry, regulators from FDA, 
and participants in the International Conference on Harmonisation of 
Technical Requirements for Registration of Pharmaceuticals for Human 
Use (ICH). 
 In both the workshop and report, the panel will strive to identify 
ways in which FDA guidance should be augmented to facilitate the cost-
 effective use of appropriate methods for missingness by the designers and 
implementers of clinical trials. Such guidance would usefully distinguish 
between types of clinical trials and missingness situations. For example, it 
could be useful to provide guidance on such questions as:

(1) When missingness is likely to result in an appreciable bias such that 
sophisticated methods for reducing bias would be needed, and, conversely, 
under what circumstances simple methods such as case deletion could be 
an acceptable practice, and

(2) How to use the leading techniques for variance estimation for each 
primary estimation method, along with suggestions for implementing these 
often complex techniques in software packages.

RANDOMIZATION AND MISSING DATA

A key feature of a randomized clinical trial is comparison with a con-
trol group, with the assignment to either the control or the treatment group 
carried out using a random process. This eliminates intentional or uninten-
tional bias from affecting the treatment assignment. Randomization also 
(probabilistically) balances the control and treatment groups for known 
and, more importantly, unknown factors that could be associated with the 
response or outcome of interest. By using randomization, the comparison 
between the treatment and control groups is made as fair as possible. Thus, 
randomization provides a basis for inference in the assessment of whether 
the observed average outcome for the treatment group is or is not suffi-
ciently different than that for the control group to assert that the measured 
difference is or is not due to random variation. That is, randomization 
permits generalizations about outcomes. 

Unfortunately, this key advantage, derived from the use of random 
selection for treatment and control groups, is jeopardized when some of 
the outcome measurements are missing. By missing data we mean when 
an outcome value that is meaningful for analysis was not collected. So, 
for example, a quality-of-life measure after death is not meaningful for 
analysis and should not be referred to as a missing outcome. Since whether 
or not data are missing can be related to the assigned treatment and to the 

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


INTRODUCTION AND BACKGROUND �

response, the absence of these data can bias the estimate of the treatment 
effect and weaken the resulting inference. 

A common taxonomy for missing data, which is defined more rigorously 
in Chapter 4, distinguishes between missing data that are missing completely 
at random (MCAR), missing at random (MAR), and missing not at random 
(MNAR): 

• In the case of MCAR, the missing data are unrelated to the study 
variables: thus, the participants with completely observed data are in effect 
a random sample of all the participants assigned a particular intervention. 
With MCAR, the random assignment of treatments is assumed to be pre-
served, but that is usually an unrealistically strong assumption in practice. 

• In the case of MAR, whether or not data are missing may depend 
on the values of the observed study variables. However, after condition-
ing on this information, whether or not data are missing does not depend 
on the values of the missing data. 

• In the case of MNAR, whether or not data are missing depends on 
the values of the missing data. 

If MAR or MNAR holds, then appropriate analysis methods must be used 
to reduce bias. It is important to note that increasing the number of par-
ticipants is insufficient for reducing bias. 

There are a number of choices for trial outcomes, trial designs, and trial 
implementation that can substantially increase or decrease the frequency 
of missing data. Some of the aspects of clinical trials that can affect the 
amount of missing data include whether data collection continues for par-
ticipants who discontinue study treatment, the use of outcomes that are at 
risk of being undefined for some patients, the rate of attrition, and the use 
of composite outcomes. 

Missing Data Due to Discontinuation of Study Treatment It is common for 
some participants in a clinical trial to discontinue study treatment because 
of adverse events or lack of efficacy. (And, there may be more than one rea-
son for any specific outcome to be missing, for example, a combination of 
an adverse effect and a lack of efficacy.) Some trial protocols stipulate that 
data collection stop or be abbreviated following discontinuation of study 
treatment. For example, in some trials, data collection is only continued for 
a short period (e.g., 14 days) following treatment discontinuation, assuming 
that adverse events after that point in time are unlikely to be attributable 
to the randomly assigned study treatment. Moreover, in some trials, par-
ticipants are offered an alternative treatment that is not part of the study 
following discontinuation. As a result, subsequent data collection may be 
considered to be uninformative for comparing the randomly assigned treat-
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ments. A positive outcome, such as symptom relief, recovery, or cure, may 
also lead to discontinuation of treatment. 

Since treatment discontinuation often arises from changes in a par-
ticipant’s health status, the data that are not collected after treatment 
discontinuation are likely to be informative of the change in health status. 
Another relevant factor is that in nonblinded studies, such as device trials, a 
participant who knows if he/she does or does not have the study treatment 
might be more or less likely to either report adverse events or to report 
more or less efficacy. Such knowledge could be related to whether the par-
ticipant discontinues treatment. 

Use of Outcomes That Are at Risk of Being Undefined for Some Patients 
Some clinical trials use outcomes that may not be ascertainable for all 
 participants. Examples include: (1) a quality-of-life assessment that cannot 
be obtained due to the death of the participant, (2) a measurement (e.g., 
a 6-minute walk test) from a procedure that some participants cannot 
complete because of their health status, and (3) assessment of renal pro-
gression for participants, some of whom undergo kidney transplant during 
the course of the study. Since all of these situations involve health status, 
it is likely that whether or not data are missing is related to the changes in 
health status and hence are MNAR.

Although it is important to define clinical endpoints that are measur-
able for as many participants as possible in order to reduce the impact of 
missing data, in doing so one must also consider the impact on the relevance 
of the primary endpoint. So, for example, forming composite outcomes 
to include events such as “discontinuation of treatment” or “exposure to 
rescue treatment,” while useful in reducing the frequency of missing data, 
may lessen the clinical relevance of the outcome of interest.

Missing Data Because of Attrition in the Course of the Study The longer 
the planned length of a clinical trial, the greater the chance that participants 
will drop out of the trial due to their moving out of the area or otherwise 
experiencing changes in their lives that preclude or complicate further par-
ticipation. If dropping out due to these situations is known to be unrelated 
to changes in health status, an MAR assumption for the missing values 
seems justified; however, if dropping out is related to health status (e.g., a 
move to live with and be cared for by a parent or offspring), then the MAR 
assumption is not justified, and the missing data are likely not MAR. 

Missing Data in Composite Outcomes Outcomes that are composites of 
a variety of variables, such as health indices, or combined measures that 
address the multidimensional nature of the benefit from an intervention 
may not be defined when any of the variables that are being combined are 
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missing (although there are composite outcome measures for which this is 
not necessarily the case).

Missing Data Due to Death The treatment of death in the context of miss-
ing data is complicated. There are three kinds of approaches, which are 
linked to situations. One approach is to consider cause-specific death as a 
primary endpoint (e.g., death related to cardiovascular event). In this case, 
death for other reasons (e.g., not related to the clinical study) may properly 
be treated as a censoring event. For example, death due to an auto accident 
could be considered to be a censoring event. Particular care must be taken 
in this situation to ensure that censoring due to death by other reasons can 
be grouped together with general censoring patterns. It may very well be 
the case that censoring due to death for other reasons is dependent on the 
primary endpoint itself, in which case the censoring could be a missing not 
a random process. 

A second approach is to fold death into another outcome to form a 
composite outcome: for example, time to AIDS-defining illness or death.

The third situation and the main complication for a clinical trial is 
when death is related to the outcome of interest, as with AIDS-related death 
in a study where CD4 is the primary outcome. In this case, the estimand 
must be carefully defined, possibly as CD4 among those who would remain 
alive on either treatment. This approach is related to principal stratification 
on a postrandomization event (see Frangakis and Rubin, 2002). Inverse 
probability weighting can also be used in this case. The key consideration 
here is that the estimand must represent a causal contrast. A nontrivial com-
plication in interpreting the estimand is that it applies to a subgroup that 
cannot necessarily be identified; namely, those who would have survived in 
either treatment group.

Two general lines of attack have been employed to address the problem 
of missing values in clinical trials. The first is simply to design and carry 
out the clinical trial in a manner that limits the amount of missing data. As 
discussed in Chapters 2 and 3, there are a variety of techniques for doing 
this, and these techniques are not used as much as one would hope. One 
reason for this is that the designs for limiting missing data may involve 
tradeoffs against other considerations, such as generalizability or relevance 
of outcome measure. However, many of these techniques incur relatively 
minor costs. In any case, we believe that if the benefits of these methods 
were better appreciated and these methods were more widely implemented, 
the frequency of missing values could be substantially reduced in many 
clinical trials.

The second line of attack for the treatment of missing data is to apply 
analysis methods that exploit partial information in the observed data 
about the missing data to reduce the potential bias created by the missing 
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data. Many of the techniques currently used for this purpose are simplistic 
and rely on relatively extreme assumptions. Superior analysis techniques are 
often not applied, for several reasons. First, the expense of developing new 
interventions leads naturally to risk-averse behavior when drug or device 
developers are faced with the regulatory process. Second, FDA may at times 
prefer the use of older analysis methods that are better understood. Third, 
the need to prespecify analyses in the study protocol inhibits the use of com-
plex analysis methods. Fourth, until recently, some of the newer techniques 
have lacked readily available and tested software. Finally, there seems to 
be a need for more training of biostatisticians both in industry and at FDA 
in the use of state-of-the-art missing data methods. The lack of experience 
with the new methods results in a lack of consensus about how and when 
these methods should be used in clinical trials. 

Improvements in trial design, trial conduct, and the analysis of trial 
data in the presence of missing data are not adequately recognized in cur-
rent U.S. and international guidelines for clinical trials. Although these 
official documents have provided some very useful guidance, overall they 
are too general, and they therefore fail to be sufficiently prescriptive. That 
is, they lack detailed suggestions as to when and how specific methods can 
be implemented. In this report, we provide some guiding principles and 
specific methods for handling missing data in clinical trials. Our goal is to 
improve the quality of estimates of treatment effects and their associated 
estimates of uncertainty in randomized clinical trials.1 

THREE KINDS OF TRIALS AS CASE STUDIES

In this report, we use three types of trials to illustrate how clinical 
trial design and other aspects of trial conduct can be modified to limit the 
impact of missing data on regulatory decisions; trials for chronic pain, trials 
for the treatment of HIV, and trials for mechanical circulatory devices for 
severe symptomatic heart failure. These examples are chosen both because 
they are important in their own right and because they share many charac-
teristics with a wide variety of other types of clinical trials. In this section, 
we describe the usual analytic approaches and their deficiencies for these 
examples. 

Trials for Chronic Pain

Clinical trials are used to assess the ability of an intervention to pro-
vide symptomatic relief from conditions, such as osteoarthritis, that cause 

1 The Journal of Biopharmaceutical Statistics had a special issue in 2009 “Missing Data—
Prevention and Analysis” (Vol. 19, No. 6) that we recommend to readers of this report.
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chronic pain. These trials are typically conducted over 12 weeks, and they 
are subject to very high rates of treatment discontinuation. The reasons 
for treatment discontinuation usually differ between the treatment and the 
control groups. For example, in placebo-controlled trials, discontinuation 
in the placebo group often stems from inadequate efficacy (i.e., lack of 
pain relief), while discontinuation in the treatment group more often arises 
because of poor tolerability (of the medication being tested). Trial designs 
that involve fixed doses leave few treatment options for patients who expe-
rience inadequate efficacy or poor tolerability. Patients who stop study 
treatment usually switch to a proven (approved) effective therapy, and the 
trial sponsors typically stop collecting pain response data on those patients 
who discontinue study treatment.

In current practice, the data from these types of clinical trials have been 
analyzed by using (single-value) imputation to fill in for the missing out-
come values. In particular, it has been common to use the last observation 
carried forward (LOCF) imputation technique to impute for missing values. 
LOCF implicitly assumes that a participant who had good pain control in 
the short term and then dropped out would have had good pain control 
in the long term. This assumption seems questionable in many settings. 
Another frequently used, although somewhat less traditional imputation 
technique is the baseline observation carried forward (BOCF) technique, 
which assumes that a participant’s pain control is the same as that measured 
at the beginning of the trial. Since most patients in chronic pain studies, 
including those on placebos, improve substantially from the baseline over 
time, BOCF is likely to underestimate the effectiveness of any treatment. 
Furthermore, use of such imputation schemes, in conjunction with complete 
data techniques, can result in estimated standard errors for treatment effects 
that fail to properly reflect the uncertainty due to missing data.

Trials for the Treatment of HIV

The goal of many HIV trials is to determine whether a new drug has 
safety and efficacy that is comparable with that of an approved drug used 
for initial antiretroviral treatment (ART). The studies involve samples of 
ART-naïve participants and use noninferiority designs (U.S. Food and Drug 
Administration, 2002). The focus for current purposes is on the primary 
efficacy outcome, which is the percentage of participants with sufficiently 
low viral load at the end of the reference period. (Other considerations, 
such as choice of control, noninferiority margin, and blinding, are there-
fore ignored.) Since combination treatment is the norm for HIV, the typical 
design in this setting is new drug A plus background treatment compared 
with current drug B plus the same background treatment, measured over a 
period of 24 or 48 weeks. 
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The primary outcome efficacy for these trials is typically based on 
plasma RNA measurements (see, e.g., U.S. Food and Drug Administration, 
2002, Appendix B), in which the primary outcome is the success rate among 
all participants randomized into the trial. Treatment failures are defined to 
include (1) study participants who die or switch away from the study drug 
before 48 weeks, (2) study participants who do not attend the 48-week 
visit, and (3) study participants who remained on the study drug but who 
have an HIV RNA level equal to or greater than 50 copies/mL at 48 weeks. 
This definition can be viewed as a composite outcome in which failure is 
due to treatment discontinuation, to missing data, and to not meeting the 
“success” level. 

Many such trials have moderate to large numbers of patients who either 
discontinue treatment before 48 weeks or who do not attend the 48-week 
visit. Participants are typically not followed after discontinuing treatment, 
and there are probably various reasons for discontinuation.

One problem with the current approach involves the use of an analysis 
of the percentage of participants with a viral load of less than 50 copies/
mL at 48 weeks for all randomized participants according to their initially 
assigned treatment. Such an analysis is not possible because data collection 
is discontinued following failure. With this approach, reasons for “failure” 
(e.g., losses to follow-up and lack of efficacy due to virologic failure) are 
given equal weight, which may complicate the interpretation of the results. 
Furthermore, discontinuation of data collection after failure limits analyses 
that can be performed on separate components of the composite outcome. 
Moreover, it can result in failure to capture critical long-term effects of a 
discontinued study drug whose use may have increased the probability of 
resistance to alternative therapies. 

Trials for Mechanical Circulatory Devices for 
Severe Symptomatic Heart Failure

For patients with advanced heart failure, heart implantable left ven-
tricular assist devices (LVADs) have been shown to be effective when used 
as a bridge to heart transplants.2 Furthermore, because many patients are 
not eligible candidates for transplantation, the use of LVADs as destination 
therapy has been shown to be effective, and its use is increasing. 

Over time, it has been possible to make the devices smaller and more 
durable. With the new devices, thrombogenic (tendency to clot) and infec-

2 For two examples, see Rose et al. (2001), which established the superiority of an LVAD 
over medical therapy as destination therapy, and Slaughter et al. (2009), which compared a 
new LVAD device to the type used in the first trial and established the superiority of the new 
design. 
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tion risks are more easily managed, and morbidity and mortality have been 
reduced during the periods before, during, and immediately after the opera-
tion. Thus, there is interest in using these devices as destination therapy in 
patients with symptomatic heart failure who are severely impaired in spite 
of optimal medical therapy but who are less sick than patients studied in 
earlier destination therapy trials. As a case study, we consider a superiority 
design trial in which the goal is to determine whether an LVAD is superior 
to optimal medical management for prolonging patients’ survival and opti-
mizing their health status. 

In many device trials, blinding of patients and investigators is not 
possible. A successful trial is one in which the LVAD would substantially 
improve functional status and not negatively impact survival.

In such a clinical trial, survival status will be ascertained for nearly 
all patients. However, functional status during follow-up may be missing 
because of early death (for example, as a consequence of the implantation 
procedure), failure to attend examinations, or inability to perform functional 
tests like a 6-minute walk. Also, as several LVADs are already approved for 
use in patients with more advanced disease, it is expected that some control 
patients will be implanted during the course of the study as their disease 
progresses. In addition, some patients will receive heart transplants and this, 
too, will complicate the interpretation of functional measures. Finally, some 
patients may have the LVAD removed for other reasons.

Some of the design and data analysis considerations for such a trial 
would also apply to a trial that compared two LVAD devices (e.g., an 
unapproved newer design and an approved one with an older design) as 
destination devices among patients ineligible for transplantation. 

A key issue in the design is the definition of the major outcomes related 
to survival and health status. For destination trials among patients who are 
not eligible for transplantation, FDA has accepted a composite outcome 
of death or disabling stroke after 2 years as the outcome. In some trials, 
a second operation to replace the device is also included in the primary 
outcome. 

Measures of functional status and a patient’s health-related quality of 
life have been key secondary outcomes in trials that studied patients who 
are ineligible for transplantation. In a target population that is not as sick as 
those eligible for transplantation, a measure of health status might be con-
sidered as a coprimary outcome because that outcome will be an important 
consideration in device approval and use. In addition, because the superior-
ity of LVADs to medical therapy has been established in patients ineligible 
for transplantation, when the above criteria are met by patients in a control 
group that receives optimal medical management, use of an LVAD will have 
to be permitted. Thus, those criteria may also have to be considered as a 
component of a composite outcome.
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In the LVAD trials done to date, a major problem has been missing 
health status data. In addition, obtaining objective assessment of health 
status (e.g., health-related quality of life, or being able to do a 6-minute 
walk) is complicated by the fact that it is not possible to have blinding in 
such trials. In these trials, missing data occur because of death either as a 
result of the implantation procedure or underlying disease (see discussion 
above), failure to attend examinations, inability to perform functional tests 
(e.g., a 6-minute walk), or “questionnaire fatigue” for self-administered 
quality-of-life instruments. Also, many health status measures include a 
collection of responses to multiple items that comprise different domains, 
and item nonresponse is also a problem (i.e., some, but not all items, 
on a quality-of-life instrument are missing). Analyses have typically used 
 methods that assumed the data were missing at random, but this assump-
tion is clearly not appropriate given the reasons for the missing data. To 
determine whether the degree of missing data has had a sufficient impact on 
the analysis to substantially affect the study findings, a sensitivity analysis is 
required. We discuss how to carry out a sensitivity analysis in this context 
in Chapter 5.

CLINICAL TRIALS IN A REGULATORY SETTING

This report focuses primarily on issues concerning the treatment of 
missing data in randomized controlled clinical trials that are intended to 
support regulatory applications for drugs, medical devices, and biologics. 
Several aspects of the regulatory setting have particular bearing on how 
missing data issues are handled. In particular: 

• Regulators generally must render yes or no decisions rather than 
just describing the data and possible interpretations. 

• Clinical trial sponsors, who must make substantial investment 
decisions in pursuit of regulatory approval, seek predictability regarding 
what findings would support a favorable decision; and regulators, eager 
to ensure common requirements across all sponsors and to enable quality 
development, also prefer to improve predictability where feasible.

• Regulators generally require a high level of confidence before mak-
ing a conclusion of safety and efficacy, preferring in close or ambigu-
ous cases to be “conservative,” that is, to err on the side of withholding 
approval. This conservatism results, in part, from the fact that a regulatory 
approval may make further studies unlikely (due to lack of feasibility or 
funding). 

• In most cases, clinical trials in the regulatory process are focused 
on determining the effects of a specific product. Effects that occur after 
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switching to rescue therapy in patients who did not tolerate or respond well 
to the study therapy are sometimes disregarded because those effects may 
well not be attributable to the study therapy in question. 

In the regulatory environment, a strong premium is placed on specifica-
tion of analytic methods prior to a trial. Such specification serves not only 
to help preserve the type I error (i.e., the error of asserting that a treatment 
is more effective than the control when it is not), but also to improve the 
predictability of the decision process. Pretrial specification of the planned 
primary analyses are of particular importance and therefore receive the 
greatest attention. However, secondary and sensitivity analyses can also 
play a key role in the decision process, and they certainly are more valu-
able than post-hoc, exploratory analyses. Therefore, there is also a need to 
specify the secondary analysis prior to a trial and to specify in advance the 
approach for analyzing the sensitivity of the primary analysis to divergences 
from the statistical models used to accommodate missing data in that analy-
sis (and the sensitivity to other divergences, such as outlying values). 

We believe that the need for a dichotomous decision and the tendency 
for conservatism should create particularly strong incentives on the part 
of sponsors to minimize the quantity and effects of missing data and to 
use statistical models, when analyzing the resulting data, that are based on 
assumptions that are plausible and, when possible, validated. As there are 
many potential approaches to handling missing data, pretrial specification 
of an approach to be used in the primary analysis is particularly important 
to help ensure predictability. However, because the assumptions underly-
ing any one approach to handling missing data may be invalid, prospective 
definition of sensitivity analyses with different underlying assumptions will 
help assess the robustness of the conclusions and help support effective 
decision making. 

Obtaining regulatory approval for a therapy involves generating infor-
mation on many aspects of its effects, often including, but not limited to, 
short-term effects, long-term effects, effects at various fixed doses, effects 
in various clinical settings, and effects with various concomitant therapies. 
In some cases, attempts to address many of these aspects in the same trial 
may lead to problems with missing data, particularly in assessing long-term 
effects. Such problems may be avoidable by designing each trial specifically 
to address fewer aspects, though this would raise the development costs. 

Although the above considerations regarding missing data may be par-
ticularly applicable to trials in the regulatory setting, many are also relevant 
to trials in other clinical trial settings. Therefore, we believe that most of 
the recommendations and discussion in this report are also applicable to 
trials outside the regulatory setting.
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DOMESTIC AND INTERNATIONAL GUIDELINES 
ON MISSING DATA IN CLINICAL TRIALS

There have been several recent documents that lay out a set of general 
principles and techniques for addressing the problems raised by missing 
data in clinical trials. These documents include 

1. Draft Guidance on Important Considerations for When Participa-
tion of Human Subjects in Research Is Discontinued, from the Office for 
Human Research Protections in the U.S. Department of Health and Human 
Services (2008).

2. Guidance for Sponsors, Clinical Investigators, and IRBs: Data 
Retention When Subjects Withdraw from FDA-Regulated Clinical Trials, 
from the U.S. Food and Drug Administration (2008).

3. Statistical Principles for Clinical Trials; Step �: Note for Guidance 
on Statistical Principles for Clinical Trials, from the European Medicines 
Evaluation Agency (EMEA) International Conference on Harmonisation 
(ICH) (1998) Topic E9.

4. Guideline on Missing Data in Confirmatory Clinical Trials, Com-
mittee for Medicinal Products for Human Use (CHMP) from the European 
Medicines Evaluation Agency (2009). 

The first three documents are currently in use; the fourth Guideline on 
Missing Data in Confirmatory Clinical Trials had been issued only in draft 
form at the time of this writing. 

In this section, we summarize the main points in these documents. They 
agree on several points: 

• There is a need to anticipate the amount and nature of missing 
data during the design of the study and when making analysis plans. 
Careful planning will help specify a reasonable approach to handling 
missing data and will also help to specify a range of sensitivity analyses 
that could explore the impact of departures from the expected missing 
data pattern. 

• It is important to collect complete data for all randomized partici-
pants, including those who discontinue treatment. This point motivates the 
important distinction between continuation of treatment and continuation 
of follow-up for major outcomes.

• The CONSORT (consolidated standards of reporting trials) guide-
lines for reporting the results of trials should be adhered to. Given that 
there will almost always be some missing data, a trial may still be regarded 
as providing valid results if the methods of dealing with missing values are 
sensible. 
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• The use of various single imputation methods is criticized, includ-
ing the LOCF method.

• Given that no universally applicable methods of handling missing 
values can be recommended, an investigation should be made concerning 
the sensitivity of the results of analysis to the method of handling missing 
values, especially if the percentage of missing values is substantial.

The panel believes that the need for conservative methods receives too 
much emphasis in these guidelines. However, in general, this report can be 
seen as reinforcing and expanding on many of the suggestions and recom-
mendations found in the four documents. We support and refine many of 
the basic principles proposed regarding the treatment of missing data in 
clinical trials, and we provide more detailed suggestions on specific tech-
niques for avoiding missing data in the design and conduct of clinical trials 
and on appropriate analysis methods when there are missing data. 

Recently, O’Neill (2009) stated that the issue of how to best handle 
missing data in clinical trials was a long-standing problem, especially in 
regulatory submissions for trials intended to support efficacy and safety and 
marketing approval, and he called for the development of a consensus as to 
the proper methods for use. He added that more information was needed 
on why subjects withdraw from their assigned therapies, and, when they 
do withdraw, on what amount of bias is introduced in the resulting esti-
mates through the use of various methods. In addition, he pointed out that 
a key question is how to specify, in a trial protocol, the primary strategy 
for dealing with missing data when one has yet to observe the patterns of 
missing values. Finally, FDA’s critical path initiative has identified the issue 
of missing data as a priority topic. 

REPORT SCOPE AND STRUCTURE

The panel believes it is important to provide a consensus on good 
practice in trial design, trial conduct, and the treatment of missing output 
values in the analysis of trial data. That is the goal of this report. More 
particularly, the focus of this report is the treatment of missing data in 
confirmatory randomized controlled trials of drugs, devices, and biologics, 
although, as noted above, we believe the material is also relevant for other 
types of clinical trials, including those carried out by academics and NIH-
funded trials, and more generally for various biostatistical investigations. 
We note that no further mention is made in this report about methods for 
the treatment of missing data for biologics because they raise no issues that 
are not already raised in drug trials.

While the main context for our report is randomized trials, regulatory 
agencies such as FDA also evaluate evidence from trials where randomiza-
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tion of interventions is considered impractical, as for example in some trials 
of devices or surgical procedures. These trials do not possess the balancing 
property of randomization with respect to the distribution of observed or 
unmeasured covariates, and hence are subject to potential bias if there are 
important differences in these distributions across intervention groups.

The threat to validity from missing data is similar for nonrandomized 
and randomized trials—in fact the threat is potentially greater given the 
inability to mask the treatments—so the principles of missing data analy-
sis described in this report apply in a similar fashion to nonrandomized 
 trials. These include the need to design and conduct trials to minimize the 
amount of missing data, the need to use principled missing data adjustments 
based on scientifically plausible assumptions, the need to conduct sensitivity 
analyses for potential deviations from the primary assumed mechanisms of 
missing data, and the need to collect covariate information that is predic-
tive of missingness and the study outcomes. The need for good covariate 
information is, if anything, even greater for nonrandomized trials, since this 
information can also be used to reduce differences in intervention groups 
arising from the nonrandomized allocation of interventions.

This study included only four panel meetings, one of which was a 
workshop, and therefore cannot be comprehensive. The focus was on 
identifying principles that could be applied in a wide variety of settings. We 
recognize that there are a wide variety of types of clinical trials for a wide 
variety of health issues and that there will always be idiosyncratic situations 
that will require specialized techniques not directly covered here. Also, it is 
important to point out that we focus on the assessment of various forms of 
intervention efficacy: this report does not do any more than touch on the 
assessment of the safety of medical interventions.

The next two chapters provide details and recommendations on trial 
designs and trial conduct that are useful for reducing the frequency of 
missing data. Chapters 4 and 5 describe methods of analysis for data from 
clinical trials in which some of the values for the outcome or outcomes of 
interest are missing: Chapter 4 considers drawing inferences when there are 
missing data, and Chapter 5 considers sensitivity analyses. The final chapter 
presents the panel’s recommendations.
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Trial Designs to Reduce the 
Frequency of Missing Data

Good design may not eliminate the problem of missing data, but . . . it can 
reduce it, so that the modern analytic machinery can be used to extract 
statistical meaning from study data. Conversely, we note that when insuf-
ficient attention is paid to missing data at the design stage, it may lead to 
inferential problems that are impossible to resolve in the statistical analysis 
phase. (Lavori et al., 2008, p. 786)

The primary benefit from randomizing clinical trial participants into 
treatment and control groups comes from balancing the distributions of 
known and unknown characteristics among these groups prior to study 
treatments. But baseline comparability cannot be assured by randomization 
when data are missing. Although there are techniques that can be applied 
to ameliorate the impact of missing data (see Chapters 4 and 5), avoiding 
or minimizing missing data is always preferred. 

Any approach to statistical analysis involving missing data will involve 
unprovable assumptions, particularly because there is always some uncer-
tainty about the reasons why data are missing. Consequently, the appropri-
ate assumptions and analytic treatment—and, therefore, the appropriate 
inference—may be unclear. For example, in a study of weight gain, Ware 
(2003, pp. 2,136-2,137) writes that: “It is unfortunate, however, that 
so much effort must be devoted to evaluating the implications of miss-
ing observations when a seemingly simple effort to obtain study weights 
according to the follow-up protocol would probably have been successful 
with most participants. Complete evaluation of enrolled patients, irrespec-
tive of their adherence to study therapy, deserves wider recognition as an 
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important part of good clinical-trials practice.” Therefore, an important 
objective in the design and implementation of a clinical trial is to minimize 
missing outcome data. 

As briefly discussed in Chapter 1, there are a variety of reasons for 
discontinuation of treatment, and for discontinuation of data collection, 
which we refer to as “analysis dropout,” in clinical trials. The frequency of 
missing data depends on the health condition under study, the nature of the 
interventions under consideration, the length of the trial, and the burden of 
the health evaluations and how much they are facilitated. Common reasons 
for dropout include (1) inability to tolerate the intervention, (2) lack of 
efficacy for the intervention, and (3) difficulty or inability to attend clinical 
appointments and complete medical evaluations. As noted in Chapter 1, in 
some trials, treatment dropout leads to analysis dropout because data col-
lection is discontinued. In many studies, this is the major reason for missing 
data. Other reasons include subjects who withdraw their consent, move out 
of the area, or who otherwise experience changes in their lives that preclude 
or complicate further participation. 

This chapter primarily concerns the sources of missing outcome infor-
mation and how the frequency of missing outcome values can be reduced. 
However, missing values of covariates and other auxiliary variables that 
are predictive of the outcome of interest should also be reduced,1 and the 
techniques discussed here can be helpful for that purpose as well. There is 
clearly a need for more research on the specific reasons underlying missing 
data, a topic addressed in Chapter 3. 

TRIAL OUTCOMES AND ESTIMANDS 

A clinical trial typically measures outcomes that quantify the impact of 
the interventions under study for a defined period of time. Inference focuses 
on summaries of these measures (such as the mean) for the target popula-
tion of interest. These summary quantities are often called parameters, or 
estimands. For example, consider a trial in which the primary outcome 
measure is change in blood pressure between baseline and 6 weeks after 
the initiation of treatment. The estimand of interest might be the differ-
ence in the mean change in blood pressure over 6 weeks for the target 
and control populations. An estimate of this parameter is the difference in 
sample means for participants in the treatment group and participants in 
the control group. This estimate is unbiased if the assignment to treatment 
is random, and there are no missing data (Little and Rubin, 2002). The goal 

1 Some missing demographic data that are likely to have remained invariant across the study 
duration could be collected after a participant completes the trial.
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is to attribute the difference between the treatment and the control to the 
causal effect of the intervention. 

Estimation of the primary (causal) estimand, with an appropriate esti-
mate of uncertainty, is the main goal of a clinical trial. For example, 
estimates of estimands based on the measurement of symptom relief are 
required for the regulatory evaluation of treatments for many disorders, 
including mental illnesses, inflammatory bowel disease, and chronic pain. 
Estimands in trials of interventions for cancer and heart failure are often 
based on survival or disease recurrence. Estimands for trials of interventions 
for HIV and hypertension may use surrogate outcomes, such as CD4 counts 
or blood pressure measures, respectively.

The choice of estimand involves both the outcome measure and the 
population of interest. For instance, the population of interest might be 
unrestricted, or it might be restricted to people who can tolerate an inter-
vention for a given period. The outcome measure also requires specifica-
tion of a period of action of the intervention after assignment. It may be 
measured at one time or over a period of time and can reflect either short-
term or longer-term effects. In addition, the outcome measure could be an 
absolute measure of change from the baseline or a percentage change.

In order to avoid confusion and clearly assess the potential for bias 
from missing data in a randomized clinical trial, it is important to be clear 
about the choice of estimand, particularly about the outcome measure and 
target population of interest. The estimand should be decided before the 
protocol for a clinical trial is final, since alternative choices of estimand 
may have important implications for trial design and implementation, the 
inferences that are made, and the amount of missing data that might be 
expected. For instance, an important consideration is whether to collect 
outcome data after a subject discontinues assigned treatment or there are 
other deviations from the protocol. The answer to this question depends 
on the choice of trial estimand.

To make this discussion more concrete, in this section we discuss some 
estimands. We assume for simplicity that there are just two groups, a treat-
ment group and a control group. We discuss different trial designs for each 
estimand, which provide varying degrees of confidence in the trial conclu-
sions, given the likely frequency of missing outcome values. In this discus-
sion, “outcome” refers to the primary outcome in the trial, which might be 
a measure of symptoms, a surrogate outcome, or a time to an event. The 
“duration of protocol adherence” refers to the time after randomization for 
which a subject received the study intervention according to the protocol. 
This period may be shorter than the full study duration for a variety of 
reasons, including lack of tolerance, inefficacy, and study burden. 

Five possible estimands are described here in the context of a symptom 
relief trial. A similar range of potential estimands can be identified for trials 
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in which the outcome is a time to event or a surrogate measure of progress. 
Estimands (1), (2), (4), and (5) are frequently used. Estimand (3) is rarely 
used, but is included to help explain the impact of the various choices of 
estimand on the likelihood of missing data. 

1. (Difference in) Outcome Improvement for All Randomized Par-
ticipants This estimand compares the mean outcomes for the individuals 
randomized to the treatment and control arms, regardless of what treat-
ment participants actually received. Often called the “intention-to-treat” 
estimand, it assesses the benefits of a treatment policy or strategy rela-
tive to a control.2 Since the estimand relates to a treatment policy, the 
observed differences reflect the effect of the initially assigned treatment as 
well as subsequent treatments adopted as a result of intolerance or lack 
of efficacy. 

A trial design that supports the use of this estimand is a parallel-group 
randomized trial in which outcome data are collected on all subjects, 
regardless of whether the study treatment is received. A trial design that 
does not support the use of this estimand is a parallel-group randomized 
trial in which outcome data are not collected on participants after they drop 
out or switch from the assigned treatment. 

2. (Difference in) Outcome Improvement in Tolerators This estimand 
quantifies the degree of outcome improvement in subjects who tolerated 
and adhered to a particular treatment. This estimand concerns the subset 
of the population who initially began treatment and tolerated the treat-
ment. One complication with this estimand is that it is difficult to identify 
the members of this subpopulation in advance in the field, and the assessed 
performance in a trial may therefore be an overestimate of the performance 
in practice.

A trial design that supports the use of this estimand is a targeted 
 parallel-group randomized trial. An example is a design with an active 
treatment run-in period followed by placebo washout prior to randomiza-
tion, limited to individuals who tolerated the active treatment during the 
run-in period. Outcome data are then collected on all randomized subjects. 
A trial design that does not support the use of this estimand is an untargeted 
parallel-group randomized trial in which outcome data are not collected on 
participants after they terminate or switch from the assigned treatment.

2 To the extent that the subjects represent the population of patients with the specified dis-
order and to the extent that the health care of the subjects reflects the health care available 
in the population, the use of this estimand concerns the effectiveness of this treatment for the 
population. 
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3. (Difference in) Outcome Improvement If All Subjects Tolerated or 
Adhered This estimand quantifies the degree of outcome improvement in 
all subjects in the trial if they had all received treatment according to the 
protocol for the study duration. This estimand requires an imputation of 
what would have been the outcome if individuals who did not comply with 
the protocol had complied. Given that in many settings some amount of 
intolerability or nonadherence is unavoidable, this estimand reflects the 
effects of an infeasible treatment policy. 

This estimand provides insight into the magnitude of improvement 
in efficacy that might be achieved if one could develop therapeutic strate-
gies that produced very high levels of adherence in real-world settings; 
ultimately, such therapeutic strategies would then need to be evaluated in 
randomized clinical trials conducted to assess their effect on the estimand 
“outcome improvement for all randomized participants.”

A trial design that supports the use of this estimand is a parallel-group 
randomized design in which all subjects are provided adjunctive or support-
ive therapies, assuming that such therapies are available and ensure tolerance 
and adherence. Outcome data are collected on all subjects. A trial design 
that does not support the use of this estimand is a parallel-group randomized 
design with no available and effective mechanism for ensuring adherence.

4. (Difference in) Areas Under the Outcome Curve During Adherence 
to Treatment This estimand compares the arm-specific means of the area 
under the outcome curve over the duration of protocol adherence. This esti-
mand simultaneously quantifies the effect of treatment on both the outcome 
measure and the duration of tolerability or adherence in all subjects.

A trial design that supports the use of this estimand is a targeted 
 parallel or parallel-group randomized trial. In such a trial with this esti-
mand, there would be no need to collect outcome data after assigned treat-
ment is discontinued or switched, other than to address secondary analysis 
issues, such as delayed side effects.

5. (Difference in) Outcome Improvement During Adherence to Treat-
ment This estimand is the difference in mean outcomes from the beginning 
of the trial to the end of the trial or the end of adherence to the protocol, 
whichever occurs earlier. This estimand reflects both the duration of toler-
ability or adherence and outcome improvement in all subjects. A trial design 
that supports the use of this estimand is a parallel-group randomized trial. 
Again, in such a situation, estimating the primary estimand does not require 
collection of outcome data after the assigned treatment is discontinued.

Because estimands (1) outcome improvement, (4) area under the out-
come curve during tolerated treatment, and (5) outcome improvement dur-
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ing tolerated treatment may be influenced by both pharmacological efficacy 
and tolerance and adherence, they have the potential to be misinterpreted 
depending on whether the focus is on assessing intervention effectiveness 
or efficacy. 

The advantage of (1) over (5) is that (1) has the alternative interpreta-
tion of the difference of two treatment policies. Estimand (5) is also prob-
lematic because it does not distinguish an immediately highly effective but 
extremely toxic treatment (i.e., one with no tolerability after a short period 
and high outcome difference over the short period of tolerability) from a 
nontoxic treatment with gradual outcome improvement (i.e., one with full 
tolerability and a difference outcome over the entire trial period of the same 
magnitude as that of the first treatment).

The choice of causal estimand and trial design needs to take into con-
sideration the fact that clinical trials are often part of a larger strategy of 
exploring various features of an intervention prior to approval. For instance, 
for estimand (2) outcome improvement in tolerators we have described the 
benefits in limiting treatment dropout of a design with an active run-in 
period, followed by randomization of those who tolerated the treatment. 
However, in evaluating the results, it must be understood that the run-in 
period is part of the therapeutic strategy under study: consequently, for 
example, if the treatment has adverse effects during initial dosing, those 
risks would need to be assessed in other trials prior to approval.

In summary, the choice of outcome measure and estimand are crucial 
for clinical trial design and regulatory decision making. As the discussion 
above makes clear, there are a wide range of estimands that can be con-
sidered in a given situation, and each will involve tradeoffs between the 
representativeness of the population of study, the ease of study design and 
execution, and the sensitivity to missing data.

Recommendation 1: The trial protocol should explicitly define (a) the 
objective(s) of the trial; (b) the associated primary outcome or out-
comes; (c) how, when, and on whom the outcome or outcomes will 
be measured; and (d) the measures of intervention effects, that is, the 
causal estimands of primary interest. These measures should be mean-
ingful for all study participants, and estimable with minimal assump-
tions. Concerning the latter, the protocol should address the potential 
impact and treatment of missing data.

Given the resulting bias in the estimation of treatment effects caused 
by missing data, it is a serious concern that the actions recommended are 
not routine practice. However, it is our strong impression that these actions 
are not common, that rates of missing data remain high for a large fraction 
of trials, that protocols very often fail to devote attention to plans to com-
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bat missing data, and that protocols are also often vague about the causal 
estimand. The failure to include a formal discussion of missing data in trial 
protocols should be viewed as a serious deficiency.

MINIMIZING DROPOUTS IN TRIAL DESIGN

In this section, we describe a number of design elements for clinical 
 trials that can help to reduce the number of participants who drop out due 
to lack of tolerability, lack of efficacy, or inability to provide the required 
measurement. The choice requires careful consideration because in some 
cases it will affect the generalizability of the study, that is, the population 
to which study conclusions are applicable. This section covers the following 
design elements: use of a run-in period or enrichment; flexible doses; target 
population selection; “add-on” studies; reduction of follow-up periods; 
allowing rescue medications; defining outcomes that can be ascertained in a 
high proportion of participants; and determining long-term efficacy in trials 
with randomized withdrawal. 

Use of Run-In Periods or Enrichment Before Randomization to Identify 
Participants Who Can Tolerate or Respond to the Study Treatment For 
studies in which the tolerability of treatments or adherence to study proto-
cols is a concern, a run-in period can be used to establish short-term toler-
ability and adherence to the study treatment, followed by randomization of 
only those individuals who tolerated and adhered to therapy. 

Such a design may result in a more efficient study with less missing 
data, but it likely will not adequately estimate the rate of adverse events in 
the broader population. Some clinical trials have also used a run-in period 
to identify participants who are likely to respond positively to the study 
treatment. This may also come at the cost of some external validity, reduc-
ing the ability to make estimates of the effectiveness of the treatment for the 
broader target population that might be given the treatment. 

A related idea to run-in designs is the use of enrichment designs, which 
exclude participants based on initial indications that the response to the 
study treatment for them may be weaker or may be more difficult to toler-
ate. Enrichment designs have the advantage of clearly identifying the target 
population in advance of enrollment.3

Flexible Dose (Titration) Studies Protocols that allow flexible dosing to 
accommodate individual differences in tolerability allow more participants 
to continue on the assigned treatment by reducing the frequency of dropout 

3 For a description of run-in periods and enrichment designs, see Institute of Medicine (2001) 
and Temple (2005).
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because of adverse events or inadequate efficacy. Flexible-dose protocols 
are sometimes viewed as conflicting with the desire to assess the effects of 
specific doses, but giving investigators the flexibility to increase or decrease 
titration (when clinicians are allowed to individualize a patient’s dosage) 
on the basis of a participant’s ability to tolerate a drug may in fact be more 
reflective of real-life applications. 

Selection of Target Populations for Whom Treatment Is Indicated Par-
ticipants who are doing well on their current treatments may not be good 
candidates for trial enrollment, in part because they are more likely to drop 
out because of lack of efficacy. Therefore, a good design approach is not to 
include participants who are receiving treatments that are proving effective 
in order to meet an enrollment target.

Adding the Study Treatment to an Effective Treatment Considered to Be 
the Standard In many cases in which drug interactions are not a concern, 
dropout due to lack of efficacy can be reduced through the use of “add-on” 
study designs. In such a design, a new treatment or placebo may be added 
to an optimized background regimen for study participants. These designs 
may decrease the likelihood of missing data due to lack of efficacy.

Reducing the Follow-Up Period Shorter follow-up periods may yield a 
reduction in dropouts, since fewer participants move out of the area, fewer 
develop intolerable adverse events, and the number and burden of clinical 
visits may be reduced. Modifying a trial design in this way may be prefer-
able for assessing efficacy: essentially, it is trading off participants who 
respond more slowly to study treatment with participants who drop out 
early. Past experience of similar trials can provide guidance for evaluating 
this tradeoff in specific situations. 

An alternative would be to define the primary outcome assessment 
for a shorter period of follow-up but retain a longer period of follow-up for 
safety and secondary outcome assessments. Use of shorter follow-up periods 
may be particularly useful with placebo control groups for which there are 
established effective active treatments. Longer follow-up periods clearly have 
advantages when short-term effects do not provide reliable assessments of 
the performance of an intervention, but the negative consequences in the 
form of missing data need to be recognized and taken into account.

Allow Rescue Medication in the Event of Poor Response Dropout can be 
reduced by allowing alternative treatments for participants who are not 
responding to the study treatment. If this design option is adopted, the esti-
mand and associated outcome measurements need to be carefully defined 
in the protocol. For example, time to treatment failure could include the 
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use of alternative therapy as an indicator of treatment failure. (In doing 
so, however, one needs to be careful to delineate the circumstances for 
switching to an alternative therapy in the trial protocol to support objec-
tive conclusions.) 

Define Outcomes That Can Be Ascertained in a High Proportion of Par-
ticipants To avoid missing data caused by the use of outcomes that are 
undefined for some participants, it is useful to use primary outcomes that 
are ascertainable for all randomized participants.4 This may require use of 
composite outcomes (e.g., outcomes that incorporate death as part of the 
outcome or incorporate use of rescue medication or surgery for initial poor 
response). At the analysis stage, for ordinal or for continuous outcomes, 
such events might be given a worst outcome rank. However, it is not always 
useful to use composite outcomes to avoid the occurrence of missing data, 
since composite outcomes can be difficult to interpret if individual com-
ponents of the composite provide contrasting evidence about the interven-
tion or if a weaker component dominates. In addition, primary outcome 
measures that require substantial invasive procedures (e.g., liver biopsies) 
are likely to result in significant missing data, and such outcome measures 
should be avoided whenever possible. 

Use of Randomized Withdrawal to Determine Long-Term Efficacy As 
noted above, trials with long-term follow-up may be more prone to missing 
data. In selected situations, this problem can be minimized by using ran-
domized withdrawal designs. In such a design, all participants are initially 
treated with the intervention under study for a sufficiently long period to 
address the question of long-term efficacy. Only those who remain on and 
appear to have responded to therapy are then randomized for withdrawal 
or continuation. In cases in which loss of efficacy after withdrawal can 
be taken as evidence of drug efficacy, such a trial can generate long-term 
efficacy data.

Recommendation 2: Investigators, sponsors, and regulators should 
design clinical trials consistent with the goal of maximizing the number 
of participants who are maintained on the protocol-specified interven-
tion until the outcome data are collected.

4 One example is the use of the glomerular filtration rate to assess kidney performance 
for participants: some of them may progress to end-stage renal failure and undergo kidney 
transplantation.

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


�0 MISSING DATA IN CLINICAL TRIALS

CONTINUING DATA COLLECTION FOR DROPOUTS

Even with careful attention to limiting missing data in the trial design, 
it is quite likely that some participants will not follow the protocol until 
the outcome data are collected. An important question is then what data 
to collect for participants who stop the assigned treatment. Sponsors and 
investigators may believe that the participants are no longer relevant to the 
study and so be reluctant to incur the costs of continued data collection. yet 
continued data collection may inform statistical methods based on assump-
tions concerning the outcomes that participants might have had if they 
continued treatment. Continued data collection also allows exploration of 
whether the assigned therapy affects the efficacy of subsequent therapies 
(e.g., by improving the degree of tolerance to the treatment through expo-
sure to a similar treatment, i.e., cross-resistance). 

The correct decision on continued data collection depends on the 
selected estimand and study design. For example, if the primary estimand 
does not require the collection of the outcome after participants discontinue 
assigned treatment, such as with the estimand (4) above (area under the 
outcome curve during tolerated treatment), then the benefits of collecting 
additional outcome data after the primary outcome is reached needs to be 
weighed against the costs and potential drawbacks of the collection. 

An additional advantage of data collection after subjects have switched 
to other treatments (or otherwise violated the protocol) is the ability to 
monitor side effects that occur after discontinuation of treatment. Although 
the cause of such side effects may be unclear (e.g., if a subject switches to 
another treatment), these data, when combined with long-term follow-
up of other subjects in high-quality epidemiological studies, may help to 
determine treatment-associated risks that are not immediately apparent. We 
are convinced that in the large majority of settings, as has been argued by 
Lavori (1992) and Rubin (1992), the benefits of collecting outcomes after 
subjects have discontinued treatment outweigh the costs. 

Recommendation 3: Trial sponsors should continue to collect informa-
tion on key outcomes on participants who discontinue their protocol-
specified intervention in the course of the study, except in those cases 
for which a compelling cost-benefit analysis argues otherwise, and this 
information should be recorded and used in the analysis.

Recommendation 4: The trial design team should consider whether 
participants who discontinue the protocol intervention should have 
access to and be encouraged to use specific alternative treatments. Such 
treatments should be specified in the study protocol.
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Recommendation 5: Data collection and information about all rel-
evant treatments and key covariates should be recorded for all initial 
study participants, whether or not participants received the interven-
tion specified in the protocol.

REFLECTING LOSS OF POWER FROM MISSING DATA

An important and relatively neglected issue in the design of clinical 
trials is how to account for the loss of power from missing data. (An addi-
tional impact of missing data is that the true significance level of the test 
of the treatment effect size could be larger than the specified level.) Cur-
rently, if any accommodation is done, it is simply to inflate the sample size 
that was initially planned to achieve a stated power by the inverse of one 
minus the anticipated dropout rate, as determined from other recent trials 
for similar interventions. If the dropouts provide no information about the 
treatment effect (which would not be the case for situations in which there 
was an interim outcome measure collected prior to participants’ dropping 
out) and the data from dropouts are missing completely at random, then 
this approach is reasonable. However, in practice, dropouts may provide 
partial information about the treatment effect: that is, effects (or lack of 
effects) of the intervention often play a role in the decision to drop out. 
The missing completely at random assumption is generally too optimistic; 
therefore, power calculations should be based on more realistic missing at 
random or missing not at random assumptions. Under such assumptions, 
the effects of missing data on power cannot be easily assessed analytically: 
relatively involved simulation studies would be needed. This is rarely done 
and is an area for research.5

It should be added that the most worrisome effect of missing values 
on the inference for clinical trials is not the reduction of power, though 
that can be problematic, but biased estimation of the treatment effect. The 
bias from an unaccounted association between the indicator of missing 
values and the outcome of interest is not addressed by simply inflating the 
sample size. In particular, if the potential bias from missing data is similar 
in size to the anticipated size of the treatment effect, then detection of this 
effect is unlikely, regardless of the sample size chosen for the study. If some 
preliminary estimate of the potential nonresponse bias can be obtained, 

5 In some trials, consideration should be given to both potential nonadherence to the study 
treatment and also to the use of treatments, in the control group, that are similar to the 
study treatment (e.g., when the primary estimand is 1, above). This is more likely in a non-
blinded study. Methods for inflating sample size to account for this type of noncompliance to 
the assigned treatments have been developed (see, e.g., Lakatos, 1988; Shih, 1995). In addi-
tion, it is also prudent at the design stage to inflate sample size to account for the fact that the 
primary outcome status may not be known for all study participants. 
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perhaps from a sensitivity analysis of the kind described in Chapter 5 on a 
related prior study, a simple strategy is to reduce the anticipated effect size 
by the anticipated size of the nonresponse bias and then power the study 
for this reduced effect size. If the adjusted effect size is too small to detect, 
it would be a strong incentive to design the study to reduce the degree of 
missingness. 

DESIGN ISSUES IN THE CASE STUDIES

We now return to the three case studies introduced in Chapter 1. 
These examples (chronic pain management, HIV, and mechanical devices 
for hearts) were used to illustrate how missing data arise in clinical trials. 
They are used in this section to illustrate how the design recommendations 
in this chapter can be carried out in these situations. 

Trials for Chronic Pain

Clinical trials for assessing interventions to relieve chronic pain are 
often subject to high rates of missing data because of inadequate effi-
cacy and participants’ inability to tolerate treatment. Participants who 
discontinue study treatment usually switch to a proven (approved) effective 
therapy, and it is typical for investigators to stop collecting pain response 
data on these individuals. The last observation carried forward approach 
is often used to impute missing outcome values.

Selection of (Causal) Estimand

As specified in Recommendation 1, a critical first step is to determine 
an appropriate estimand. Potential choices include 

(a) (difference in) pain relief in all participants (e.g., degree of pain 
relief at 12 weeks [or more] in all patients in whom the treatment interven-
tion is initiated [regardless of what is received throughout the course of the 
trial] [estimand 1, above]); 

(b) (difference in) pain relief in tolerators (e.g., degree of pain relief in 
patients who tolerate and choose to receive 12 weeks of therapy [estimand 
2, above]); and 

(c) (difference in) treatment success rate (e.g., proportion of patients 
who can tolerate therapy, remain in study, and achieve adequate pain relief 
over 12 weeks [estimand 5, above]).

Option (a) addresses the anticipated outcomes in all patients who are 
randomized. Patients are managed according to a policy outlined in the 
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protocol and that reflects current practice. If the treatment policy reflects 
common practice in the clinical setting, this estimand may predict actual 
clinical outcomes. However, if many subjects receive effective alternative 
therapies, this estimand may shed only limited light on whether the treat-
ment therapy is effective.

Option (b) addresses a key regulatory question, long-term efficacy in 
patients who will take the drug, but it fails to address other key questions, 
especially how well and how often the drug is tolerated and its efficacy in 
the total population receiving it, including those who do not take it for 
12 weeks.

Option (c) addresses an important regulatory question and avoids 
missing data by defining a composite primary outcome. However, classify-
ing all patients as either a treatment success or not may ignore important 
information, such as the extent of success or cause of failure. Also, counting 
patients who cannot tolerate therapy as failures may strongly weigh against 
drugs that are excellent in patients who tolerate them, even if there are 
significant subsets of patients who cannot tolerate them.

For example, in recent trials of trimethoprim sulfa (TS) against pent-
amidine for treatment of pneumocystis pneumonia in HIV-infected subjects, 
those who could not tolerate TS were typically switched to pentamidine. 
In evaluating TS, these treatment failures were “charged” to TS according 
to a traditional intent-to-treat analysis, ignoring the fact that almost all the 
TS failures were those who failed to tolerate the drug and not failures in 
efficacy, which is an important finding obscured by the composite outcome 
measure used. (For details, see Schneider et al., 1992.)

Suggested Study Designs Paired with Estimands

For estimand (b) (pain relief in tolerators), two study designs that limit 
missing data are a randomized withdrawal design, in which patients are 
treated with the test treatment open-label for 12 weeks, and subjects who 
tolerate and have adequate response to the treatment are randomized to 
continue or to withdraw (e.g., are switched to placebo) and followed for 
some time, and a design that uses an active control run-in period followed 
by placebo washout, and then randomization of those patients who toler-
ated the active control and had relief. In this case, the outcome is pain 
control at 12 weeks.

These designs may limit missing data problems, but as previously noted 
they raise other issues, such as the inability to address safety and efficacy 
in all comers. However, it may well be best to address those questions in 
separate clinical trials rather than try to address all questions in one trial.

For estimand (c) (treatment success rate), one can include in the com-
posite outcome patients who cannot tolerate therapy along with those who 
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have inadequate pain relief. In this approach, there will be minimal missing 
data for the primary outcome. 

Finally, for the more traditional estimand a. (pain relief in all comers), 
there are some design alternatives that may help reduce the number of drop-
outs. For example, allowing dose modification will likely reduce dropouts 
in the treatment group because of inability to tolerate, since participants 
may tolerate a lower dose, or because of an inadequate response, since 
participants may respond adequately to a higher dose. Although such dose 
adjustments reflect common clinical practice, it is sometimes avoided in the 
regulatory setting due to requirements that are best addressed with fixed 
dosing regimens. (For example, if it is required to determine the minimal 
dose that provides significant response, dose adjustments may be inappro-
priate.) In such a case, it may be best nonetheless to allow dose adjustment 
to minimize missing data in trials that are estimating long-term pain relief 
in all comers and to address fixed dosing issues in a separate trial or trials. 
Finally, for this estimand, continuing to collect data through 12 weeks in 
all patients, including those who choose to switch therapies, and using these 
data in the analysis, is particularly important.

Trials for Treatment of HIV

In many HIV trials, a noninferiority design is used to test whether a 
new drug is at least as safe and efficacious as the current standard of treat-
ment. Since combination treatment is the norm for HIV, the typical design 
in this setting is new drug A plus background treatment compared with 
current drug B plus the same background treatment. A common primary 
outcome is often called time to loss of virologic response, but is in fact a 
composite measure that includes the following components: (1) death (and 
sometimes progression to an AIDS event), (2) discontinuation of study drug 
before 48 weeks, (3) loss to follow-up, and (4) HIV RNA level of greater 
than or equal to 50 copies/mL at or prior to 48 weeks on study drug.6

Suggested Estimands and Study Designs

Again, we emphasize the need to start by determining the causal esti-
mand. Possible choices include the following:

(a) virologic response in all participants (e.g., the percentage with an 
HIV RNA level of less than 50 copies/mL after 48 weeks in all participants 

6 This composite outcome may be an example of the hazard mentioned in Chapter 1: if out-
come measures are selected partially to reduce the frequency of missing data, they may also 
compromise the clinical value of the resulting inference.
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randomized)—a “true” virologic outcome used for a comparison of treat-
ment policies that ignores whether study treatment is discontinued; 

(b) virologic response in tolerators (e.g., the percentage with an HIV 
RNA level of less than 50 copies/mL, among participants who were able 
to tolerate the treatment for 48 weeks (note that switches in antiretroviral 
therapy [ART] due to lack of efficacy need to be differentiated from switches 
due to side effects or lack of tolerability; and

(c)  treatment success rate (e.g., the proportion of all randomized par-
ticipants who stay on assigned treatment, remain in the study, and achieve 
an HIV RNA level of less than 50 copies/mL at 48 weeks), which is often 
the estimand in current practice.

Estimand (a) (virologic response in all participants) addresses antici-
pated outcomes in all participants who started on the therapy in question 
and were managed according to standard practice. This approach addresses 
a question about a specific efficacy outcome, and it compares two treatment 
policies (e.g., starting with a regimen using drug A with background treat-
ment and starting with drug B with the same background treatment). This 
outcome is not often used in a regulatory setting because of concerns that 
estimation of the differences between drug A and drug B could be affected 
if more participants on one treatment group than another were switched to 
a virologically more potent regimen before 48 weeks.

Estimand (b) (virologic response in tolerators) addresses one key regula-
tory question, which is the efficacy in participants who will take the drug. 
However, it fails to address other key questions, for example, efficacy of the 
drug in the total population receiving it, including those who do not take it 
for 48 weeks. A run-in period is usually not practical because of concerns 
about HIV drug resistance. An analysis that excludes those who do not toler-
ate the study treatments may lead to biased estimates of treatment efficacy.

Estimand (c) (treatment success rate at 48 weeks) addresses an impor-
tant regulatory question and avoids missing data through the use of a 
composite outcome. However, use of the composite outcome may mask 
important treatment differences, and in some circumstances may result in 
misleading results. For example, outcomes labeled as virologic failures may 
in fact reflect toxicity or losses to follow-up. Furthermore, counting par-
ticipants who cannot tolerate therapy as failures may overly weigh against 
drugs that have excellent virologic efficacy in patients who do tolerate them, 
even if there are significant subsets of patients who cannot tolerate them.

Study Designs That Minimize the Extent and Impact of Missing Data

The use of virologic response in all comers and the composite treat-
ment success outcomes each have advantages and disadvantages. In the 
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regulatory setting, the latter is currently recommended. It avoids missing 
data by considering participants with missing data to be treatment failures. 
However, this choice of outcome gives equal weight to missing data, deaths, 
intolerance, and lack of virologic efficacy, creating difficulties in interpreta-
tion. If such an outcome is used, there may be advantages to continue to 
collect data after treatment discontinuation to the end of follow-up. These 
data may permit assessment of the consequences of treatment failure before 
48 weeks due to intolerability or lack of virologic efficacy (e.g., the develop-
ment of HIV drug resistance associated with virologic failure). Continued 
follow-up allows a separate assessment of each component of the composite 
outcome at or before 48 weeks (e.g., summaries of numbers assigned each 
treatment who failed virologically). Treatment policies, as in estimand 1, 
above, can also be compared. 

Trials for Mechanical Circulatory Devices for 
Severe Symptomatic Heart Failure

Device trials in patients with severe symptomatic heart failure have 
high rates of missing data for measures of functional status and health-
related quality of life. The missing data arises because of deaths, some of 
which may be associated with the implantation procedure, failure to attend 
study follow-up examinations, and inability or unwillingness to perform 
functional tests or complete self-administered questionnaires. Unlike ascer-
tainment of hospitalization events, measures of health status that include 
symptoms, functional status tests, and quality-of-life assessment require 
that patients be seen or complete a questionnaire. 

In a trial of a left ventricular assist device (LVAD) as destination therapy 
for patients with severe symptomatic heart failure, it is critical to assess 
whether the device improves health status as well as survival. The ultimate 
approval and use of the device will depend on both outcomes. We consider 
possible estimands and study designs for assessing health status in a com-
parison of an LVAD with optimal medical management over a 2-year follow-
up period. We assume that in such studies the four outcomes are of interest: 
death; disabling stroke; criteria met for implanting LVAD (e.g., based on 
previous trials in patients ineligible for transplant); and a self-administered 
quality-of-life assessment using a standard instrument (alternatively, or in 
addition to, a function measure test, such as a 6-minute walk time could be 
used). Some trials may also incorporate device removal or replacement in 
a primary composite outcome. Considerations in measuring and assessing 
health status in such trials have been summarized by a working group of the 
Heart Failure Society of America (see, e.g., Normand, 2005). 
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Suggested Estimands and Study Designs

Three potential choices for an estimand for evaluating health status 
include 

(a) difference in quality of life between treatment groups for all ran-
domized patients, 

(b) difference in quality of life among survivors, and 
(c) area under the quality-of-life curve while alive. 

For the estimand (a) (difference in quality of life for all randomized 
patients), the quality-of-life comparison could be performed earlier than 
2 years to maximize the number of patients in each treatment group under 
follow-up (e.g., at 6 months). Alternatively, patients who die or who are 
unable to complete the questionnaire for health reasons could be given a 
“worst rank” score. This latter strategy would likely affect the power of 
the resulting test statistic as some deaths would be expected to be unrelated 
to the treatments.

Estimand (b) (difference in quality of life among survivors) addresses 
the effect of the LVAD on an outcome that complements a composite out-
come of death, disabling stroke, or progression to a specified criteria that 
indicate an LVAD should be implanted. However, a complete-case analysis 
or mixed-model approach to the analysis of the quality-of-life data may not 
be appropriate as it is unlikely the data are missing at random. Thus, the 
pattern of missing data should be considered, and other methods for model-
ing the missing data (e.g., pattern mixture models) should be used.

Estimand (c) (area under the quality of life curve while alive) has the 
advantage of simultaneously evaluating the LVAD for quality of life and 
duration of survival (or an expanded event-free outcome).

Irrespective of which estimand is used, in such trials it will be important 
to assess health status as objectively as possible. Since such trials cannot be 
blinded to patients or investigators caring for the patient, use of indepen-
dent, trained evaluators (i.e., those not involved in the care of the patient), 
for whom it would be possible to be blinded to the treatment, should be 
considered. In addition, assessment by both patients’ self-reports and clini-
cians’ assessments should be considered. Prior to the initiation of a study, 
the importance of complete ascertainment of the health status measure-
ments should be emphasized to patients in the informed consent process 
and to clinicians during protocol training. Also, plans should be developed 
for visiting patients to obtain the health status assessments if they cannot 
attend clinic examinations.
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3

Trial Strategies to Reduce the 
Frequency of Missing Data

This chapter discusses a number of strategies that can be applied to 
reduce the amount of missing data during trial implementation and con-
duct. The approaches in this chapter deal with the practical aspects of 
trial conduct, rather than the more fundamental design aspects covered in 
Chapter 2. We classify trial strategies into two types: (1) actions for design 
and management teams and (2) actions for investigators and site personnel. 
Before turning to those strategies, we briefly comment on the research lit-
erature on clinical trial dropouts, and we end the chapter with a look at 
setting and meeting targets for missing data. 

REASONS FOR DROPOUTS

The literature on the factors associated with and the effectiveness of 
various measures to reduce the occurrence of missing outcome values is 
relatively diffuse, possibly dependent on the medical condition, the inter-
vention under study, and the population of interest. Thus, the literature is 
difficult to summarize and often not a great deal is known for particular 
situations. However, several statements can be supported: there is a lack of 
consensus regarding how to measure dropout rates; dropout can often be 
very substantial, sometimes more than 30 percent; and the rate of missing 
outcome data can sometimes be substantially reduced by applying some of 
the ideas suggested in Chapter 2 and below (see, e.g., Sprague et al., 2003; 
Oleske et al., 2007; Robinson et al., 2007; Snow et al., 2007; Warden et 
al., 2007; Williams et al., 2008).
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ACTIONS FOR DESIGN AND MANAGEMENT TEAMS

This section discusses some techniques that trial design and manage-
ment teams can use to reduce the frequency of dropouts. First, designers 
and managers can limit participants’ burden and inconvenience in the data 
collection stage. This can be done in at least five ways: (1) minimizing the 
number of visits and assessments, (2) collecting only the information that 
is needed at each visit, (3) using user-friendly case report forms, (4) using 
direct data capture that does not require a clinic visit whenever feasible, and 
(5) allowing a relatively large time window for each follow-up assessment. 
Examples of information not needed at each visit include aspects of the 
participant’s medical history and contact information that were provided 
at earlier visits and information available from medical records. The over-
all aim is to balance the competing goals of reducing response burden and 
collecting sufficient information to fully support the analytic goals and to 
guide the next steps in treatment. (Regarding use of direct data capture 
to minimize the response burden, it would also be useful to attempt to col-
lect whatever information is available from administrative records.)

Second, design and management teams can increase the incentives for 
participation and completion by the provision of effective treatments to 
participants after the trial. Such incentives might include continued access 
to effective study treatments on extension protocols until the treatment is 
licensed. 

Third, designer and managers can select investigators with a good track 
record of both enrolling and following participants and collecting complete 
data in previous trials, and provide good training. The training (and on-
study reinforcement) needs to emphasize the importance of complete data 
collection and the difference between discontinuing the study treatment and 
discontinuing data collection. Training should stress the value of collecting 
data after a participant discontinues the study (or the control) treatment. 

As discussed in Chapter 2, many trial sponsors and investigators mis-
takenly assume that there is little reason for additional data collection when 
participants discontinue study treatment. But as we emphasize, the contin-
ued collection of data is important in many trials. The trial objectives and 
estimands need to be considered. 

Training can also emphasize the importance of the informed con-
sent process as a mechanism for ensuring that participants understand the 
commitment they are making, including their intent to complete the trial 
regardless of the treatment they are receiving. Training of investigators and 
research staff should also emphasize how to work with participants to mini-
mize the extent of missing data (see later in this chapter). Finally, trainers 
need to know and explain to participants that any decision to withdraw 
consent is a participant’s decision, not the investigator’s decision. However, 
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when participants are dissatisfied with the conduct of the trial but have 
not yet withdrawn, the investigator should make an effort to address their 
concerns and retain them in the trial, rather than simply indicating that the 
participants withdrew consent. In doing so, investigators must be careful 
that their efforts do not cross over into coercion. 

Fourth, designers and managers need to consider how investigators 
are paid. Paying investigators solely by the number of participants enrolled 
should be avoided because it places too much emphasis on enrollment and 
not enough on follow-up; payments should also reflect follow-up work 
(e.g., payment per visit or procedure). In addition, linking some additional 
compensation to the completeness of the data collection should be con-
sidered. It is acceptable and generally advisable to link a final payment to 
completion of forms at a study closeout visit (i.e., a final visit at the end of 
follow-up to assess the participant’s status). However, care must be taken 
on this point. Providing extra compensation to investigators for encour-
aging participants to complete a study when the participants are thereby 
exposed to significant additional risks could create a conflict of interest on 
the part of the investigator and would therefore be unethical. But if there 
are minimal risks associated with data collection to the participant, it may 
be acceptable to provide financial incentives to the investigator to continue 
to collect data, whether or not the participant continues treatment. 

Fifth, designers and managers can ensure that data collection is moni-
tored and reported during the trial. Missing data and missed visits that 
could affect important outcomes need to be assessed in real time by site 
personnel during a clinical trial. The information from these assessments 
should be available and shown to investigators at regular meetings and on 
study websites, creating a climate to encourage other investigators to col-
lect more complete data. Also, identification of poorly performing sites can 
help identify the need for some sort of remediation, including additional 
training, site visits, or even site closure. Site visits should be targeted on the 
basis of assessments of the amount of missing data, with the goal of helping 
to correct the problem.

ACTIONS FOR INVESTIGATORS AND SITE PERSONNEL

Investigators and site personnel can also act in several ways to reduce 
the amount of missing data. First, in the informed consent process, they 
can emphasize to participants the importance of continued participation for 
the full duration of the trial. Similarly, they can ensure that the trial pro-
cedures allow for an informed withdrawal of consent so that participants 
recognize the importance of continued follow-up for data collection if they 
discontinue study treatment: see Box 3-1 for an example of language for 
withdrawal. Second, investigators and site personnel can provide incentives 
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BOX 3-1 
Example of Language for Withdrawal of Informed Consent

 • �I no longer wish to take trial anti-HIV drugs but I am willing to attend 
follow-up visits.

 • �I no longer wish to take trial anti-HIV drugs and do not wish to attend 
further visits. I agree to my medical records being consulted in future 
to obtain clinical information for the Development of AntiRetroviral 
Therapy (DART) in Africa.

 • �I no longer wish to take trial anti-HIV drugs and do not wish to attend 
further visits. I do not agree to my medical records being consulted in 
future to obtain clinical information for DART.

for participants. In general, paying for voluntary participation in a clinical 
trial is regarded as ethical (see, e.g., Emmanuel, 2005). When compensa-
tion is to be provided, the Code of Federal Regulations requires that the 
responsible Institutional Review Board (IRB) ensure that the compensation 
is neither coercive nor at the level that would present undue influence (21 
CFR 50.20). Providing cash is generally not viewed as being coercive, as 
it is a benefit. Most IRBs allow cash payments to be slightly backloaded 
(retaining a small proportion as an incentive for completion), but, gener-
ally, payments accrue as a study progresses in payment for participation 
activities that are completed. Compensating people for taking risks is not 
uncommon, and as noted it is generally acceptable if not judged as coercive. 
Payments for return visits of participants who have stopped taking medica-
tion are virtually always considered ethical, since the risk to the participant 
is zero or minimal. Study-branded gifts are also ethical and may have the 
added effect of increasing the participant’s engagement with the trial.

Third, investigators and site personnel can collect information on 
which participants are at risk for dropping out and why: formal “intent-
to-attend” questioning may help to identify reasons for dropout (see, e.g., 
Leon et al., 2007) and may yield useful covariates in missing data models. 
Factors influencing decisions to participate include: (i) time and duration 
of visits, (ii) need for assistance with transportation or child care, (iii) need 
for reminders, (iv) problems in relations with the staff, (v) problems with 
blood drawing or other procedures, (vi) side effects, and (vii) perceptions 
of intervention efficacy. 

Fourth, investigators and site personnel can educate participants on the 
importance of continued engagement in the trial in order to help contribute 

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


TRIAL STRATEGIES TO REDUCE THE FREQUENCY OF MISSING DATA ��

to important scientific knowledge. Mechanisms for such education include 
the production of a study newsletter, maintenance of a regularly updated 
website for trial participants, and providing access to interim papers and 
presentations on study progress and findings. (We note that IRBs may 
require approval for some communications with study participants.) 

Fifth, investigators and site personnel can increase participants’ engage-
ment and retention in the study by such mechanisms as study-branded gifts; 
regular expressions of thanks, both verbal and written; social networking; 
and solicitation of input regarding relevant issues of study conduct. Other 
ways to encourage participation and involvement include reminders before 
a visit and after missed visits help to encourage participation. 

Sixth, investigators and site personnel can make participation enjoyable 
in many ways, including: (i) development of a welcoming environment, 
(ii) hiring of friendly staff, (iii) operational practices that are respectful of 
participants’ time and schedules, (iv) availability of on-site diversions for 
small children, and (v) valued education at the site. 

Seventh, investigators and site personnel can ensure that participants’ 
contact information is updated at each visit, recognizing that in some studies, 
home visits may be needed to keep all contact information current. The pro-
vision of transportation and child care costs can also improve retention. 

For participants who want to discontinue treatment, it is important for 
site personnel to determine the reasons and to make sure that the partici-
pants understand the importance of continuing on the study for the purpose 
of data collection. If participants switch to alternative treatments due to 
intolerance, it is important for investigators and site personnel to document 
the changes because they may be useful in summarizing the study results.

Recommendation 6: Study sponsors should explicitly anticipate poten-
tial problems of missing data. In particular, the trial protocol should 
contain a section that addresses missing data issues, including the 
anticipated amount of missing data, and steps taken in trial design and 
trial conduct to monitor and limit the impact of missing data. 

Recommendation 7: Informed consent documents should emphasize 
the importance of collecting outcome data from individuals who choose 
to discontinue treatment during the study, and they should encourage 
participants to provide this information whether or not they complete 
the anticipated course of study treatment.

TARGETS FOR ACCEPTABLE RATES OF MISSING DATA

Although some missing data should be anticipated for every clinical 
trial, levels that are unacceptable given the design should be considered in 
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writing the protocol. One way to set target rates and maximally accept-
able rates for missing data would be to use the results from similar trials 
to help determine what is reasonably achievable and did not excessively 
impact study conclusions and to determine how missing data can be fur-
ther minimized. For example, using the findings from completed trials, 
some percentile could be used for the target and some higher percentile 
for the maximally acceptable value. Another possibility, which is likely not 
currently feasible but would be after a sufficient number of effective sen-
sitivity analyses have been carried out (depending on the characteristics of 
the trials) is to observe what rates of missing values, in trials in which the 
primary analysis demonstrated a significant benefit, resulted in alternative 
analyses in which the treatment effect was no longer significant. In this way, 
one could try to limit the amount of missing data to ensure that a sensitivity 
analysis would not contradict the findings of the primary analysis. 

Once goals are established, performance against these goals can be 
monitored, and the goals can be used to motivate investigators. Compari-
son of targets and current rates of missing data could also be used by a data 
monitoring committee to halt a trial for underperformance.

Establishing reasonable goals and adhering to them may not be an easy 
task for several reasons: (1) there may not be many similar trials to use as 
a basis for acceptable levels of missing data; (2) it may be difficult to deter-
mine the steps that trial investigators took to reduce missing data; and (3) it 
may be difficult to determine what, if any, sensitivity analyses were carried 
out for trials conducted by other sponsors. Nevertheless, it is important 
to set high standards for the participating investigators and monitor the 
amount of missing data for key outcomes in real time.

We note that one cannot be specific as to how to set target and maxi-
mally acceptable rates for missing data in all clinical trials. The amount of 
acceptable missing data will depend on many characteristics of the trial, 
including whether the assumption that the missing data are missing at 
random is reasonable, the size of the anticipated effect of the intervention 
under study, and the likelihood that a sensitivity analysis would render the 
results of the trial inconclusive. Applied research is needed on this topic, 
and techniques will need to evolve on the basis of that research. 

Recommendation 8: All trial protocols should recognize the importance 
of minimizing the amount of missing data, and, in particular, they 
should set a minimum rate of completeness for the primary outcome(s), 
based on what has been achievable in similar past trials. 

Finally, to monitor the degree of missing outcome data, the data and 
safety monitoring board (DSMB) for a trial should be aware of the trial’s 
target for missing data, and the investigators should report to the DSMB 
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how they are doing relative to the target. If they are not doing well, the 
DSMB should discuss the issue with them. However, primary responsibility 
for ensuring that missing data are kept to a minimum should reside with 
the investigators, the protocol team, and the sponsor.
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4

Drawing Inferences from 
Incomplete Data

In this chapter, we review and comment on several approaches for 
drawing inferences from incomplete data. A substantial literature on this 
topic has developed over the last 30 years, and the range of approaches to 
modeling and inference is extremely broad. We make no attempt here 
to summarize that entire literature; rather, we focus on those methods that 
are most directly relevant to the design and analysis of regulatory clinical 
trials. We begin by presenting a set of principles for drawing inference from 
incomplete data. A major theme that we reiterate throughout the chapter is 
that inference from incomplete data relies on subjective, untestable assump-
tions about the distribution of missing values. On its face, this statement 
seems obvious. However, for a number of commonly used methods, users 
are not always aware of the assumptions that underlie the methods and the 
results drawn from applying them. This lack of awareness is particularly 
true of single imputation methods—such as last or baseline observation car-
ried forward (LOCF or BOCF) and random effects (mixed effects) regres-
sion models—that rely on strong parametric assumptions. 

In the second section of the chapter, we introduce a set of notation that 
is used throughout (and in Chapter 5). The third section summarizes the 
assumptions that underlie inference from incomplete data (missing com-
pletely at random, missing at random, etc.). The remaining sections describe 
commonly-used methods of analysis and offer comments and recommenda-
tions about their use in practice. In some cases, we offer recommendations 
for further research and investigation.

For both this chapter and the next, it is important to note the role of 
software. None of the techniques for either the primary analysis of clini-
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cal trial data or for the subsequent sensitivity analysis that are described 
in the next chapter can be widely used, either at the U.S. Food and Drug 
Administration (FDA) or by trial sponsors, unless they are made available 
in one or more of the standard statistical software packages. It is beyond 
the scope of this report to describe and review specific software packages 
or routines. Many of the commonly used commercial and open-source 
packages used in the analysis of trials for the regulatory setting (SAS, SPSS, 
Stata, and R) allow for the analysis of incomplete data, using methods such 
as direct likelihood, Bayesian analysis, generalized estimating equations, 
inverse probability weighting, and multiple imputation. 

Statistical software is evolving at a rapid pace to keep up with new 
developments in methodology and to implement proven methods. How-
ever, although progress is being made, the current suite of available tools 
remain lacking regarding augmented inverse probability weighting (IPW), 
missing not at random (MNAR) models, and analysis of the sensitivity to 
assumptions concerning the mechanism for missing outcome data. Given 
the urgency of the greater application of MNAR models and sensitivity 
analysis, we encourage the development and release of software tools to 
address these deficiencies. We again emphasize the importance of under-
standing and communicating the assumptions underlying analyses that are 
implemented in whatever software package is being used to draw inference 
about treatment effects. In most cases, communication of this information 
will necessitate referring to technical documentation for a specific analysis 
routine or procedure. 

PRINCIPLES

There is no universal method for handling incomplete data in a clinical 
trial. Each trial has its own set of design and measurement characteristics. 
There is, however, a set of six principles that can be applied in a wide 
variety of settings.

First, it needs to be determined whether missingness of a particular 
value hides a true underlying value that is meaningful for analysis. This 
may seem obvious but is not always the case. For example, consider a lon-
gitudinal analysis of CD4 counts in a clinical trial for AIDS. For subjects 
who leave the study because they move to a different location, it makes 
sense to consider the CD4 counts that would have been recorded if they 
had remained in the study. For subjects who die during the course of the 
study, it is less clear whether it is reasonable to consider CD4 counts after 
time of death as missing values. 

Second, the analysis must be formulated to draw inference about an 
appropriate and well-defined causal estimand (see Chapter 2). The causal 
estimand should be defined in terms of the full data (i.e., the data that were 
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intended to be collected). It is important to distinguish between the esti-
mand and the method of estimation, the latter of which may vary depend-
ing on assumptions.

Third, reasons for missing data must be documented as much as pos-
sible. This includes full and detailed documentation for each individual 
of the reasons for missing records or missing observations. knowing the 
reason for missingness permits formulation of sensible assumptions about 
observations that are missing, including whether those observations are 
well defined. 

Fourth, the trial designers should decide on a primary set of assump-
tions about the missing data mechanism. Those primary assumptions then 
serve as an anchor point for the sensitivity analyses. In many cases, the 
primary assumptions can be missing at random (MAR) (see Chapter 1). 
Assumptions about the missing data mechanism must be transparent and 
accessible to clinicians. 

Fifth, the trial sponsors should conduct a statistically valid analysis 
under the primary missing data assumptions. If the assumptions hold, a 
statistically valid analysis yields consistent estimates, and standard errors 
and confidence intervals account for both sampling variability and for the 
added uncertainty associated with missing observations. 

Sixth, the analysts should assess the robustness of the treatment effect 
inferences by conducting a sensitivity analysis. The sensitivity analysis 
should relate treatment effect inferences to one or more parameters that 
capture departures from the primary missing data assumption (e.g., MAR). 
Other departures from standard assumptions should also be examined, such 
as sensitivity to outliers. 

NOTATION

Throughout this and the next chapter, we use the following conven-
tions. Let X represent treatment indicators and baseline (i.e., pretreatment) 
covariates that are fully observed and conditioned on in the primary statisti-
cal analysis (such as study center and stratification variables). Another way 
to characterize X is as the design variables that would be adjusted for or 
conditioned on in the final analysis. Let Y denote the primary outcome vari-
able, which may be a single outcome, a vector of repeated measurements, 
or a time to event. Auxiliary variables are denoted by V; these variables 
are distinct from design variables X and may represent individual-level 
characteristics (either pre- or posttreatment) that aid in drawing inference 
from incomplete response data. Information on compliance or side effects 
of treatments that may be useful for modeling the missing data but are not 
included in the primary analytic model may be included in V. (We note that 
the collection and use of all available covariate information that is predic-
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tive of the outcome in the full data model, and the occurrence of missing 
outcome data in the missing data model, is important and can dramatically 
improve the associated inference.)

In the absence of missing data, let Z denote the values of (V,Y) for an 
individual participant. For simplicity, we assume throughout that observa-
tions on (V,Y) are independent within levels of X. 

To distinguish between missing and observed data, let M denote the 
indicator of whether Y is missing. In repeated measures studies, we include 
a subscript for repeated measures. That is, if the intended outcome mea-
sures are Y = (Y1,Y2,…,YK), the corresponding missingness indicators are 
M = (M1,M2,…,MK), where Mj = 1 if Yj is missing, and Mj = 0 if it is 
observed. We generally will assume that Y and V have the same missing 
data pattern, though in practice this restriction can be relaxed.

In many situations, missing values can be denoted by a single value, 
such as M = 1; in other settings, it may be useful to allow more than one 
missing-value code to indicate different types of missing data, such as M = 1 
for lack of efficacy, M = 2 for inability to tolerate a drug because of side 
effects, M = 3 for a missed clinic visit, and so on. This notation allows for 
different modeling assumptions for the different causes of missing data.

ASSUMPTIONS ABOUT MISSING DATA AND 
MISSING DATA MECHANISMS

The general missing data taxonomy described in this section is fully 
presented in Rubin (1976) and Little and Rubin (2002). Elaboration on the 
sequential versions of these for longitudinal data can be found in Robins 
et al. (1995) and Scharfstein et al. (1999). Discussion of the more general 
notion of coarsening can be found in Heitjan (1993) and Tsiatis (2006).

Missing Data Patterns and Missing Data Mechanisms

It is useful to distinguish the pattern of the missing data from the miss-
ing data mechanism. The pattern simply defines which values in the data set 
are observed and which are missing, as described for an individual by the 
vector of indicators M = (M1,…,MK). Some methods for handling missing 
data apply to any pattern of missing data; other methods assume a special 
pattern. 

A simple example of a special pattern is univariate missing data, where 
missingness is confined to a single variable. Another special pattern is 
monotone missing data, where the variables can be arranged so that Yj+1 
is missing for all cases where Yj is missing. This pattern commonly arises in 
longitudinal data, when the sole cause of missingness is attrition or drop-
outs, and there are no intermittently missing values. 
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The missing data mechanism relates to why values are missing and the 
connection of those reasons with treatment outcomes. The missing data 
mechanism can be represented in terms of the conditional distribution 
[M | X,V,Y]1 for the missing data indicators given the values of the study 
variables that were intended to be collected. To emphasize that this distri-
bution may depend both on observed and missing values of V and Y, this 
is sometimes written as [M | X,Vobs,Vmis,Yobs,Ymis].

Missing Completely at Random

Missing data are missing completely at random (MCAR) if missing-
ness does not depend on values of the covariates, auxiliary and outcome 
variables (X,V,Y). That is, 

 [M | X,Vobs,Vmis,Yobs,Ymis] = [M]. (1)

MCAR is generally a very strong assumption, unlikely to hold in 
many clinical trials. Situations in which MCAR might be plausible include 
administrative censoring, when outcomes are censored because a study is 
terminated at a planned date, and the outcome has not yet occurred for late 
accruals; and designed missing data, when expensive or onerous measure-
ments are recorded only for a random subsample of participants. A closely 
related concept is conditional MCAR, which allows for the independence 
of the missing values, but is conditional on covariates X. Finally, it is useful 
to mention that MCAR is unique in that one can test whether the miss-
ing outcomes are MCAR if they are at least missing at random, which is 
discussed below.

Missing at Random 

A more realistic condition than MCAR for many studies is MAR, which 
requires that missingness is independent of missing responses Ymis and

 
Vmis, 

conditionally on observed responses (Yobs,Vobs) and covariates X. That is, 

 [M | X,Vobs,Vmis,Yobs,ymis] = [M | X,Vobs,Yobs]. (2)

If Y and V are considered to be random variables with distributions 
based on a model, then one can show that condition (2) is equivalent to 

 [Ymis,Vmis | X,Vobs,Yobs,M] = [Ymis,Vmis | X,Vobs,Yobs], (3)

1 The notation [a | b, c] (e.g., [M | X,V,Y] ) is used to denote the conditional distribution of 
a given the joint distribution of b and c.
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which implies that the predictive distribution of the missing variables given 
the observed variables does not depend on the pattern of missing values. 
This version of MAR is relevant from an analysis perspective because it 
characterizes the predictive distribution of the missing values, which is the 
basis for principled methods of imputation. 

As we describe below, many standard analysis methods for incomplete 
data operate under the MAR assumption. It is therefore imperative that 
both the MAR assumption and the assumptions underlying the full data 
model (e.g., multivariate normality) be thoroughly justified before results 
from these models can be considered valid for treatment comparisons. In 
general: (a) even under MAR, different assumptions about the full data 
model will lead to different predictive distributions; (b) with incomplete 
data, assumptions about both the missing data mechanism and the full 
data model are unverifiable from the data; and (c) nevertheless, inference 
and therefore decisions about treatment effect often crucially depend upon 
them. 

MAR for Monotone Missing Data Patterns

With longitudinal repeated measures, and even for event time out-
comes, the MAR assumption is not always intuitive for a general pattern 
of missing values. 

 However, it has a simple interpretation in the case of monotone miss-
ing data, such as that caused by dropouts. Suppose the data intended to 
be collected comprise repeated measures on an outcome Y, denoted by 
Y1,…,YK. Let Mj = 1 if Yj is missing, and let Mj = 0 if Yj is observed. Under 
monotone missingness, if observation j is missing (Mj = 1), then all subse-
quent observations also are missing (Mj+1 = … = MK = 1).

At any given time j, let Yj
– = (Y1,…,Yj–1) denote the history of measure-

ments up to but not including time j, and let Yj
+ = (Yj,…,YK) denote the 

future measurements scheduled, including and after time j. At time j, the 
predictive distribution of future values given the observed history is denoted 
by [Yj

+ | Yj
–,X,Mj = 0]. The MAR condition holds if predictions of future 

measurements for those who drop out at time j are equivalent in distribu-
tion to predictions for those who have observed data at and after time j. 
Formally, MAR is equivalent to 

 [Yj
+ | Yj

–,X,Mj = 1] = [Yj
+ | Yj

–,X,Mj = 0]. (4)

Hence, under MAR, missing values at time j and beyond can be predicted 
sequentially from the histories of participants still in the study at time j.

MAR for monotone missing data patterns also can be written in terms 
of the probability of dropouts at each measurement occasion. At time j, 
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the dropout probability is P(Mj = 1 | Mj–1 = 0). In general, this probability 
can depend on any aspect of the observations intended to be collected. 
MAR states that the dropout probability can only depend on observed 
data history, 

 P(Mj = 1 | Mj–1 = 0,Yj
–,Yj

+,X) = P(Mj = 1 | Mj–1 = 0,Yj
–,X). (5)

This representation shows that one can think of the MAR assumption as 
a sequentially random dropout process, where the decision to drop out at 
time j is like the flip of a coin, with probability of ‘heads’ (dropout) depend-
ing on the measurements recorded through time j – 1.

Both (4) and (5) can be generalized by allowing the past measurements 
to include auxiliary covariates. Specifically, let Zj

– = (Y1,…,Yj–1,V1,…,Vj–1) 
denote the observed history of both outcomes and auxiliaries. Then MAR 
can be restated by replacing Yj

– with Zj
– in (4) and (5). In fact, the 

MAR assumptions (4, 5) change depending on the set of auxiliary variables 
V included in the analysis. The validity of the MAR assumption can be 
improved by measuring and including auxiliary variables that are predictive 
of whether the outcome variables are missing and predictive of the values 
of the missing variables.

Missing Not at Random

MAR will fail to hold if missingness or dropout depends on the values 
of missing variables after conditioning on the observed variables. When 
MAR fails to hold, missing data are said to be MNAR. 

For a monotone missing data pattern, missingness will be MNAR if 
there exists, for any j, at least one value of Zj

– for which 

 [Yj
+ | Zj

–,X,Mj = 1] ≠ [Yj
+ | Zj

–,X,Mj = 0], (6)

or equivalently, there exists, for any j, at least one value of Yj
+, such that 

 P(Mj = 1 | Mj–1 = 0,Zj
–,Yj

+,X) ≠ P(Mj = 1 | Mj–1 = 0,Zj
–,X). (7)

For (6), the consequence of MNAR is that the prediction of future 
observations for those who drop out cannot be reliably predicted using 
data observed prior to dropping out; or, that the distribution [Yj

+�|�Zj
–,Xj

–] 
 differs between those who do and do not drop out at time j. Because these 
differences cannot be estimated from the observed data, they are entirely 
assumption driven. This is the central problem of missing data analysis in 
clinical trials. 
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Example: Hypertension Trial with Planned and Unplanned Missing Data

Murray and Findlay (1988) describe data from a large multicenter trial 
of metopropol and ketanserin, two antihypertensive agents for patients with 
mild to moderate hypertension, with diastolic blood pressure as the outcome 
measure of interest. The double-blind treatment phase lasted 12 weeks, 
with clinic visits scheduled for weeks 0, 2, 4, 8, and 12. The protocol stated 
that patients with diastolic blood pressure exceeding 110 mmHg at either 
the 4- or 8-week visit should “jump” to an open follow-up phase—a form 
of planned dropout. In total, 39 of the 218 metopropol patients and 55 of 
the 211 ketanserin patients jumped to open follow-up. 

In addition, 17 metopropol patients and 20 ketanserin patients had 
missing data for other reasons, including side effects. Analyses of the 
observed data clearly showed that those with missing blood pressure read-
ings differed systematically from the patients who remained in the study, 
as would be predicted by the protocol for jumping to the open phase. This 
example provides an illustration of the importance of defining what is 
represented by a missing outcome. For the participants who were removed 
from protocol, it is possible to treat the missing values as values that would 
be observed had the individuals remained on treatment. The mechanism for 
those with missing values is MAR because missing outcomes resulted from 
the value of a recorded intermediate outcome variable for blood pressure, 
and are therefore a function of an observed value. 

Summary

1. Inferences from incomplete data, whether model-based or not, rely 
on assumptions—known as missing data mechanisms—that cannot be 
tested from the observed data. 

2. A formal taxonomy exists for classifying missing data mechanisms, 
including for longitudinal and event history data. The mechanisms can be 
classified as MCAR, MAR, and MNAR. 

3. Missing data mechanisms describe the relationship between the 
missing data indicator(s) M, the full outcome data Y = (Yobs,Ymis), design 
variables X, and auxiliary covariates V. Traditionally, these assumptions 
characterize restrictions on the distribution of M given (Yobs,Ymis,X,V). Each 
has an equivalent representation in terms of the predictive distribution of 
missing responses, namely Ymis given (M,Yobs,X,V).

COMMONLY USED ANALYTIC METHODS UNDER MAR

Three common approaches to the analysis of missing data can be dis-
tinguished: (1) discarding incomplete cases and analyzing the remainder 
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(complete-case analysis); (2) imputing or filling in the missing values and 
then analyzing the filled-in data; and (3) analyzing the incomplete data by 
a method that does not require a complete (i.e., a rectangular) data set. 
Examples of (3) include likelihood-based methods, such as maximum 
likelihood (ML), restricted ML, and Bayesian methods; moment-based 
methods, such as generalized estimating equations and their variants; and 
semiparametric models for survival data, such as the Cox proportional 
hazards model. Multiple imputation (Rubin, 1987; Little and Rubin, 2002), 
an extension of single imputation that allows uncertainty in the imputations 
to be reflected appropriately in the analysis, is closely related to Bayesian 
methods (discussed later in this chapter). 

Deletion of Cases with Missing Data

A simple approach to missing data is complete-case analysis, also 
known as listwise deletion, in which incomplete cases are discarded and 
standard analysis methods are applied to the complete cases. In many sta-
tistical packages, it is the default analysis. 

Although it is possible to list conditions under which an analysis of 
complete cases provides a valid inference (essentially, conditional MCAR), 
this method is generally inappropriate for a regulatory setting. When miss-
ingness is in the outcome, the MAR assumption is generally weaker and can 
reduce bias from deviations from MCAR by making use of the information 
from incomplete data. Furthermore, when missingness is appreciable, rejec-
tion of incomplete cases will involve a substantial waste of information and 
increase the potential for significant bias.2 

In addition, if data are not collected after withdrawal from treat-
ment, then the MAR assumption relies only on information accumulated 
while subjects are on treatment. Hence, any method that relies on MAR 
is estimating the mean under the condition that everyone had remained 
on treatment. This generally will not provide a valid estimator of the 
 intention-to-treat effect. On the other hand, if data are collected after with-
drawal from treatment, this information can be used either within inverse 
 probability weighting (IPW) or in an imputation context to estimate an 
intention-to-treat effect under MAR (Hogan and Liard, 1996). It is for this 

2 When data are not MCAR, the bias of complete-case analysis depends on the degree of 
deviation from MCAR, the amount of missing data, and the specifics of the analysis. In par-
ticular, the bias in estimating the mean of a variable is the difference in the means for complete 
and incomplete cases multiplied by the fraction of incomplete cases. Thus, the potential for 
bias increases with the fraction of missing data. With respect to regression models, complete-
case analysis yields valid inferences in regression if the model is correctly specified and missing-
ness depends on the predictor variables, observed or missing, but not on the outcome. (For 
details, see Little and Rubin [2002].)
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reason that we emphatically recommend aggressive collection of outcome 
data after individuals withdraw from treatment.

Inverse Probability Weighting

Univariate Outcome

When data are MAR but not MCAR, a modification of complete-case 
analysis is to assign a sampling weight to the complete cases. This tends to 
reduce bias, to the extent that the probability of being observed is a func-
tion of the other measured variables. Consider the simple case in which 
the intended outcome is Y, the design variables are X, and some auxiliary 
variables V are available. As usual, M = 1 indicates that Y is missing. To 
describe IPW, it is useful to introduce a response indicator, R = 1 – M, such 
that R = 1 when Y is observed and R = 0 when it is missing.

An IPW estimator for the mean of Y can be computed as follows: 
 
1. Specify and fit a model for π(X,V,q) = Pq(R = 1 | X,V), for example 

using logistic regression. 
2. Estimate the mean of Y using the weighted average 
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(8)

that is, the average of the observed Y weighted inversely by the probability 
of being observed. 

3. Standard error estimators can be computed analytically or by boot-
strap methods. (For details on the bootstrap estimator of variance, see 
Efron and Tibshirani, 1993.) 

For large samples, this method properly adjusts for bias when the data 
are MAR, provided the model for π(X,V,q) is correctly specified. In finite 
samples, the method can yield mean estimates that have high variance when 
some individual-specific weights are high (i.e., when π is close to zero). An 
alternative is to create strata based on the predicted probability of being 
complete and then weight respondents by the inverse of the response rate 
within these strata. Strata can be chosen to limit the size of the weights and 
hence control variance. 

In addition to the MAR assumption, the IPW method requires two 
other key assumptions: (1) there are no covariate profiles (X,V) within 
which Y cannot be observed and (2) the support of the missing data distri-
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bution is the same as that for the observed data distribution. Technically, 
(1) stipulates that P(R = 1 | X,V) > 0 for all possible realizations of (X,V). A 
potential restriction imposed by (2) is that individual missing values cannot 
be imputed outside the range of observed values.

IPW Regression for Repeated Measures

With repeated measures, a convenient way to estimate the treatment 
effect is through a regression model for the mean of the outcome vector 
conditional on the design variables X. With fully observed data, repeated 
measures regression models can be fit using generalized estimating equa-
tions (GEE) (zeger and Liang, 1986).

With fully observed data, a desirable property of regression parameter 
estimates from GEE is that they retain such properties as consistency and 
asymptotic normality regardless of the assumed within-subject (longitudi-
nal) correlation structure. When data are missing, this property no longer 
holds, and regression estimates may depend strongly on the assumed cor-
relation structure (see Hogan et al., 2004, for an empirical example). 

When missingness is MAR and follows a monotone pattern, the IPW 
method can be used to obtain consistent estimates of regression parameters 
using a specified procedure. Here, we emphasize that auxiliary information 
should be included in the observed-data history, Zj

– = (Y1,…,Yj–1,V1,…,Vj–1) 
and the model for π(X,V,q). The procedure is as follows: 

1. Specify the regression model that would be used had all the intended 
data been collected. 

2. Let fj(X,Zj
–; q) = P(Rj = 1 | Rj–1 =�1,X,Zj

–; q) denote the probability 
that Yj is observed. 

3. Specify and fit a model for fj; denote the estimated parameters by θ̂.

4. Let
 

π θ φ θj j j k
k

j

X Z X Z, ; , ;− −

=
( ) = ( )∏

1
 denote the probability that an

 
individual has remained in the study to time j. 

5. Fit the regression specified in Step 1, and weight individual contri-

butions to the model by
 

π θj jX Z, ; ˆ− −( ){ } 1
. Use the assumed independence 

correlation structure. 
6. Use the bootstrap technique for standard error estimation. 

In large samples, the IPW GEE yields consistent estimators when the 
response probability model is correctly specified, but again may have high 
variance when individual weights are large. The augmented IPW GEE pro-
cedure (discussed below) can be used to partially remedy this weakness. 
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An example of this approach comes from Hogan et al. (2004): an anal-
ysis of repeated binary data from a smoking cessation study. The authors 
used inverse probability weighting to estimate the effect of a behavioral 
intervention involving supervised exercise on the rate of smoking cessation 
among 300 women. The primary outcome was smoking status, assessed 
weekly over 12 weeks. This example shows how to construct sequential 
weights for model fitting, and it illustrates how unweighted GEE estimators 
can vary under different choices for the assumed correlation when longi-
tudinal data are incomplete. The authors include analyses using LOCF for 
comparison, and a critique is also included. The publication includes SAS 
code for fitting the model.

Augmented IPW Estimation Under MAR

The IPW GEE method does not make full use of the information in 
incomplete cases. The augmented IPW GEE procedure remedies this weak-
ness. The procedure is best understood in the simple case in which only the 
values for the last time point are missing for some cases, and they are MAR. 
Suppose one wishes to estimate m = E(YK), the mean outcome in a particular 
treatment arm. As before, it will be convenient to introduce the variable 
RK = 1 – MK, where now RK = 1 if YK is observed. Denote the observed 
history at time K as ZK

–, and let π(ZK
–;q) = P(RK = 1 | ZK

–; q), which can 
be modeled as described in the previous section.

The augmented IPW (AIPW) estimator of m is

 

ˆ /
; ˆ

/
;

µ
π θ π

= ( ) ( ) + ( )∑1 1n
R Y

Z
n

R

Z
iK iK

i iKi

iK

i iK
ˆ̂

,
θ( ) −












( )∑ −1

i
iK ig Z X , (9)

where
 
g ZiK

−( )  
is some function of the observed-data history up to K – 1.

The first term is just the IPW estimator of m. The second (augmenta-
tion) term has mean zero, so that µ̂  is still a consistent estimator. However, 
the variance of µ̂  will depend on the choice of g, where the optimal choice 
is E(YK | ZK

–,X). The precise form of this expectation is unknown, but 
it can be estimated, for example, from a regression of YK on (ZK

–,X) for 
those with observed YK. In that case, g(ZiK

–,Xi) is replaced by the regression 
prediction ŶiK . If this outcome regression model is approximately correct, 
then µ̂  can be substantially more efficient than the standard IPW estimator. 
Since we can only estimate g, it is comforting that it appears to be the case 
that even if g is only approximately known, there is likely to be a substan-
tial gain. However, more research is needed to fully justify this conjecture.
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In summary, augmented IPW estimators are obtained by adding to the 
IPW estimating functions an augmentation term that depends on unknown 
functions of the observed data. Appropriate choices of these functions can 
lead to substantial efficiency improvements over standard IPW GEE.

Double Robustness Property of Augmented IPW Estimators

An important limitation of standard IPW estimation is that it yields 
biased estimates if the missingness model is incorrect. Remarkably, the 
augmented IPW estimator µ̂  with the optimal choice for g offers not only 
efficiency improvements over IPW, but also bias protection against mis-
specification of the model for the missingness probabilities (for accessible 
accounts, see Tsiatis, 2006; Rotnitzky et al., 2009).

Methods that yield valid inferences when either one or the other of the 
outcome regression or the missingness model is correct are said to have a 
double-robustness property. Double robustness is a useful theoretical prop-
erty, although it does not necessarily translate into good performance when 
neither model is correctly specified (kang and Schafer, 2007). Empirical and 
theoretical studies of these estimators have begun to appear in the statistics 
and econometrics literature. With more published applications to real data 
and carefully designed simulation studies, the use of doubly robust estima-
tors could become more commonly used in the near future. However, at 
present, the operating characteristics of this method in applied settings with 
finite samples need to become more completely understood. 

Advantages and Disadvantages of IPW Methods

The IPW method is generally simple to implement when the missing 
values have a monotone pattern, and can be carried out in any software 
package that allows weighted analyses. A key advantage is that, under 
a correctly specified model for missingness, information on many auxil-
iary variables can be accommodated, including information on previously 
observed outcomes. IPW methods can be extended to estimation targets 
other than the mean, such as the median. Potential disadvantages include 
(a) the need to correctly specify the nonresponse model, and (b) potential 
instabilities associated with weights that are very large, leading to biased 
estimation and high variance in finite samples. Double robust estimators 
have the potential to alleviate both of these limitations.

Likelihood Methods

Likelihood approaches are dependent on a parametric model for the 
full-data distribution. Inference is based on the likelihood function of the 
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observed data. To describe these approaches, we define Y,V,X, and M as 
above. The objective is to draw inference about a parameter q in a model 
p y x; θ( )  

for the response data that were intended to be collected but that 
might not be fully observed.

Under MAR, methods such as ML and Bayesian posterior inference 
can be used to draw inference about q without having to specify an explicit 
model that relates M to (Y,V,X). (To avoid distracting technicalities, we 
assume that V is not present.) 

To understand this approach, first write the model for the joint distri-
bution [Y, M | X] as 

 p y m x p y x p m y x, ; , ; , ; ,θ ψ θ ψ( ) = ( ) ( )  (10)

where p y x;θ( )  
is the model for the full response data (i.e., the data that 

were intended to be collected), p(m |�y,x;y) is the model for the missing data 
mechanism, and (q,y) are unknown parameters. 

Now let D = (Yobs,X,M) denote the observed data for an individual. 
The individual contribution to the likelihood function for (q,y) given D is 
obtained by averaging (or integrating) over all possible realizations of the 
missing observations Ymis, 

 
L D p y y x p m y y xθ ψ θ, , ; , ,obs mis obs mis( ) = ( )∫ ;; .ψ( )dymis  (11)

Under MAR, the second term under the integral simplifies as
 p m y y x p m y xobs mis obs, , ; , ;ψ ψ( ) = ( ) . If one further assumes that q and y 

are functionally distinct (i.e., q is not a function of y and vice versa), then 
the likelihood factors as 

 L D p m y x p y y x dθ ψ ψ θ, , ; , ;obs obs mis( ) = ( ) ( )∫ yymis  (12)

 = ( ) ( )p m y x p y xobs obs, ; ; .ψ θ  (13)

An immediate consequence is that inference about q no longer depends on 
the functional form of the missing data mechanism because the likelihood 
for q is directly proportional to p y xobs ;θ( ) . When missingness is MAR and 
when q and y are functionally distinct, the missing data mechanism is said 
to be ignorable because it does not have to be modeled in order to draw 
inferences about q. In practice, MAR is the key condition.
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Maximum Likelihood Inference

Large-sample inferences about q under the ignorability assumption 
 follow from standard results in ML theory, which state that under some 
regularity conditions θ̂  follows a normal distribution having mean q and 
variance equal to the inverse information matrix I–1(q). The variance can 
be estimated by I–1( θ̂ ) or by such other techniques as bootstrap or sand-
wich estimators. (For details on the sandwich estimator of variance, see 
kauermann and Carroll, 2001.) Numerical methods for maximizing the 
likelihood include factored likelihood methods for monotone patterns and 
iterative methods like the EM algorithm and its extensions for general pat-
terns; see Little and Rubin (2002) for details. 

Bayesian Inference and Data Augmentation

ML is most useful when sample sizes are large because the parameter 
estimates are consistent, and standard errors are well approximated by 
the large sample variance-covariance matrix. However, Bayesian inference 
offers a useful alternative in some settings. First, when sample sizes are 
small, a useful alternative approach is to add a prior distribution for the 
parameters and compute the posterior distribution of the parameters of 
interest. Second, when computation of the observed-data likelihood is dif-
ficult, data augmentation embedded in a posterior sampling algorithm can 
make computation of posterior modes much simpler. Although there are 
notable exceptions, for many standard models it is possible to specify priors 
that are diffuse enough so that inferences from ML and from a posterior 
are essentially equivalent.3 

For ignorable models, this posterior distribution is 

 p D p L Dθ θ θ( ) ∝ ( ) ( ),  (14)

where p(q) is the prior and
 
L Dθ( )  is the same likelihood as in (13)—the 

full-data likelihood averaged over all possible realizations of the missing 
data. 

Because the posterior distribution rarely has a simple analytic form for 
incomplete-data problems, simulation methods are often used to generate 
draws of q. keeping in mind that the parameter q indexes the distribution  
p y x;θ( )  

of the full response data, generating from the posterior can be 
made easier by embedding a data augmentation step within the sampling 
algorithm; this approach effectively imputes the missing responses under 

3 Note, however, that assessing sensitivity to the prior is an important part of any Bayesian 
analysis.
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the model p y x;θ( )  
specified for [Y | X] (see Tanner, 1996; Daniels and 

Hogan, 2008).
For monotone missing data patterns, when the parameters of the fac-

tored distributions are distinct, the factored likelihood methods yield sim-
ple direct simulation methods; for general patterns, iterative simulation 
 methods like data augmentation and the Gibbs’ sampler play a prominent 
role (Little and Rubin, 2002). In particular, the Gibbs’ sampler starts with 
an initial draw q(0) from an approximation to the posterior distribution of 
q. Given a value q(t) of q, drawn at iteration t, 

1. draw Y t
mis

+( )1 from the distribution
 
p y D t

mis ;θ( )( ) , and

2. draw θ t+( )1  from the distribution p D Y t tθ θmis, ;+( ) ( )( )1
. 

The iterative procedure can be shown in the limit to yield draws from 
the posterior distribution of q given D, integrating over Ymis. This algorithm 
can be run independently L times to generate L independent, identically 
distributed draws from the approximate joint posterior distribution of 
θ,Ymis( ) .

Example: Multivariate Normal Regression For continuous outcomes and 
ignorable missing data, a common approach is to use a regression model 
based on a multivariate normal distribution. The general specification 
assumes that the vector Y = (Y1,…,YK)T follows a multivariate normal dis-
tribution, conditionally on design variables X. Hence, one assumes 

 Y X x N x x= ( ) ( )( )~ µ , ,Σ  (15)

where m(x) is a K-dimensional mean vector, and S(x) is a K × K variance-
covariance matrix. Especially if K is large or if X is high-dimensional, some 
choices must be made about the functional form and structure of both m(x) 
and S(x)  to ensure that the model can be fit to finite samples. For example, 
it is possible to assume m(x) has a linear trend over time, separately by treat-
ment group, or that S(x) has a simplified structure that can be described 
using a small number of parameters. As with the normality assumption 
itself, however, with incomplete data these choices will not lend themselves 
to empirical checking. The predicting distribution of the missing responses 
can differ substantially according to the specification.

In fact, with incomplete data, two models having the same mean speci-
fication but different specifications of S will yield different inferences about 
the mean. 
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In short, for a multivariate normal model (including random effects 
models), inference about the mean from incomplete data depends on speci-
fication of the variance-covariance matrix (Meng and Rubin, 1993; Daniels 
and Hogan, 2008).4 This dependence should be assessed, along with that 
for outlying or influential observations and most importantly for the missing 
data mechanism using sensitivity analyses, as described in Chapter 5. 

Example: Random Effects Models (Mixed Models) For longitudinal data, 
random effects models provide a parsimonious way to specify a multi-
variate distribution. The simplest versions are specified on two levels. The 
first (top) level specifies the distribution of responses for an individual, con-
ditional on individual-specific random effects. For example, if it is assumed 
that each individual’s repeated measures are governed by an underlying 
individual-specific mean, then variations in individual means can be repre-
sented through random effects u, and the top level model might be 

 Y X x u x eij i j i i ij=  = +( ) + +α β ,  (16)

where ui is the individual-specific random effect, eij is residual error, and 
both have mean zero. In most random effects models, u and e are assumed 
to be independent. In this simple model, the mean of Yij at time j is aj + ui 
for those with xi = 0, and aj + b + ui for those having xi = 1. The average 
treatment effect for an individual is b. 

The second level specifies a distribution for the random effects; typi-
cally this is chosen to be the normal distribution, such as ui ∼�N(0,t2). If one 
combines this with an assumption of normality for eij, the distribution of 
the responses is itself normal, with variance partitioned into its within- and 
between-individual components.

Importantly, regression coefficients in the random effects model are 
within-subject effects—or the average effect for a typical individual—
because they are being estimated conditionally on the random effect u. By 
contrast, the treatment effect estimated in a multivariate normal regression 
or other model not having random effects is a between-subject effect—the 
average effect between the groups of individuals randomized to treatment 
and control.

When both the error and random effects distributions are normal, the 
random effects model coincides with a multivariate normal regression with 
a constrained parameterization of S. In this special case, the between- and 

4 This may seem counterintuitive because for datasets having no missing values, estimates 
of the mean typically do not depend on specification of the variance matrix. This is not true 
for incomplete data.
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within-subject treatment effects are equivalent (though their standard errors 
will differ). However, in general nonlinear mixed models, the treatment 
effect estimated from a random effects model does not coincide with the 
standard between-subjects contrast that is typically of direct interest for 
regulatory decision making (see Diggle et al., 2002). 

Likelihood-Based Models for Binary Data A substantial literature describ-
ing likelihood-based models for repeated binary data has developed over 
the last 10-15 years. Many of these models are based on a loglinear formu-
lation and are parameterized directly in terms of between-subject treatment 
effects; see Fitzmaurice et al. (1993), Heagerty (1999, 2002). 

Advantages and Disadvantages of Likelihood-Based Methods

If missingness is ignorable, ML and Bayesian approaches under ignor-
ability provide valid inferences using models that are generally easy to fit 
using commercial software. Random effects models can be very useful 
for simplifying a highly multivariate distribution using a small number of 
parameters.

However, with incomplete data, there are several reasons that inference 
about a treatment effect should not be limited to a single likelihood-based 
model: 

• In addition to the ignorability assumption, inference relies on para-
metric assumptions about the model

 
p y x;θ( ) . These assumptions cannot 

be jointly checked from observed data, and it is difficult to ascertain the 
degree to which these different assumptions may be driving the inference. 

• When using Bayesian posterior inference, results can sometimes 
be dependent on prior specifications, such as variance components (see 
 Gelman, 2006). 

• In the case of random effects models, parametric assumptions include 
those being made about the random effects. Frequently, these are made 
primarily for convenience of computation, as when the random effects are 
assumed to be normally distributed. 

• With random effects models, two estimands can be distinguished: 
a between-subject (population-averaged) and within-subject (or subject-
 specific) treatment effect. For models where the mean is a linear combina-
tion of treatment and covariates, these quantities are equal, but the standard 
errors will differ. For models where the mean is nonlinear in treatment and 
covariates (such as random effects logistic regression), the between- and 
within-subject treatment effects will differ. In either case, the estimand must 
be stated and justified in advance of conducting the analysis. For more 
discussion on this point, see Diggle et al. (2002).
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For more information on specification and inference for likelihood-
based models for repeated measures, see Verbeke and Molenberghs (2000), 
Diggle et al. (2002), Fitzmaurice et al. (2004), and Daniels and Hogan 
(2008). More information on Bayesian inference can be found in Carlin 
and Louis (2000) and Gelman et al. (2003). 

Imputation-Based Approaches

Methods that impute or fill in the missing values have the advantage 
that, unlike complete-case analysis, the information from observed values 
in the incomplete cases is retained. Single imputation approaches include 
(a) regression imputation, which imputes the predictions from a regression 
of the missing variables on the observed variables; (b) hot deck imputation, 
which matches the case with missing values to a case with values observed 
that is similar with respect to observed variables and then imputes the 
observed values of the respondent; and (c) LOCF or BOCF methods for 
repeated measures, which impute the last observed value or the baseline 
value of the outcome variable. Two problems with single imputation are 
(1) inferences (tests and confidence intervals) based on the filled-in data can 
be distorted by bias if the assumptions underlying the imputation method 
are invalid, and (2) statistical precision is overstated because the imputed 
values are assumed to be true. 

Example: LOCF Imputation

A common single imputation method is LOCF, which is based on the 
strong assumption that the outcome of a participant does not change after 
drop out. Even if this model is scientifically reasonable, attention needs 
to be paid to whether a single imputation by LOCF propagates imputa-
tion uncertainty in a way that yields valid tests and confidence intervals. 
For certain estimands, like the change from baseline to a fixed time after 
baseline, single LOCF imputation appropriately reflects uncertainty, since 
under the assumed model, the observation at time of dropout is essentially 
exchangeable with the observation at the end of the study, if observed. In 
general, however, this will not be the case. For instance, if imputed values 
are used to estimate a slope or area under the curve, statistical uncertainty 
from LOCF may be underestimated.

LOCF is sometimes mistakenly considered to be valid under MCAR or 
MAR, but in general it makes an MNAR assumption. Suppose for simplic-
ity that there are K repeated measures, that missing data are confined to 
the last time point K, and that there are no auxiliary variables. The MAR 
assumption is
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 p y x y m p y x y mK Kobs obs, , , , ;=( ) = =( )1 0  (17)

that is, that the predictive distribution of YK, based on design variables X 
and observed response data Yobs = (Y1,…,YK–1), is the same for those with 
missing and observed YK. By contrast, LOCF assumes that, for those with 
missing YK, the predicted value is YK–1 with probability one. Formally, it 
assumes5 

 P y y X x yK K= =( ) =−1 1obs, .  (18)

Hence,
 
p y x y m p y x y mK Kobs obs, , , ,=( ) ≠ =( )1 0  in general, and LOCF is 

neither MCAR nor MAR. Moreover, the LOCF method attaches no uncer-
tainty to the filled-in value of YK resulting in an artificial increase of sample 
size for some analyses. Similar comments apply to BOCF (Molenberghs and 
kenward, 2007). 

Although the utility of these methods does rest on the plausibility of 
the assumptions underpinning these estimators, the pragmatic justification 
often stems from the sometimes mistaken view that they provide a simple 
and conservative imputation that will help prevent approval of ineffective 
treatments. However, this is not necessarily the case, since, for example, 
LOCF is anticonservative in situations where participants off study treat-
ment generally do worse over time. In such cases, if many participants 
discontinue study treatment due to problems with tolerability, the treatment 
can be made to look much better than the control by such an imputation 
strategy. 

Multiple Imputation

Multiple imputation is designed to fill in missing data under one or 
more models and to properly reflect uncertainty associated with the “filling-
in” process (Rubin, 1987). Instead of imputing a single value for each miss-
ing observation, a set of S (say S = 10) values for each missing observation 
is generated from its predictive distribution,6 resulting in S distinct filled-in 

5 Another characterization of this assumption is that the predicted mean of YK 
is E(YK | Y1,…,YK–1) = YK–1, and that the variance of this prediction is zero: i.e., 
var(YK | Y1,…,YK–1) = 0.

6 One transparent way to represent the missing data assumptions is through the predic-
tive distribution of missing outcomes, given the observed outcomes and whatever modeling 
assumptions are being used for inference. The predictive distribution of a missing outcome 
for an individual is p(ymis | yobs,xi,mi,vi). To provide more concreteness to this notion, using 
multiple imputation, the predictive distribution of missing responses can be characterized by 
the imputations themselves. If a parametric model is being used under MAR, the predictive 
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datasets. One then follows an analysis that would have been used on the 
full data for each of the S datasets and combines the results in a simple way. 
The multiple imputation estimate is the average of the estimates from the 
S datasets, and the variance of the estimate is the average of the variances 
from the S datasets plus the between-sample variance of the estimates over 
the S datasets.

The between-imputation variance estimates the contribution to the 
overall variance from imputation uncertainty, which is missed by single 
imputation methods. Another benefit of multiple imputation is that the 
averaging over datasets reduces sampling variance and therefore results in 
more efficient point estimates than does single random imputation. Usually, 
multiple imputation is not much more difficult than single imputation—the 
additional computing from repeating an analysis S times is not a major bur-
den. Moreover, the methods for combining inferences are straightforward 
and implemented in many commercially available software packages. Most 
of the work is in generating good predictive distributions for the missing 
values. This aspect has been addressed in a variety of widely-available 
software packages. We emphasize here the need to fully understand and 
communicate the assumptions underlying any imputation procedures used 
for drawing inferences about treatment effects. 

An important advantage of multiple imputation in the clinical trial 
setting is that auxiliary variables that are not included in the final analysis 
model can be used in the imputation model. For example, consider a longi-
tudinal study of HIV, for which the primary outcome Y is longitudinal CD4 
count and that some CD4 counts are missing. Further, assume the presence 
of auxiliary information V in the form of longitudinal viral load. If V is not 
included in the model, the MAR condition requires the analysis to assume 
that, conditional on observed CD4 history, missing outcome data are unre-
lated to the CD4 count that would have been measured; this assumption 
may be unrealistic. However, if the investigator can confidently specify the 
relationship between CD4 count and viral load (e.g., based on knowledge 
of disease progression dynamics) and if viral load values are observed for 
all cases, then MAR implies that the predictive distribution of missing CD4 
counts given the observed CD4 counts and viral load values is the same for 
cases with CD4 missing as for cases with CD4 observed, which may be a 
much more acceptable assumption. 

distribution can be characterized by examining the predicted values of the missing observations 
under the model. For some methods, such as inverse probability weighting, this will not always 
be a straightforward exercise. However, when it is possible to compute in a straightforward 
manner, examining the predictive distribution can be an important diagnostic for understand-
ing whether the missing data assumptions yield realistic values of the missing observations 
themselves.
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The missing values of CD4 can be multiply imputed using a model 
that includes the auxiliary variables, and the multiple imputation inference 
applied to an analysis model that does not condition on the auxiliary vari-
ables. Note that we assume here complete data on the auxiliary variables, 
so cases that have viral load measured but not historical CD4 levels are 
not useful. However, if the auxiliary variables are incomplete but measured 
in a substantial number of cases for which CD4 is missing, then multiple 
imputation can still be applied productively, multiply imputing the miss-
ing values of both CD4 and the missing auxiliary variable values in the 
imputation step. 

The predictive distribution of the missing values can be based on a 
parametric model for the joint distribution of V and Y given X, using the 
Bayesian paradigm described in Section 4.3.2. Extension to more robust 
spline-based models are considered in zhang and Little (2009). Implemen-
tation assuming MAR is as follows: 

1. Specify an analysis model
 
p y x;θ( )  for [Y | X], the data that was 

intended to be collected. This is the model for the full response data.
2. Specify an imputation model p y x v, ;φ( )  for [Y | X,V] that will be 

used to impute missing values of Y. Fit the model to {Y,V,X; R = 1}; that 
is, the data on observation times where Y is observed. 

3. For those with R = 0, generate S predicted values Ŷ  from the predic-

tive distribution of p y x v p y x v p d, , ;( ) = ( ) ( )∫ φ φ φ. (Specific approaches 

to drawing from the predictive distribution, are give above.) This creates S 
completed datasets.

4. Fit the model in step 1 to each of the S completed datasets, generat-
ing parameter estimates ˆ , , ˆθ θ1 … S  

and associated standard errors.
5. Combine the estimates and standard errors into a summary inference 

about θ, using rules cited above. 

Advantages and Disadvantages of Imputation-Based Procedures

Single-imputation methods such as LOCF and BOCF are simple to 
implement, but they generally do not conform to well-recognized statisti-
cal principles for drawing inference, especially in terms of reflecting all 
sources of uncertainty in an inference about treatment effect. Two popular 
misconceptions about LOCF and BOCF are (1) that they reflect an MAR or 
MCAR mechanism, and (2) that they result in estimates of treatment effect 
that tend to favor placebo or standard therapy over the experimental treat-
ment. Claim (2) is generally not true because the methods do not always 
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yield conservative effect estimators, and standard errors and confidence 
interval widths can be underestimated when uncertainty about the imputa-
tion process is neglected.

Multiple imputation methods address concerns about (b), and enable 
the use of large amounts of auxiliary information. They can be relatively 
straightforward to implement, without special programming needs, and 
can handle arbitrary patterns of missing data. Moreover, the missing data 
assumptions are made explicit in the imputation model.

Although multiple imputation is a principled method, it does rely on para-
metric assumptions. Moreover, the data model

 
p y x;θ( )  may be incompatible 

with the imputation model p y v x, ;φ( ) . Compatible models have the prop-
erty that when auxiliary variables v are integrated out of the imputation model, 
the result is the data model: that is, p y v x p v x dv p y x, ; ; ;φ φ φ( ) ( ) = ( )∫ .

 To verify compatibility, a model for [V | X] is needed (see Meng, 1994). 
As an example, with multivariate data, it is often possible to formulate 

a set of conditional distributions relating each variable to a set of the other 
variables, which are reasonable when taken one at a time, but incoherent 
in the sense that they cannot be derived from a single joint distribution. 
Such models, even when incoherent, may still be useful for creating multiple 
imputations (see, e.g., Baccini et al., 2010). Finally, robustness of multiple 
imputation inference to model form has also been investigated (see zhang 
and Little, 2009), but more research would be valuable.

For key references, Rubin (1987, 1996) provides comprehensive reviews 
of multiple imputation. Discussions of the issues related to clinical trials 
are found in Glynn et al. (1993), Heitjan (1997), Liu et al. (2000), and 
Molenberghs and kenward (2007). 

MCAR-MAR Diagnostics As indicated above, while the observed data 
cannot be used to distinguish between MAR and MNAR missing data 
mechanisms, they can be used to distinguish between MCAR and MAR 
models and between competing MAR models. To this end, it is standard to 
assess the degree to which the treated and control groups differ in how the 
outcome variable Y relates to the various design variables X and auxiliary 
variables V. Therefore, various standard summary statistics and graphs 
should be used to assess the extent to which this is the case. Examples 
would include graphs for the treated and control groups of Y against X 
variables or V variables and means for the treated and control groups of 
Y for individuals with specific ranges of values of X and V in comparison 
with individuals with other ranges, and correlations of Y for the treated 
and control groups versus X or V.
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Event Time Analyses

In event time analysis, missingness can take at least two important 
forms. First, with repeated event times, it is possible that some event times 
in a sequence are unobserved. This situation is entirely similar to the one 
described above. Second, it is common for event times to be unobserved 
because the event has not occurred when follow-up terminates. This situ-
ation is referred to as right censoring in the time-to-event (or survival) 
literature and has received considerable attention. It is a special case of 
coarsened data (Heitjan, 1993), which also includes left-censored and 
 interval-censored data, heaped and grouped data. 

The term “noninformative censoring” does not have a consistent defi-
nition, but it often refers to a censoring mechanism that is independent of 
the unobserved time to event, given an appropriate set of covariates (see 
Rotnitzky et al. [2009] for a discussion of this topic). Noninformative cen-
soring implies that, among those still at risk at t, the hazard of death (or 
event) is equivalent between those who are censored at t and those who 
are not.  Typically this assumption is made conditionally on an observed 
covariate history up to time t. A related and more general concept is 
“coarsened at random,” which extends the concept of MAR to coarsened 
data (Heitjan, 1993). Connections between missing data assumptions used 
in repeated measures and event time analyses are discussed in Scharfstein 
and Robins (2002).

ANALYTIC METHODS UNDER MNAR

MNAR models apply when missingness depends on the missing values 
after conditioning on observed information. For example, if a subject drops 
out of a longitudinal clinical trial when his blood pressure got too high and 
one did not observe that blood pressure, or if in an analgesic study measur-
ing pain, the subject dropped out when the pain was high and one did not 
observe that pain value, missingness depends on the missing value. 

Any analysis, whether based on likelihoods or moment assumptions, 
must be based on correct specification of the association between Y and M 
(given X and possibly V). Under MAR, the methods provided above will 
provide valid inferences. However, the MAR assumption cannot be verified 
from observed data, and even with modeling assumptions, the information 
to simultaneously estimate the parameters of the missing-data mechanism 
and the parameters of the complete-data model is very limited. Hence, 
model-based estimates tend to be very sensitive to misspecification of the 
model. In many if not most cases, a sensitivity analysis is needed to see 
how much the answers change for various alternative assumptions about 
the missing-data mechanism.
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Definitions: Full Data, Full Response Data, and Observed Data

Analytic approaches for handling MNAR depend on making assump-
tions about the joint distribution [Y,M | X]. To describe analytic approaches 
for handling MNAR, it is necessary to carefully distinguish between full 
data, observed data, and their associated models. We describe both the 
full and observed data in terms of responses only, but these can be easily 
extended to include auxiliary variables V.

Full Data Full data refers to the sample that was intended to be collected. 
Importantly, the full data includes the missing data indicators. With univari-
ate Y, the full data are (Y,X,M) for every individual. 

Observed Data Observed data refers to the response, covariate, and missing 
data indicators that were actually observed. In a simple case in which Y 
is univariate and no covariates are missing, the observed data is (Y, X ,M 
= 1) for those with observed response, and it is (X, M = 0) for those with 
missing response. 

With multivariate Y, it is useful to partition Y as (Yobs, Ymis). In par-
ticular, if K observations were intended to be taken on each individual, 
and the missing data pattern is monotone, then the observed data comprise 
Yobs = (Y�,…,Yj) for some j ≤ K, and M = (1,...,1,0,...,0) where the first j 
elements of M are 1’s and the remaining elements are 0’s. Notice that j will 
vary across individuals. 

Full-Data Model The full-data model is the probability model that governs 
the joint distribution [Y,M | X]. Regardless of the form of this joint distri-
bution, it can be written as p(y,m | x) = p(yobs,ymis,m | x), and factored as 
p(yobs,ymis,m | x) = p(yobs,m | x) ×�p(ymis | yobs,m,x). 

This factorization makes clear which parts of the full-data model can be 
inferred from observed data and which cannot. Specifically, notice that the 
first factor on the right-hand side is a model for the distribution of variables 
that are observed. Generally speaking, the data analyst can estimate this 
distribution from the observed data, possibly by making modeling assump-
tions that can be evaluated using standard goodness-of-fit methods.

The second factor on the right-hand side is the model for the distribu-
tion of missing observations, and it cannot be inferred from observed data 
alone for the simple reason that no assumptions about the distribution can 
be checked from observed data. This factorization makes clear that infer-
ence from incomplete data requires the analyst to specify a model (or set of 
assumptions) for the observed-data distribution and to combine that with 
a set of untestable and unverifiable assumptions that describe how missing 
data are to be extrapolated from the observed data. 
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Target Distribution (or Parameter) Most often in clinical trials, primary 
interest centers on the distribution [Y | X] = [Yobs,Ymis | X], where X 
includes the treatment group and possibly other design variables. The target 
distribution is related to the full-data distribution through the identity: 

p y y x p y y m x p y m
m

obs mis obs mis obs, , , ,( ) = ( ) =∑ mis obsx p y y m x
m

( ) ( )∑ , , .  (19)

Hence, inference about the target distribution relies critically on the untest-
able assumptions being made about p(ymis | yobs,m,x).

Selection and Pattern Mixture Models Two broad classes of models for the 
joint distribution of Y and M are selection models, which factor the full 
data distribution as 

 Y Y M X M Y Y X Yobs mis obs mis obs, , , , ,  =   × YY Xmis   (20)

and pattern mixture models, which factor the full-data distribution as 

 Y Y M X Y Y M X M Xobs mis obs mis, , , ,  =   ×  .  (21)

Pattern mixture models can be factored to make the missing data extrapola-
tion explicit within missing data pattern M, that is

 Y Y M X Y Y M X Yobs mis mis obs obs, , , ,  =   × M X M X, .  ×    
(22)

Selection Models

Selection models can be divided into two types, (1) parametric and 
(2) semiparametric. Parametric selection models were first proposed by 
Rubin (1974) and Heckman (1976), based on parametric assumptions 
for the joint distribution of the full data (usually, a normal distribution 
for responses and a probit regression for the missing data indicators). For 
repeated measures, parametric selection models were described by Diggle 
and kenward (1994), and semiparametric models were proposed by Robins 
et al. (1995) and Rotnitzky et al. (1998).

To illustrate a standard formulation, assume the full-response data 
comprise (Y1,Y2), and the objective is to capture the mean of Y2 in each 
treatment group. Further, assume Y2 is missing on some individuals. A 
 parametric selection model might assume that the full-response data follows 
a bivariate normal distribution: 

 Y Y X x N x x1 2, , ,( ) = ( ) ( )( )~ µ Σ   (23)
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and the “selection mechanism” part of the model follows a logistic 
regression 

 logit P M Y Y X Y Y=( ){ } = + +0 1 2 0 1 1 2 2, , .α α α  (24)

Parametric selection models can be fit to observed data, even though 
there appears to be no empirical information about several of the model 
parameters. Specifically, there is no information about the association 
between M and Y2 because Y2  is missing. Likewise, there is no informa-
tion about the mean, variance, and covariance parameters involving Y2.

The model can be fit because of the parametric and structural assump-
tions being imposed on the full-data distribution. This can be seen as 
both beneficial or as a reason to exercise extreme caution. Convenience 
is the primary benefit, especially if the model can be justified on scientific 
grounds. The reason for caution is that, again, none of the assumptions 
underlying this parametric model can be checked from the observed data. 
In parametric selection models fit under the MNAR assumption, identifica-
tion of parameters and sensitivity to assumptions raises serious problems: 
see, for example, kenward (1998), Little and Rubin (2002, Chapter 15), the 
discussion of Diggle and kenward (1994), and Daniels and Hogan (2008, 
Chapter 9).

Semiparametric selection models do not assume a parametric model 
for the full-data response distribution, so they are therefore somewhat less 
sensitive to these assumptions. These models are discussed in greater detail 
in Chapter 5. 

Pattern Mixture Models

Pattern mixture models were proposed for repeated measures data by 
Little (1993, 1994); a number of extensions and generalizations have fol-
lowed. The connection between pattern mixture and selection models is 
described in Little and Wang (1996), in Molenberghs et al. (1998), and in 
Birmingham et al. (2003).

The models can be viewed from an imputation perspective, in which 
missing values Ymis are imputed from their predictive distribution given the 
observed data including M; that is, 

 p(ymis | yobs,x,M). (25)

Under MAR, this equals p(ymis | yobs,x). However, if data are not MAR, the 
predictive distribution (25) is a direct by-product of the pattern mixture 
formulation because it conditions on the missing data indicators. This 
more direct relationship between the pattern mixture formulation and the 
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predictive distribution for imputations yields gains in transparency and 
computational simplicity in some situations, as illustrated in kenward and 
Carpenter (2008, Section 4.6).

Under MNAR, the selection model factorization requires full specifica-
tion of the model for the missing data mechanism. Some pattern mixture 
models avoid specification of the model for the missing data mechanism 
in MNAR situations by using assumptions about the mechanism to yield 
restrictions on the model parameters (Little, 1994; Little and Wang, 1996; 
Hogan and Laird, 1997). 

Many pattern mixture formulations are well suited to sensitivity analysis 
because they explicitly separate the observed data distribution from the pre-
dictive distribution of missing data given observed data. Sensitivity analyses 
can be formulated in terms of differences in mean (or other parameter) 
between those with observed and those with missing responses.

Advantages and Disadvantages of Selection and Pattern Mixture Models

Substantively, it seems more natural to assume a model for the full-
data response, as is done in selection models. For example, if the outcome 
is blood pressure, it may seem natural to assume the combined distribution 
of blood pressures over observed and missing cases follows a single distri-
bution, such as the normal distribution. Moreover, if MAR is plausible, 
a likelihood-based selection formulation leads directly to inference based 
solely on the model for the full-data response, and inference can pro-
ceed by ML. 

However, it may not be intuitive to specify the relationship between 
nonresponse probability and the outcome of interest, which typically has 
to be done in the logit or probit scale. Moreover, the predictive distribu-
tion of missing responses typically is intractable, so it can be difficult to 
understand in simple terms how the missing observations are being imputed 
under a given model. And, as indicated above, selection models are highly 
sensitive to parametric assumptions about the full data distribution. This 
concern can be alleviated to some degree by the use of semiparametric 
selection models.

Specification of pattern mixture models also appeals to intuition in the 
sense that it is natural to think of respondents and nonrespondents having 
different outcome distributions. The models are transparent with respect 
to how missing observations are being imputed because the within-pattern 
models specify the predictive distribution directly. 

Pattern mixture models can present computational difficulties for esti-
mating treatment effects because of the need to average over missing data 
patterns; this is particularly true of pattern mixture specifications involving 
regression models within each pattern. 
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Examples: Pattern Mixture Model for Continuous Outcomes

Daniels and Hogan (2008, Chapter 10) use pattern mixture models to 
analyze data from a randomized trial of recombinant human growth hor-
mone (rHGH) on muscle strength in elderly people. More than 120 people 
were randomized to four different treatment arms. The primary outcome 
in this trial was quadriceps strength, assessed at baseline, 6 months, and 
12 months. A pattern mixture model was fit under MAR and parameterized 
to represent departures from MAR. The example shows how to construct 
sensitivity plots to assess the effect of departures from MAR on the infer-
ences about treatment effect. An important feature of the model is that the 
fit to the observed data is unchanged at different values of the sensitivity 
parameters. However, the model does rely on parametric assumptions, such 
as normality. These assumptions can be checked for the observed data, but 
have to be subjectively justified for the missing data.

Example: Pattern Mixture Model for Binary Outcomes

Daniels and Hogan (2008, Chapter 10) use pattern mixture models 
to analyze data from an intervention study for smoking cessation among 
substance abusers. The primary outcome was smoking status, assessed at 
baseline, 1 month, 6 months, and 1 year. A pattern mixture model was fit 
under MAR and expanded to allow for MNAR missingness. In addition 
to presenting sensitivity analysis, the example shows how to incorporate 
prior information about the smoking rate of dropouts to obtain a summary 
inference about treatment effect. 

Sensitivity of Parametric Selection Models

The sensitivity of MNAR selection models to distributional assump-
tions is illustrated by Verbeke and Molenberghs (2000, Chapter 17), who 
show that, in the context of an onychomycosis study, excluding a small 
amount of measurement error drastically changes the likelihood ratio test 
statistics for the MAR null hypothesis. In a separate example, kenward 
(1998) revisited the analysis of data from a study on milk yield performed 
by Diggle and kenward (1994). In this study, the milk yields of 107 cows 
were to be recorded during 2 consecutive years. Data were complete in the 
first year, but 27 measurements were missing in year 2 because these cows 
developed mastitis, which seriously affected their milk yield and there-
fore deemed missing for the purposes of the study. Although in the initial 
paper there was some evidence for MNAR, kenward (1998) showed that 
removing two anomalous profiles from the 107 completely eliminated this 
evidence. kenward also showed that changing the conditional distribution 
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of the year 2 yield, given the year 1 yield, from a normal to a heavy-tailed 
t distribution led to a similar conclusion.

Several authors have advocated using local influence tools for purposes 
of sensitivity analysis (Thijs et al., 2000; Molenberghs et al., 2001; Van 
Steen et al., 2001; Verbeke et al., 2001; Jansen et al., 2006). In particular, 
Molenberghs et al. (2001) revisited the mastitis example. They were able 
to identify the same two cows also found by kenward (1998), in addition 
to another one. However, it is noteworthy that all three are cows with 
complete information, even though local influence methods were originally 
intended to identify subjects with other than MAR mechanisms of missing-
ness. Thus, an important question concerns the combined nature of the data 
and model that leads to apparent evidence for an MNAR process. Jansen et 
al. (2006) showed that a number of features or aspects, but not necessarily 
the (outlying) nature of the missingness mechanism in one or a few subjects, 
may be responsible for an apparent MNAR mechanism. 

Selection and Pattern Mixture Models: Literature

The literature covering selection and pattern mixture models is extensive. 
Review papers that describe, compare, and critique these models include 
Little (1995), Hogan and Laird (1997, 2004), kenward and Molenberghs 
(1999), Fitzmaurice (2003), and Ibrahim and Molenberghs (2009). The 
models are also discussed in some detail in Little and Rubin (2002), Diggle 
et al. (2002), Fitzmaurice et al. (2004), Molenberghs and kenward (2007), 
and Daniels and Hogan (2008). 

An extensive literature also exists on extensions of these models involving 
random effects, sometimes called shared-parameter or random-coefficient-
dependent models. Reviews are given by Little (1995) and Molenberghs 
and kenward (2007). Although these models can be enormously useful for 
complex data structures, they need to be used with extreme caution in a 
regulatory setting because of the many layers of assumptions needed to fit 
the models to data.

Recommendations

Recommendation 9: Statistical methods for handling missing data 
should be specified by clinical trial sponsors in study protocols, and 
their associated assumptions stated in a way that can be understood 
by clinicians.

Since one cannot assess whether the assumptions concerning missing 
data are or are not valid after the data are collected, one cannot assert that 
the choice of missing data model made prior to data collection needs to be 
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modified as a result of a lack of fit. Thus, one needs to carry out a sensitivity 
analysis. Of course, model fitting diagnostics can be used to demonstrate 
that the complete data model may need to be adjusted, but the missing data 
model raises no additional complexities.

Recommendation 10: Single imputation methods like last observation 
carried forward and baseline observation carried forward should not be 
used as the primary approach to the treatment of missing data unless 
the assumptions that underlie them are scientifically justified. 

Single imputation methods do not account for uncertainty associated with 
filling in the missing responses. Further, LOCF and BOCF do not reflect 
MAR data mechanisms. 

Single imputation methods are sometimes used not as a method for 
imputation but rather as a convenient method of sensitivity analysis when 
they provide a clearly conservative treatment of the missing data. This 
can obviously be accomplished by using a best possible outcome for the 
missing values in the control group and a worst possible outcome for 
the missing values in the treatment group. If the result of such a technique 
is to demonstrate that the results of the primary analysis do not depend on 
the treatment of the missing data, such an approach can be useful. How-
ever, techniques that are often viewed as being conservative and therefore 
useful in such an approach, are sometimes not conservative and so care is 
required.

Recommendation 11: Parametric models in general, and random effects 
models in particular, should be used with caution, with all their assump-
tions clearly spelled out and justified. Models relying on parametric 
assumptions should be accompanied by goodness-of-fit procedures.

We acknowledge that this is an area where the current toolkit is some-
what lacking, and therefore more research is needed. Some contributions 
to this area include Verbeke et al. (2001, 2008), Gelman et al. (2005), and 
He and Raghunathan (2009).

Recommendation 12: It is important that the primary analysis of the 
data from a clinical trial should account for the uncertainty attribut-
able to missing data, so that under the stated missing data assump-
tions the associated significance tests have valid type I error rates and 
the confidence intervals have the nominal coverage properties. For 
inverse probability weighting and maximum likelihood methods, this 
can be accomplished by appropriate computation of standard errors, 
using either asymptotic results or the bootstrap. For imputation, it 
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is necessary to use appropriate rules for multiply imputing missing 
responses and combining results across imputed datasets because single 
imputation does not account for all sources of variability.

Recommendation 13: Weighted generalized estimating equations 
 methods should be more widely used in settings when missing at 
random can be well justified and a stable weight model can be deter-
mined, as a possibly useful alternative to parametric modeling. 

Recommendation 14: When substantial missing data are anticipated, 
auxiliary information should be collected that is believed to be associ-
ated with reasons for missing values and with the outcomes of interest. 
This could improve the primary analysis through use of a more appro-
priate missing at random model or help to carry out sensitivity analyses 
to assess the impact of missing data on estimates of treatment differ-
ences. In addition, investigators should seriously consider following 
up all or a random sample of trial dropouts, who have not withdrawn 
consent, to ask them to indicate why they dropped out of the study, 
and, if they are willing, to collect outcome measurements from them.

INSTRUMENTAL VARIABLE METHODS FOR ESTIMATING 
TREATMENT EFFECTS AMONG COMPLIERS

Estimates of treatment effects for all individuals randomized as in 
intention-to-treat analysis are protected against bias by the randomiza-
tion. In this estimand, individuals who are assigned a treatment but never 
comply with it, perhaps because they cannot tolerate treatment side effects, 
are treated in the same way as individuals who comply with the treatment. 
Sometimes, particularly in secondary analyses, interest lies in the treat-
ment effect in the subpopulation of individuals who would comply with a 
treatment if assigned to it. The average treatment effect in this population 
is called the complier-average causal effect (CACE) (Baer and Lindeman, 
1994; Angrist et al., 1996; Imbens and Rubin, 1997a, 1997b; Little and 
yau, 1998; White, 2005). 

An alternative estimand to the CACE is the average treatment effect 
(ATE) (Robins, 1989; Robins and Greenland, 1996). It is defined as the dif-
ference in mean outcome if all individuals had been assigned and complied 
with the treatment (T = 1) and the mean if all individuals had been assigned 
and complied with the control treatment (T = 0). The ATE is defined for the 
whole target population, and it requires assumptions about the treatment 
outcome for noncompliers had they complied with the treatment. Whether 
this counterfactual event is meaningful typically depends on context. For 
example, noncompliance to a behavioral treatment, such as an exercise 

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


DRAWING INFERENCES FROM INCOMPLETE DATA ��

regime, might plausibly be changed by increased motivation, as might occur 
if evidence of success of the treatment becomes widely known. In contrast, 
if noncompliance to a drug is the result of intolerable side effects, then com-
pliance may require a reformulation of the drug to remove the side effects. 
Such reformulation may change the properties of the drug, and estimation 
of the ATE is consequently more speculative. 

Simple approaches to estimating the CACE or the ATE include as-
treated analysis, in which participants are classified according to the treat-
ment actually received, and per-protocol analysis, which restricts analysis 
to participants who comply with the assigned treatment. These analyses are 
subject to selection bias in that participants who comply with a treatment 
may be a biased sample of participants randomized to that treatment. The 
bias may be reduced by adjustment for covariates, but it remains a major 
concern. 

Although this is often characterized as a problem of selection bias, 
recent approaches have suggested alternatives to as-treated and per-protocol 
analyses by applying a missing-data perspective. Consider a binary variable 
C(T) taking the value 1 if an individual would comply with a particular 
treatment T if assigned to it, and 0 otherwise. We call this variable principal 
compliance, to distinguish it from observed compliance, which depends on 
the treatment actually assigned. It is a special case of principal stratifica-
tion (Frangakis and Rubin, 2002). Principal compliance C(T) is observed 
for participants who are assigned to treatment T, but it is not observed for 
participants assigned other treatments, T′, so for these individuals the values 
of C(T) can be regarded as missing.

 In simple trials involving an active treatment and a control treatment, 
an alternative to as-treated and per-protocol estimates is based on the idea 
of treating the randomization as an instrumental variable (IV), in economic 
parlance. The IV estimator yields a direct estimate of the CACE, and it is 
protected from selection bias by the randomization. However, it requires 
certain assumptions to be valid, and it also yields estimators with poten-
tially high variance, particularly if the treatment compliance rate is low. 
Model-based versions of the IV estimator based on treating C as missing for 
some participants have been proposed that are potentially more efficient, 
although they make stronger distributional assumptions. For a nontechnical 
article comparing this approach with as-treated and per-protocol estimates, 
see Little et al. (2009) for a discussion of extensions to two or more active 
treatments, see Long, Little, and Lin (in press). 

An example illustrating the above discussion and a number of associ-
ated issues is provided by the evaluation of a trial to assess the effect of an 
influenza vaccine (Hirano et al., 2000). The trial randomly assigned physi-
cians to encouragement (T1) or no encouragement (T2) to vaccinate their 
patients against influenza. The primary endpoint was hospitalization, and 
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the intention-to-treat estimates showed of those encouraged, 7.8 percent 
were hospitalized and of those not encouraged 9.2 percent were hospital-
ized. However, the trial had only a weak effect on the actual taking of the 
vaccine: of those encouraged, 31 percent of patients received the vaccine; of 
those not encouraged, 19 percent of patients received the vaccine. 

 Therefore, to better understand the trial results, at least a secondary 
estimand of interest was CACE, that is, in this case, the effect of encourage-
ment on hospitalization for the patients who would have been vaccinated 
if their physician had been encouraged but not vaccinated if their physician 
had not been encouraged. Assuming the standard exclusion restrictions of 
IV, CACE was estimated as an 8.2 percent reduction in hospitalization. 
yet, even this turned out to represent only part of a better understanding 
of the trial results.

In this study, there were a number of good baseline predictors of compli-
ance under both arms, C(T1) and C(T2), and thus, the effect of compliers 
could be in part identified without the need of exclusion restrictions. When 
these restrictions were relaxed, the effect of encouragement on compliers was 
estimated at 3.7 percent, but there was at least as large of an estimated effect 
(5.3 percent) of encouragement on hospitalization for always-takers. Later 
commentaries on these results suggested that the latter effect is explainable 
by the earlier time in the season at which the always-takers likely receive 
the vaccine when encouraged, compared to when not encouraged. Since this 
effect is comparable to CACE, it suggested that the effect of vaccination lies 
more in its timing and not only on its receipt.

To further explicate this method, we offer an example of coprimary 
outcomes that induce missing data. For randomized controlled trials with 
two (or more) coprimary outcomes, say E and Y, values of E can determine 
whether Y has a meaning as a measurement. This effect presents a challenge 
in the very definition of the effect between the two interventions, say T1 and 
T2, on Y, because the existence of Y is determined after the intervention. 
This problem can be treated in principle in the context of missing informa-
tion, not of Y (which is sometimes undefined) but of certain strata, called 
principal strata. Our example involves clinical trials for HIV.

The idea of cell-mediated immunity is to train the killer cells to recog-
nize and attack a protein that human CD4 cells create when the CD4 cells 
are infected (as opposed to targeting the virus directly, whose identifica-
tion is difficult due to mutations over time). For this reason, randomized 
 trials for cell-mediated immunity vaccines should be designed to assess two 
coprimary outcomes: reducing primary infection (say, E), and, if a person 
is infected (E = 1), keeping low viral load (say Y). Work by Gilbert et al. 
(2003) and then by Mehrotra et al. (2006) showed how principal strati-
fication (Frangakis and Rubin, 2002) can be used to formulate the target 
hypotheses with such coprimary outcomes. Specifically, the first coprimary 
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research hypothesis is that changing treatment T1 (placebo) to T2 (vac-
cine) changes the primary infection rate E. The second coprimary research 
hypothesis should capture that the vaccine can also affect viral load when 
infected. However, the viral load distributions between infectees under the 
placebo condition and those infected under the vaccine condition could be 
different simply because the immune system is inherently different between 
the two groups. (In fact, if the vaccine prevents some primary infections, 
infectees under vaccine are expected to have weaker baseline immune 
system than infectees under placebo.) One can disentangle baseline dif-
ferences from vaccine effects if one focuses on the people who would 
have been infected regardless of receiving the vaccine or the placebo. This 
stratum is known as a principal stratum because membership to it does 
not change depending on assignment to different interventions. Thus, the 
second coprimary research hypothesis can be that changing treatment T1 
(placebo) to T2 (vaccine) will change the viral load for those for whom 
changing T1 to T2 does not prevent primary infection. 

For a person under placebo who gets infected (E(T1) = infected), one 
does not know if the person would have been also infected under vaccine 
(E(T2) = infected), so membership to the principal stratum—E(T1) = E(T2) 
= infected—is partly missing. (Estimation of the effect of vaccine on viral 
load Y for this stratum is discussed above.)

Additional examples of randomized controlled trials with coprimary 
outcomes using principal stratification include determining if the immune 
response to a vaccine is causing reduction in infection rates (Follmann, 
2006); assessing more general surrogate outcomes in vaccine trials (Qin et 
al., 2008); and evaluating the effect of an intervention on severity of a dis-
ease (e.g., of prostate cancer) when a person does get the disease (Shepherd 
et al., 2008).

MISSING DATA IN AUXILIARY VARIABLES

The assumptions and models discussed above have been limited to 
outcome variables. Usually, there are many auxiliary variables collected at 
each visit that can be useful to incorporate into the analysis. Specifically, 
these variables are useful because they both help explain the reasons for 
future nonresponse as well as help predict the missing outcomes (and so 
help improve the efficiency with which the treatment effects are estimated). 
They can also serve to make the MAR assumption more tenable. We 
have assumed throughout that the collection of auxiliary variable data is 
complete, which is clearly not always the case. We do note that the above 
approaches can be modified to incorporate missing auxiliary data by aug-
menting the missing outcome variable with a missing V. Although including 
V along with the missing outcome variable will often address the problem, 
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the literature on missing data in longitudinal settings is fairly limited, and 
more research on dealing with missing auxiliary data would be useful. 
We do believe that many of the above approaches can be easily modified 
to incorporate auxiliaries by replacing  Yk

– in the conditional means and 
probabilities with Zk

–, which includes (Y1,…,Yk–1,V1,…,Vk–1). An excellent 
example of the use of this method is Liu et al. (2009).
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Principles and Methods of 
Sensitivity Analyses

This chapter concerns principles and methods for sensitivity analyses 
that quantify the robustness of inferences to departures from underlying 
assumptions. Unlike the well-developed literature on drawing inferences 
from incomplete data, the literature on the assessment of sensitivity to vari-
ous assumptions is relatively new. Because it is an active area of research, it 
is more difficult to identify a clear consensus about how sensitivity analyses 
should be conducted. However, in this chapter we articulate a consensus set 
of principles and describe methods that respect those principles.

We begin by describing in some detail the difficulties posed by reliance 
on untestable assumptions. We then demonstrate how sensitivity to these 
assumptions can be represented and investigated in the context of two 
popular models, selection and pattern mixture models. We also provide case 
study illustrations to suggest a format for conducting sensitivity analyses, 
recognizing that these case studies cannot cover the broad range of types 
and designs of clinical trials. Because the literature on sensitivity analysis is 
evolving, the primary objective of this chapter is to assert the importance of 
conducting some form of sensitivity analysis and to illustrate principles in 
some simple cases. We close the chapter with recommendations for further 
research on specific aspects of sensitivity analysis methodology.

BACKGROUND

There are fundamental issues involved with selecting a model and 
assessing its fit to incomplete data that do not apply to inference from 
complete data. Such issues occur even in the missing at random (MAR) 
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case, but they are compounded under missing not at random (MNAR). We 
believe that, especially when the primary analysis assumes MAR, the fit of 
an MAR model can often be addressed by standard model-checking diag-
nostics, leaving the sensitivity analysis to MNAR models that deviate from 
MAR. This approach is suggested in order not to overburden the primary 
analysis. The discussion in Chapter 4 provides some references for model-
checking of MAR models. In addition, with MAR missingness mechanisms 
that deviate markedly from missing completely at random (MCAR), as in 
the hypertension example in Chapter 4, analyses with incomplete data are 
potentially less robust to violations of parametric assumptions than analy-
ses with complete data, so checking them is even more critical. 

The data can never rule out an MNAR mechanism, and when the data 
are potentially MNAR, issues of sensitivity to modeling asumptions are 
even more serious than under MAR. One approach could be to estimate 
from the available data the parameters of a model representing an MNAR 
mechanism. However, the data typically do not contain information on the 
parameters of the particular model chosen (Jansen et al., 2006). 

In fact, different MNAR models may fit the observed data equally well 
but have quite different implications for the unobserved measurements 
and hence for the conclusions to be drawn from the respective analyses. 
Without additional information, one cannot usefully distinguish between 
such MNAR models based solely on their fit to the observed data, and so 
goodness-of-fit tools alone do not provide a relevant means of choosing 
between such models.

These considerations point to the necessity of sensitivity analysis. In a 
broad sense, one can define a sensitivity analysis as one in which several sta-
tistical models are considered simultaneously or in which a statistical model 
is further scrutinized using specialized tools, such as diagnostic measures. 
This rather loose and very general definition encompasses a wide variety 
of useful approaches. 

A simple procedure is to fit a selected number of (MNAR) models, all 
of which are deemed plausible and have equivalent or nearly equivalent fit 
to the observed data; alternatively, a preferred (primary) analysis can be 
supplemented with a number of modifications. The degree to which conclu-
sions (inferences) are stable across such analyses provides an indication of 
the confidence that can be placed in them. 

Modifications to a basic model can be constructed in different ways. 
One obvious strategy is to consider various dependencies of the missing data 
process on the outcomes or the covariates. One can choose to supplement an 
analysis within the selection modeling framework, say, with one or several 
in the pattern mixture modeling framework, which explicitly models the 
missing responses at any given time given the previously observed responses. 
Alternatively, the distributional assumptions of the models can be altered.
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The vast range of models and methods for handling missing data high-
lights the need for sensitivity analysis. Indeed, research on methodology 
has shifted from formulation of ever more complex models to methods for 
assessing sensitivity of specific models and their underlying assumptions. 
The paradigm shift to sensitivity analysis is, therefore, welcome. Prior 
to focused research on sensitivity, many methods used in practice were 
potentially useful but ad hoc (e.g., comparing several incompatible MNAR 
models to each other). Although informal sensitivity analyses are an indis-
pensable step in the analysis of incomplete longitudinal data, it is desirable 
to have more formal frameworks within which to develop such analyses. 

It is possible to assess model sensitivities of several different types, 
including sensitivity to: (a) distributional assumptions for the full data, 
(b) outlying or influential observations, and (c) assumptions about the 
missing data mechanism. Assessment of (a) can be partially carried out to 
the extent that one can compare observed and fitted values for the observ-
ables under the model specified for the full data. However, distributional 
assumptions for the missing data cannot be checked. Assessment of (b) can 
be used to identify observations that are outliers in the observed-data distri-
bution or that may be driving weakly identified parts of an MNAR model 
(Molenberghs and kenward, 2007). This chapter focuses on (c), sensitivity 
to assumptions about the missing data mechanism.

FRAMEWORK

To focus ideas, we restrict consideration to follow-up randomized study 
designs with repeated measures. We consider the case in which interest is 
focused on treatment comparisons of visit-specific means of the repeated 
measures. With incomplete data, inference about the treatment arm means 
requires two types of assumptions: (i) untestable assumptions about the 
distribution of missing outcomes data, and (ii) testable assumptions about 
the distribution of observed outcomes. Recall that the full-data distribution, 
described in Chapter 4, can be factored as 

 [Yobs,Ymis,M | X] = [Yobs,M | X] ×�[Ymis | Yobs,M,X]. (1)

Type (i) assumptions are needed to estimate the distribution
 
[Ymis | Yobs,M,X], 

while type (ii) assumptions are used, if necessary, to model the observables  
[Yobs,M | X] in a parsimonious way.

Type (i) assumptions are necessary to identify the treatment-specific 
means. Informally, a parameter is identified if one can write its estimator 
as a function that depends only on the observed data. When a parameter 
is not identified, it would not be possible to obtain a point estimate even if 
the sample size were infinite. It is therefore essential to conduct a sensitivity 
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analysis, whereby the data analysis is repeated under different type (i) 
assumptions, in order to clarify the extent to which the conclusions of the 
trial are dependent on unverifiable assumptions. The usefulness of a sensi-
tivity analysis ultimately depends on the transparency and plausibility of the 
unverifiable assumptions. It is key that any sensitivity analysis methodology 
allow the formulation of these assumptions in a transparent and easy-to-
communicate manner. 

Ultimately, type (i) assumptions describe how missing outcomes are 
being “imputed” under a given model. A reasonable way to formulate 
these assumptions is in terms of the connection (or link) between the dis-
tributions of those having missing and those having observed outcomes 
but similar covariate profiles. Making this difference explicit is a feature 
of pattern mixture models. Examples discussed in this chapter illustrate 
both pattern mixture and selection modeling approaches.

In general, it is also necessary to impose type (ii) assumptions. An 
important consideration is that modeling assumptions of type (ii), which 
apply to the distribution of observed data, can be supported and scrutinized 
with standard model-checking techniques.

Broadly speaking, there are two approaches for combining type (i) and 
(ii) assumptions to draw inferences about the treatment-specific means: 
pattern mixture and selection modeling. To illustrate these approaches, the 
next four sections present four example designs of increasing complexity. 
The first two examples involve a single outcome, without and then with 
auxiliary data. These examples are meant to illustrate when and why the 
assumptions of type (i) and (ii) are needed. The third and fourth exam-
ples extend the designs to those with repeated measures, with monotone 
and non-monotone missing data, respectively, with and without auxiliary 
data. 

Our examples are not meant to be prescriptive as to how every sensi-
tivity analysis should be conducted, but rather to illustrate principles that 
can guide practice. Type (i) assumptions can only be justified on substan-
tive grounds. As the clinical contexts vary between studies, so too will the 
specific form of the sensitivity analysis.

EXAMPLE: SINGLE OUTCOME, NO AUXILIARY DATA

We start with the simple case in which the trial records no baseline 
covariate data, and the only measurement to be obtained in the study 
is that of the outcome Y, taken at a specified time after randomization. 
We assume that the treatment-arm-specific means of Y form the basis for 
treatment comparisons and that in each arm there are some study par-
ticipants on whom Y is missing. We let R = 1 if Y is observed and R = 0 
otherwise.
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Because estimation of each treatment arm mean relies solely on data 
from subjects assigned to that arm, the problem reduces to estimation of 
a mean E(Y) based on a random sample with Y missing in some units. 
Thus, formally, the problem is to estimate m = E(Y) from the observed 
data, which comprises the list of indicators R, and the value of Y for those 
having R = 1.

The MAR assumption described in Chapter 4 is a type (i) assumption. 
In this setting, MAR means that, within each treatment arm, the distribu-
tion of Y among respondents (i.e., those with R = 1) is the same as that for 
nonrespondents (i.e., with R = 0).

This example illustrates several key ideas. First, it vividly illustrates the 
meaning of an untestable assumption. Let m1 = E(Y | R = 1) denote the mean 
among respondents, m0 = E(Y | R = 0) the mean among nonrespondents, 
and p = P(R=1) the proportion of those responding. The full-data mean m 
is a weighted average

 m = pm1 + (1 – p) m0, (2)

but there is no information in the data about the value of m0. Hence, any 
assumption one makes about the distribution for the nonrespondents will 
be untestable from the data available. In particular, the MAR assumption—
that

 
m1 = m0—is untestable.
Second, this example also illustrates the identifiability (or lack thereof) 

of a parameter. Without making assumptions about m0, the full-data mean 
m cannot be identified (estimated) from the observed data. However, if one 
is prepared to adopt an untestable assumption, m will be identified. For 
example, one can assume MAR is equivalent to setting m1 = m0. From (2), 
MAR implies that m = m1, or that the full-data mean is equal to the mean 
among those with observed Y. Hence, under MAR, a valid estimate of m1 
is also valid for m. A natural choice is the sample mean among those with 
observed data, namely, ˆ .µ1 = ∑∑RY Ri i i

ii
Third, this example is the simplest version of a pattern mixture model: 

the full-data distribution is written as a mixture—or weighted average—of 
the observed and missing data distributions. Under MAR, their means are 
equal. However, it is more typical to use pattern mixture models when the 
means are not assumed to be equal (MNAR).

By contrast, in the selection model approach, type (ii) assumptions are 
made in terms of how the probability of nonresponse relates to the possibly 
unobserved outcome. The full-data mean can be estimated using a weighted 
average of the observed outcomes, where the weights are individual-specific 
and correspond to the conditional probability of being observed given 
the observed outcome value. The reweighting serves to create a “pseudo-
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population” of individuals who are representative of the intended full-data 
sample of outcomes.

Importantly, there is a one-to-one relationship between the specification 
of a selection model and specification of a pattern-mixture model. The key 
distinction ultimately arises in how type (ii) assumptions are imposed. As it 
turns out, the two approaches generate equivalent estimators in this simple 
example, but for more complex models that rely on type (i) assumptions to 
model the observed data, that is not the case.

Pattern Mixture Model Approach

Because we are only interested in the mean of Y, it suffices to make 
assumptions about how the mean of Y among nonresponders links to the 
mean of Y among respondents. A simple way to accomplish this is by intro-
ducing a sensitivity parameter D that satisfies m0 = m1 +�D, or 

 E(Y | R = 0) = E(Y | R = 1) + D. (3)

It is easy to see that D = mo –� m1, the difference in means between 
respondents and nonrespondents. To accommodate general measurement 
scales, the model should be parameterized so that the sensitivity parameter 
satisfies an identity such as 

 m0 = g–1{g(m1) + D}, (4)

where g( ) is a function, specified by the data analyst, that is strictly increas-
ing and maps values from the range of Y to the real line. The function g 
determines the investigator’s choice of scale for comparisons between the 
respondents’ and nonrespondents’ means and is often guided by the nature 
of the outcome. 

For a continuous outcome, one might choose g(u) = u, which reduces to 
the simple contrast in means given by (3), where D represents the difference 
in mean between nonrespondents and respondents.

For binary outcomes, a convenient choice is g(u) = log(u/(1–u)), which 
ensures that the m0 lies between 0 and 1. Here, D is the log odds ratio com-
paring the odds of Y = 1 between respondents and nonrespondents. 

Each value of D corresponds to a different unverifiable assumption 
about the mean of Y in the nonrespondents. Any specific value of D cor-
responds to an estimate of m because m can be written as the weighted 
average 

 m = pm1 + (1– p)g–1{g(m1) + D}. (5)
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After fixing D, one can estimate m by replacing m1 and p with their 
sample estimators

 
µ̂1  and π̂ . Formulas for standard error estimators can 

be derived from standard Taylor expansions (delta method), or one can use 
the bootstrap.

To examine how inferences concerning m depend on unverifiable 
assumptions about the missing data distribution, notice that m is actually a 
function of D in (5). Hence, one can proceed by generating an estimate of 
m for each value of D that is thought to be plausible. In this model, D = 0 
corresponds to MAR; hence, examining inferences about m over a set or 
range for D that includes D = 0 will summarize the effects of departures 
from MAR on inferences about m.

For fixed D, assumption (4) is of type (i). In this simple setting, type (ii) 
assumptions are not needed because m1 and p can be estimated with sample 
means, and no modeling is needed.

Finally, to test for treatment effects between two arms, one adopts a 
value D0 for the first arm and a value D1 for the second arm. One then esti-
mates each mean separately under the adopted values of D and conducts a 
Wald test that their difference is zero. To investigate how the conclusions 
depend on the adopted values of D, one repeats the testing over a range of 
plausible values for the pair (D0, D1).

Selection Model Approach

A second option for conducting sensitivity analysis is to assume that 
one knows how the odds of nonresponse change with the values of the 
outcome Y. For example, one can assume that the log odds of nonresponse 
differs by a for those who differ by one unit on Y. This is equivalent to 
assuming that one knows the value of a (but not h) in the logistic regres-
sion model 

 logit {P[R = 0 | Y = y]} = h + a y. (6) (6)

Models like (6) are called selection models because they model the 
probability of nonresponse (or selection) as a function of the outcome. Each 
unique value of a corresponds to a different unverifiable assumption about 
how the probability of nonresponse changes with the outcome. 

The model in (6) is also equivalent to assuming that 

 p (y | R = 0) = p(y | R = 1) × exp(a y) × const. (7)(7)

Adopting a value of a is equivalent to adopting a known link between the 
distribution of the respondents and that of the nonrespondents, because one 
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cannot use the data to learn anything about the nonrespondent distribution 
or to check the value of a. Moreover, one cannot check two other impor-
tant assumptions: that the log odds of nonresponse is linear in y and that 
the support of the distribution of Y among nonrespondents is the same as 
that among respondents (as implied by (7)).

Although not immediately apparent, once a value of a is adopted, one 
can estimate m = E[Y] consistently. A sensitivity analysis consists of repeat-
ing the estimation of m at different plausible values of a so as to assess the 
sensitivity of inferences about m to assumptions about the missing data 
mechanism as encoded by a and model (6).

Estimation of m relies on the identity 

 E Y E
R Y

P R Y
( ) = ×

=( )










1
,  (8)

which suggests estimation of m through inverse probability weighting (see 
below); in this case, the weights can depend on missing values of Y. The 
inverse probability weighting estimator is

 ˆ
exp ˆ

,µ
α

IPW
i i

ii

RY

h Y
=

− +( )∑
1 it

 (9)

where expit(u) = logit–1(u) = exp(u) / {1 + exp(u)}. To compute ĥ , one solves 
the unbiased estimating equation

 
R

h Y
i

ii 1
0

− +( )











=∑ expit α

 (10)

for h.1 Analytic formulas for consistent standard error estimators are avail-
able (e.g., Rotnitzky et al., 1998), but bootstrap resampling can be used. 
Sensitivity analysis for tests of treatment effects proceeds by repeating the 
test over a set of plausible values for a, where different values of a can be 
chosen for each arm.

With the selection model approach described here we can conduct sen-
sitivity analysis, not just about the mean but about any other component of 
the distribution of Y, for example, the median of Y. Just as in the preceding 
pattern mixture approach, the data structure in this setting is so simple that 
we need not worry about postulating type (ii) assumptions.

1 Estimation of h by standard logistic regression of R on Y is not feasible because Y is missing 

when R = 0; the estimator ĥ  
exploits the identity
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EXAMPLE: SINGLE OUTCOME WITH AUXILIARY DATA

We next consider a setting in which individuals are scheduled to have 
a measurement Y0 at baseline, which we assume is never missing (this con-
stitutes the auxiliary data), and a second measurement Y1 at some specified 
follow-up time, which is missing in some subjects. We let R1 = 1 if Y1 is 
observed and R1 = 0 otherwise. As in the preceding example, we limit our 
discussion to estimation of the arm-specific mean of Y1, denoted now by 
m = E(Y1).

In this example, the type (i) MAR assumption states that, within each 
treatment group and within levels of Y0, the distribution of Y1 among 
nonrespondents is the same as the distribution of Y1 among respondents. 
That is, 

 [Y1 | Y0,X,R = 1] = [Y1 | Y0,X,R = 0]. (11)

Pattern Mixture Model Approach

In this and the next section, we demonstrate sensitivity analysis under 
MNAR. Under the pattern mixture approach one specifies a link between 
the distribution of Y1 in the nonrespondents and respondents who share 
the same value of Y0. One can specify, for example, that 

 E(Y1 | Y0,R1 = 0) = g–1[g{h(Y0)} + D], (12)

where h(Y0) = E(Y1 | R1 = 1,Y0) and g is defined as in the example above. 

Example: Continuous Values of Y Suppose Y1 is continuous. One needs a 
specification of both the sensitivity analysis function g and the relationship 
between Y1 and Y0, represented by η(Y0). A simple version of η is a regres-
sion of Y1 on Y0, 

 h(Y0) = E(Y1 | Y0,R = 1) (13)

� =�b0 + b1Y0. (14)

Now let g(u) = u as in the first example above. In this case, using (12), 
the mean of the missing Y1 are imputed as regression predictions of Y1 plus 
a shift D, 

 E(Y1 | Y0,R1 = 0) =�b0 + b1Y0 +�D. (15)
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Hence, at a fixed value of D, an estimator of ED(Y1 | R1 = 0) can be derived 

as the sample mean of the regression predictions
 

ˆ ˆ ˆY Y1 0 1 0= + +β β D
 
among 

those with R1 = 0. The estimators β̂0  and β̂1  come from a regression of Y1 
on Y0 among those with R1 = 1.

In this case, D represents the baseline adjusted difference in the mean 
of Y1 between nonrespondents and respondents. If D�> 0 (< 0), then for any 
fixed value of Y0, the mean of Y1 among nonrespondents is D units higher 
(lower) than the mean of Y1 among respondents. 

A few comments are in order for this example: 

• Model (12) assumes that mean differences do not depend on Y0. If 
one believes that they do, then one may choose a more complex version of 
the g function, such as 

 E(Y1 | Y0,R1 = 0) = g–1[g{h(Y0)} + D0 + D1Y0]. (16)

If this version is coupled with a linear regression for η(Y0), then both 
the slope and the intercept of that regression will differ for respondents and 
nonrespondents. 

• In general, any user-specified sensitivity function d(Y0,D) can be 
 posited, including the simple versions d(Y0,D) =�D and d(Y0,D) = D0 + D1Y0. 
Importantly, no version of d(Y0,D) can be checked using the observed data. 
The choice of d function is a type (i) assumption.

• Likewise, more general choices can be made for the form of η(Y0), 
including versions that are nonlinear in Y0. The choice of η is a type (ii) 
assumption; it can be critiqued by standard goodness-of-fit procedures 
using the observed data. 

Example: Binary Outcome Y If Y is binary, the functional form of g 
and η will need to be different than in the continuous case. Choosing 
g(u) = log(u/(1 + u) implies that D�is the log odds ratio comparing the odds 
of Y1 = 1 between respondents and nonrespondents, conditional on Y0. As 
with the continuous case, D > 0 (D < 0) implies that, for every level of Y0, 
nonrespondents are more (less) likely to have Y1 = 1 than respondents. 

The function η(Y0), which describes E(Y1 | Y0,R = 1), should be speci-
fied in terms of a model that is appropriate for binary outcomes. For 
example, a simple logistic specification is 

 logit{h(Y0)} = l0 + l1Y0,  (17)
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which is equivalent to writing 

 η
λ λ

λ λ
Y

Y

Y0
0 1 0

0 1 01
( ) =

+( )
+ +( )
exp

exp
.  (18)

When Y0 is binary, this model is saturated. But when Y0 is continuous, 
or includes other auxiliary covariates, model choice for η will take on added 
importance.

Inference A sensitivity analysis to examine how inferences are impacted by 
the choice of D consists of repeating the inference over a set or range of values 
of D�deemed to be plausible. It can proceed in the following manner:

Step 1. Specify models for η(Y0) and d(Y0,D). 
Step 2. Fit the model η(Y0) to those with R1 = 0, and obtain the esti-

mated function η̂ Y0( ) . 
Step 3. The full-data mean m = E(Y1) is 

µ π η π η= ( ) ={ } + −( ) ( ){ } + ( )−E Y R E g g Y d Y0
1

0 01 1 ,D  =( )R 0 ,
 

(19)

where expectations are taken over the distribution of Y0 | R. Although the 
general formula looks complex, it is easily computed for a fixed value of D 
once the model for η has been fit to data. Specifically, 

Step 3a. The estimate of E Y Rη 0 1( ) ={ }  
is the sample mean 

R Y Ri i
i

i
i

η̂ 0( )∑ ∑ . 

Step 3b. The estimate of
 
E g g Y d Y R− ( ){ } + ( )  =( )1

0 0 1 0η ,D  also is 
computed as a sample mean, 
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1
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∑
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R

i i i
i

i
i

ˆ ,

.

η D

 

(20)

Step 3c. The estimate of p is
 

ˆ /π = ( )∑1 n Ri
i

. 

Step 3d. The estimate µ̂  of m is computed by replacing parameters in 
(19) by their estimators described in the previous steps. 

Step 4. Standard errors are computed using bootstrap resampling.
Step 5. Inferences about m are carried out for a plausible set or range 

of values of D. Because each unique value of D yields an estimator µ̂D , it 
is possible to construct a contour plot of Z-scores, p-values, or confidence 
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intervals for treatment effect as a function of D. An illustration, computed 
using data from a diabetic neuropathy trial, appears in Figure 5-1. 

Selection Model Approach

In parallel to the first example, with no auxiliary data, another way 
to postulate type (i) assumptions about the nature of selection bias is by 
postulating a model for the dependence of the probability of nonresponse 
on the (possibly missing) outcome Y1, within levels of Y0. For example, one 
can assume that, conditionally on Y0, each unit increase in Y1 is associated 
with an increase of a in the log odds of nonresponse. That is, 

 
odds R Y Y

odds R Y Y
1 0 1

1 0 1

0 1

0

= +( )
=( ) = ( ),

,
exp α ,,  (21)

or, equivalently, 

 log , ,it P R Y Y h Y Y=( ){ } = ( ) +0 0 1 0 1α  (22)

where h(Y0) is an unknown function of
 
Y0. This can also be written as 

 p y R Y p y R Y y h Y1 1 0 1 1 0 1 00 1=( ) = =( ) × ( ) × (, , exp α )).  (23)

In this latter form,2 one can see that the observed data have no informa-
tion about a. The choice of a = 0 specifies that within levels of Y0, R1 and 
Y1 are independent (i.e., MAR). Values of a ≠ 0 reflect residual association 
between missingness and nonresponse after adjusting for Y0.

3 
Analogous to the example with no auxiliary data, estimation of 

m = E(Y1) relies on the identity 

 E Y E
R Y

P R Y Y1
1 1

1 1 01
( ) =

=( )










,
,  (24)

which suggests the inverse probability weighted (IPW) estimator 

2 The constant
 
h(Y0) 

is [E{exp(aY1) | R1 = 1,Y0}]
–1, which ensures that p(Y1 | R1 = 0,Y0) is 

a density. 
3 If one believes that the association between nonresponse and outcome varies according to 

the baseline measurement Y0, one can replace a with a known function of Y0—for instance,  
a0 + a1Y0, with a0 and a1 having specified values. Regardless of the choice, once the values of 
a are fixed, m = E(Y1) can be written purely in terms of the distribution of the observed data 
and is therefore identified.
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 ˆ /
ˆ

,µ
α

IPW
i i

i ii

n
RY

h Y Y
= ( )

− ( ) +{ }∑1
1 0 1expit

 (25)

where ĥ Y0( )  is an estimator of h(Y0). 
Unless Y0 is discrete with a few levels, estimation of h(Y0) requires the 

assumption that h(Y0) takes a known form, such as h(Y0;g) = g0 + g1Y0. 
(Note that if one adopts this model, one is assuming that the probability 
of response follows a logistic regression model on Y0 and Y1 with a given 
specified value for the coefficient a of Y1.) Specifying h(Y0) is a type (ii) 
assumption that is technically not needed to identify m but is needed in 
practical situations involving finite samples.

One can compute an estimator γ̂ of g by solving a set of estimating 
equations4 for g , 

 
∂ ( )

∂ − ( ) +{ } −



∑

h Y R

h Y Y
i

i

i

i i

0 1

0 11
1

,

;

γ
γ γ αexpit







= 0.  (26)

Formulas for sandwich-type standard error estimators are available, 
but the bootstrap can also be used to compute standard error estimates. 
Hypothesis-testing sensitivity analysis is conducted in a manner similar to 
the one described in the example above with no auxiliary data. 

As with the pattern mixture models, by repeating the estimation of m at 
a set or interval of known a values, one can examine how different degrees 
of residual association between nonresponse and the outcome Y1 affect 
inferences concerning E(Y1). A plot similar to the one constructed for the 
pattern mixture model is given in Figure 5-2. 

EXAMPLE: GENERAL REPEATED MEASURES SETTING

As the number of planned measurement occasions increases, the com-
plexity of the sensitivity analysis grows because the number of missing 
data patterns grows. As a result, there can be limitless ways of specifying 
models.

Consider a study with K scheduled postbaseline visits. In the special 
case of monotone missing data, there are (K + 1) patterns representing 
each of the visits at which a subject might last be seen, that is, 0,...,K. The 

4 As with the selection approach of the example with no auxiliary data, to estimate g one 
cannot fit a logistic regression model because Y1 

is missing when R1 = 0.
 
The estimator γ̂  

exploits the identity E
R

P R Y Y
Y1

1 0 1
01

1
=( )













=
,

.
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(K + 1)st pattern represent subjects with complete data, while the other K 
patterns represent those with varying degrees of missing data. In the general 
setting, there are many ways to specify pattern models—the models that 
link the distribution of missing outcomes to the distribution of observed 
outcomes within specified strata—and it is generally necessary to look for 
simplifications of the model structure.

For example, one could link the conditional (on a shared history of 
observed outcomes through visit k – 1) distribution of missing outcomes at 
visit k among those who were last seen at visit k – 1 to (a) the distribution 
of outcomes at visit k among those who complete the study, (b) the distri-
bution of outcomes at visit k among those who are in the study through 
visit k, or (c) the distribution of outcomes at visit k among those who are 
last seen at visit k. 

Let Yk denote the outcome scheduled to be measured at visit k, with 
visit 0 denoting the baseline measure. We use the notation  Y Y Yk k

− = …( )0, ,
 

to denote the history of the outcomes through visit k andY Y Yk k K
+

+= …( )1, ,
 
to 

denote the future outcomes after visit k. We let Rk denote the indicator that 
Yk is observed, so that Rk =�1 if Yk is observed and Rk = 0 otherwise. We 
assume that Y0 is observed on all individuals so that R0 = 1. As above, we 
focus on inference about the mean m = E(YK) of the intended outcome at 
the last visit K.

Monotone Missing Data

Under monotone missingness, if the outcome at visit k is missing, then 
the outcome at visit k + 1 is missing. If we let L be the last visit that a 
subject has a measurement observed, then the observed data for a subject 
is 

Y Y YL L
− = …( )0, , , where L ≤ K. 

A Pattern Mixture Model Approach

As noted above, there are many pattern models that can be specified. 
Here, we discuss inference in one such model. Recall that both type (i) and 
type (ii) assumptions are needed. We first address type (i) specification, illus-
trating a way to link distributions with those having missing observations 
to those with observed data.

The general strategy is illustrated for the case K = 3, which relies on an 
assumption known as “nonfuture dependence” (kenward et al., 2003). In 
simple terms, the nonfuture dependence assumption states that the prob-
ability of drop out at time L can only depend on observed data up to L and 
the possibly missing value of YL, but not future values of L.
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In the model used here, we assume there is a link between 

Y Y L kk k
− = −



, 1 and

 
Y Y L kk k

− > −



, 1 , which are, respectively, the 

distributions of Yk among those who do and do not drop out at time k – 1. 
The idea is to use the distribution of those still in the study at time k – 1 to 
identify the distribution of those who drop out at k – 1.

It can be shown that m = E(YK) can be estimated by a recursion algo-
rithm, provided the following observed-data distributions are estimated: 

Y Y Y Y L Y Y Y L Y3 0 1 2 2 0 1 14 3, , , , , , ,=  ≥  YY L Y L0 02 1, , ,≥  ≥   (27)

and the following dropout probabilities 

 

P L L Y Y Y Y P L L Y Y Y= ≥( ) = ≥(4 3 3 20 1 2 3 0 1 2, , , , , , , , ))
= ≥( ) =( )

,

, , , ,P L L Y Y P L Y2 1 10 1 0  

(28)

can also be estimated. Each is identified from observed data when missing-
ness is monotone.

What is needed to implement the estimation of m = E(YK) is a model 
that links the distributions with observed data (27) to the distributions 
having missing observations. One simple way to do this is to assume the 

distribution of Yk among recent dropouts,
 

Y Y L kk k−
− = −



1 1, , follows 

the same parametric model as the distribution of Yk among respondents, 

Y Y L kk k−
− > −



1 1, , but with a different—or shifted—parameter value. 

This assumption cannot be verified and may not be realistic in all studies; 
we use it here simply as an illustration.

To be more concrete, suppose that the outcomes Y0,…,Y3 are continu-
ous. One can assume regression models for each of (27) as follows, 

 E Y L0 01≥( ) = µ , (29)

  E Y Y L Y1 0 1 1 02, ≥( ) = +µ β , (30)

  E Y Y Y L Y Y
T

2 0 1 2 2 0 13, , ,≥( ) = + ( )µ β , (31)

 E Y Y Y Y L Y Y Y
T

3 0 1 2 3 3 0 1 24, , , , , .=( ) = + ( )µ β  (32)

This modeling of the observed data distribution comprises our type (i) 
assumptions. These can (and must) be checked using the observables.

Using type (ii) assumptions, the distributions of missing Y can be 
linked in a way similar to those for the first example above. For example, 
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those with L = 1 are missing Y1. One can link the observed-data regression 
E Y Y L1 0 2, ≥( )  to the missing-data regression E Y Y L1 0 1, =( )  through

 

 E Y Y L Y1 0 1 1 01, ,* *=( ) = +µ β  (33)

where, say, µ µ µ1 1 1

* = + D  and β β β1 1 1

* = + D . Models for missing Y2 and Y3 
can be specified similarly.

As with the previous cases, (33) is a type (ii) assumption and cannot be 
checked with data. Moreover, even using a simple structure like (33), the 
number of sensitivity parameters grows large very quickly with the number 
of repeated measures. Hence, it is important to consider simplifications, 
such as setting Db = 0, assuming Dm is equivalent across patterns, or some 
combination of the two. 

Note that under our assumptions, Dµk
is the difference between the 

mean of Yk among those who drop out at k – 1 and those who remain 
beyond k – 1, conditional on observed data history up to k – 1. In this 
example, the assumption of linearity in the regression models, combined 
with an assumption that

 
Dβk

= 0 for all k, means that one does not need a 

model for
 

P L k L k Yk= ≥( )−,
 
to implement the estimation via recursion 

algorithm. 
A sensitivity analysis consists of estimating m and its standard error 

repeatedly over a range of plausible values of specified D parameters. For 
this illustration, setting D = 0 implies MAR.5

Selection Model

Another way to posit type (i) assumptions in this setting is to postu-
late a model for how the odds of dropping out between visits k and k + 1, 
depends on the (possibly missing) future outcomes, 

 
Yk

+ , given the recorded 
history Yk

− . That is, 

5 An attractive feature of the pattern mixture approach we consider here (the one that links 
the distribution of outcomes between dropouts at a given time and those who remain in the 
study at that time) is that the special choice of link that specifies that these two distributions 
are the same is tantamount to the MAR assumption (i.e., the assumption that at any given 
occasion the past recorded data are the only predictors of the future outcomes that are used 
to decide whether or not to drop out of the study at that time). This feature does not hold 
with other choices of pattern mixture models. Thus, in our example, exploring how infer-
ences about m change as Dk moves away from Dk = 0 is tantamount to exploring the impact 
of distinct degrees of residual dependence between the missing outcomes and dropping out 
on our inferences about

 
m. In more general pattern mixture models, D = 0 is only sufficient, 

but not necessary, for MAR to hold. It is possible to find other unique combinations of D that 
correspond to MAR.
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odds L k L k Y Y
P L k L k Y Y

P
k k

k k
= ≥( ) =

= ≥( )− +
− +

, ,
, ,

LL k L k Y Yk k> ≥( )− +, ,
.

The MAR assumption states that the odds do not depend on the future 
outcomes

 
Yk

+ . The nonfuture dependence assumption above states that it 
depends only on the future through Yk+1. That is, 

 odds L k L k Y Y odds L k L k Y Yk k k k= ≥( ) = = ≥− + −
+, , , , 11( )  (34)

and is equivalent to assuming that after adjusting for the recorded history, 
the outcome to be measured at visit k + 1 is the only predictor of all future 
missing outcomes that is associated with the odds of dropping out between 
visits k and k + 1.

This last assumption, coupled with an assumption that quantifies the 
dependence of the odds in the right hand side on Yk+1, suffices to identify 
m = E(YK): in fact, it suffices to identify E(Yk) for any k = 1,...,K. For 
example, one might assume 

 

odds L k L k Y Y

odds L k L k Y Y

k k

k

= ≥ +( )
= ≥

−
+

−

, ,

, ,

1 1

kk+( ) = ( )
1

exp ,α

 

(35)

that is, that each unit increase in Yk+1 is associated with a constant increase 
in the log odds of nonresponse of a, the same for all values of

 
Yk

−  and all 
visits k. 

Under (34), a = 0 implies MAR. One would make this choice if it is 
believed that the recorded history

 
Yk

−  encodes all the predictors of Yk+1  that 
are associated with missingness. Values of a ≠ 0 reflect residual association 
of dropping out between visits k and k + 1 and the possibly unobserved 
outcome Yk+1, after adjusting for previous outcomes, and hence the belief 
that dropping out cannot be entirely explained by the observed recorded 
history Yk

− . By repeating estimation of the vector m for each fixed a, one 
can examine how different degrees of residual association between drop-
ping out and outcome at each occasion after adjusting for the influence of 
recorded history affects inferences concerning m.

Assumptions (34) and (35) together are equivalent to specifying that 

 log , , ,it P L k L k Y Y h Y Yk k k k k= ≥( ){ } = ( ) +− + −
+α 1  (36)

where
 
h Yk k

−( )  is an unknown function of Y. This, in turn, is equivalent to 
the pattern mixture model 
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 p y L k Y p y L k Y yk k k k k+
−

+
−

+=( ) = ≥ +( ) ×1 1 1, , exp α 11( ) × const.  (37)

In this latter form, one can see that there is no evidence in the data 
regarding a since it serves as the link between the conditional (on Yk

− ) dis-
tribution of Yk+1 among those who drop out between visits k and k + 1 and 
those who remain through visit k + 1. If one believes that the association 
between dropping out and future outcomes depends solely on the current 
outcome but varies according to the recorded history, one can replace a 
with a known function of

 
Yk

− . 
For instance, replacing in equation (36) the constant a with the func-

tion a0 + a1Yk with a0 and a1 specified, encodes the belief that the residual 
association between dropping out between k and k + 1 and the outcome 
Yk+1 may be stronger for individuals with, say, higher (if a1 > 0) values of 
the outcome at visit k. As an example, if Yk is a strong predictor of Yk+1 and 
that lower values of Yk+1 are preferable (e.g., HIV-RNA viral load), then 
it is reasonable to postulate that subjects with low values of Yk drop out 
for reasons unrelated to the drug efficacy (and, in particular, then to their 
outcome Yk+1) while subjects with higher values of Yk drop out for reasons 
related to drug efficacy and hence to their outcome Yk+1.

Regardless of how the residual dependence is specified, m can be 
expressed in terms of the distribution of the observed data, that is, it is 
identified. Estimation of m = E[YK] relies on the identity 

 E Y E
R Y

Y h h
K

K K

K K K

  =
…( )












−π α; , , ;

,
1

 (38)

where
 

 π α αK K K k K kY h h h Y Y− −
+…( ) = − ( ) +{ }

; , , ;1 11 expit 
=

−

∏
k

K

0

1

.

This formula suggests that one can estimate m with the IPW estimator 

 ˆ /
; ˆ , , ˆ ;

.µ
π α

IPW
iK iK

k iK i iKi

n
R Y

Y h h
= ( )

…( )−∑1
1

 (39)

This estimator relies on estimators
 

ĥ h Yik k ik= ( )− . In order to estimate 
these functions, one needs to impose type (ii) modeling assumptions on 
h Yk k

−( ) , that is, h Y h Yk k k k k
− −( ) = ( );γ . For example, one can assume that 

h Y Yk k k k k
−( ) = +γ γ0 1, ,  (adopting such a model would be tantamount to 

assuming that the probability of dropping out at each time follows a logistic 
regression model on just the immediately preceding recorded data and on 
the current outcome). 
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As with the selection approach of the two preceding examples, to esti-
mate gk, one cannot fit a logistic regression model because YK+1 is missing 
when L = k. However, one can estimate it instead by solving the estimating 
equations 

 R
h Y R

ik
k ik k

kk

K

i

n
i k

∂ ( )
∂ −

−

=

−

=

+∑∑
;

exp

,
γ

γ0

1

1

1

1 it YY Yik k i k
−

+{ } +
−













;
.

,γ α 1

1  (40)

for g, justified on similar grounds as the estimators of h functions in the 
previous examples.

Formula for sandwich-type standard error estimators are available 
(see Rotnitzky et al., 1997), but the bootstrap can also be used to compute 
standard error estimates. Sensitivity analysis with regard to hypothesis 
testing is conducted in a manner similar to the one described in the first 
example above.

Nonmonotone Missing Data

A typical way to analyze nonmonotone missing data is to treat the 
time of dropout as the key missing data variable and then to assume MAR 
within dropout pattern (or conditional on dropout time). The advantage 
of this approach is purely practical: It interpolates missing data under a 
specified model. That said, however, the current literature suggests that 
MAR within pattern does not easily correspond to realistic mechanisms 
for generating the data. This raises concern among members of the panel 
that nonmonotone dropouts may require more specialized methods for 
modeling the missing data mechanism, and accounting for departures from 
MAR. 

This topic has not been deeply studied in the extant statistical literature, 
and in particular numerical studies are lacking. We recommend this as a key 
area of investigation that will: (a) examine the appropriateness of existing 
models and in particular the potential pitfalls of assuming MAR within 
missing data pattern; and (b) develop and apply novel, appropriate methods 
of model specification and sensitivity analysis to handle nonmonotone miss-
ing data patterns. 

COMPARING PATTERN MIXTURE AND 
SELECTION APPROACHES 

The main appeal of the selection model approach is that, since it models 
the probability of nonresponse rather than the distribution of outcomes, it 
can easily accommodate vectors of auxiliary factors with components that 
can be of all types, discrete, categorical, and continuous.
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Two disadvantages of the selection approach as they relate to draw-
ing inferences are (a) the inverse weighting estimation procedure, which 
can yield relatively inefficient inferences (i.e., large standard errors), and 
(b) that model checking of the type (ii) assumptions must be conducted 
for each unique value of the sensitivity analysis parameters. Formal model 
checking procedures have yet to be formally developed for this setting. The 
 inefficiencies associated with the inverse weighting procedure are mitigated 
in settings with a sizable fraction of missing data, as the sampling variability 
is often of less concern than the range of type (i) assumptions that are 
entertained. To address (b), one should fit a highly flexible model for the h 
function in the selection model. 

Another potential disadvantage of selection models relates to interpreta-
tion of the sensitivity parameter. Particularly for continuous measures, it may 
be difficult to interpret nonresponse rates on the odds scale and to specify 
reasonable ranges for the sensitivity parameter. Plots such as those shown in 
Figure 5-2 (above) can be helpful in understanding how values of the sensitiv-
ity parameter correspond to imputed means for the missing outcomes.

Advantages of the pattern mixture model include transparent interpre-
tation of sensitivity parameters and straightforward model checking for the 
observed-data distribution. The sensitivity parameters are typically specified 
in terms of differences in mean between respondents and nonrespondents, 
which appeal directly to intuition and contributes to formulating plausible 
ranges for the parameter. Pattern mixture models also can be specified so 
that the fit to the observed data is identical across all values of the sensitiv-
ity parameters; hence, model checking will be straightforward and does not 
depend on the assumed missing data assumption. 

Disadvantages of pattern mixture modeling include difficulties in includ-
ing auxiliary information, which will generally require additional modeling. 
Computation of the weighted averages across patterns for models of large 
numbers of repeated measures also can become complex without significant 
simplifying assumptions.

TIME-TO-EVENT DATA

A major challenge in the analysis of time-to-event outcomes in ran-
domized trials is to properly account for censoring that may be informa-
tive. Different approaches have been proposed in the research literature to 
address this issue. When no auxiliary prognostic factors are available, the 
general strategy has been to impose nonidentifiable assumptions concerning 
the dependence between failure and censoring times and then vary these 
assumptions in order to assess the sensitivity of inferences on the estimated 
survivor function. When prognostic factors are recorded, Robins and col-
leagues in a series of papers (Robins and Rotnitzky, 1992; Robins, 1993; 
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Robins and Finkelstein, 2000) proposed a general estimation strategy under 
the assumption that all measured prognostic factors that predict censor-
ing are recorded in the database. Scharfstein and Robins (2002) proposed 
a method for conducting sensitivity analysis under the assumption that 
some but not all joint prognostic factors for censoring and survival are 
available. Their approach is to repeat inference under different values of a 
nonidentifiable censoring bias parameter that encodes the magnitude of 
the residual association between survival and censoring after adjusting for 
measured prognostic factors.

In randomized studies, censoring typically occurs for several reasons, 
some noninformative, others informative. For instance, in studies with stag-
gered entry, the administrative end of the follow-up period typically induces 
noninformative censoring. However, loss to follow-up due to dropouts 
induces a competing censoring mechanism that is likely to be informative. 
Treatment discontinuation might induce yet another informative censoring 
process. 

Under the Scharfstein and Robins methodology, the analyst specifies 
a range for the parameter encoding the residual dependence of the hazard 
of the minimum of competing censoring times on the censored outcome. 
However, this range might be rather difficult to specify if the reasons that 
each censoring might occur are quite different, more so if some censoring 
processes are informative and some are not. To ameliorate this problem in 
studies with staggered entry, one can eliminate the censoring by the admin-
istrative end of the follow-up period (typically a source of noninformative 
censoring) by restricting the follow-up period to a shorter interval in which 
(with probability) no subject is administratively censored. However, in doing 
so, one would lose valuable information on the survival experience of the 
study patients who remain at risk at the end of the reduced analysis interval. 
Rotnitzky et al. (2007) provide estimators of the survival function under 
separate models for the competing censoring mechanisms, including both 
informative and noninformative censoring. The methods can be used to 
exploit the data recorded throughout the entire follow-up period and, in par-
ticular, beyond the end of the reduced analysis interval discussed above.

DECISION MAKING

Even after model fitting and sensitivity analysis, investigators have to 
decide about how important the treatment effect is. Unfortunately, there is 
no scientific consensus on how to synthesize information from a sensitivity 
analysis into a single decision about treatment effect. At least three pos-
sibilities can be considered. 

One possibility is to specify a plausible region for the sensitivity parameters 
and report estimates of the lower and upper bounds from this range. These 
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endpoints form bounds on the estimated treatment effect and would be used 
in place of point estimates. Accompanying these bounds would be a 95 per-
cent confidence region. This procedure can be viewed as accounting for both 
sampling variability and variability due to model uncertainty (i.e., uncertainty 
about the sensitivity parameter value): see Molenberghs and kenward (2007) 
for more detailed discussion and recommendations for computing a 95 per-
cent confidence region.

A second possibility is to carry out inference under MAR and determine 
the set of sensitivity parameter values that would lead to overturning the 
conclusion from MAR. Results can be viewed as equivocal if the inference 
about treatment effects could be overturned for values of the sensitivity 
parameter that are plausible.

The third possibility is to derive a summary inference that averages 
over values of the sensitivity parameters in some principled fashion. This 
approach could be viewed as appropriate in settings in which reliable prior 
information about the sensitivity parameter value is known in advance.

Regardless of the specific approach taken to decision making, the key 
issue is weighting the results, either formally or informally, from both the 
primary analysis and each alternative analysis by assessing the reason-
ableness of the assumptions made in conjunction with each analysis. The 
analyses should be given little weight when the associated assumptions 
are viewed as being extreme and should be given substantial weight when 
the associated assumptions are viewed as being comparably plausible to 
those for the primary analysis. Therefore, in situations in which there are 
alternative analyses as part of the sensitivity analysis that support contrary 
inferences to that of the primary analysis, if the associated assumptions are 
viewed as being fairly extreme, it would be reasonable to continue to sup-
port the inference from the primary analysis. 

RECOMMENDATION

Recommendation 15: Sensitivity analyses should be part of the primary 
reporting of findings from clinical trials. Examining sensitivity to the 
assumptions about the missing data mechanism should be a mandatory 
component of reporting.

We note that there are some often-used models for the analysis of miss-
ing data in clinical trials for which the form of a sensitivity analysis has 
not been fully developed in the literature. Although we have provided prin-
ciples for the broad development of sensitivity analyses, we have not been 
prescriptive for many individual models. It is important that additional 
research be carried out so that methods to carry out sensitivity analyses for 
all of the standard models are available. 

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


�0�

6

Conclusions and Recommendations

Missing data in clinical trials can seriously undermine the benefits pro-
vided by randomization into control and treatment groups. Two approaches 
to the problem are to reduce the frequency of missing data in the first place 
and to use appropriate statistical techniques that account for the missing 
data. The former approach is preferred, since the choice of statistical method 
requires unverifiable assumptions concerning the mechanism that causes the 
missing data, and so always involves some degree of subjectivity. 

In Chapters 2 and 3, we detail some of the causes of missing data in 
clinical trials and discuss how to reduce the amount of missing data. How-
ever, because it is impossible to eliminate all occurrences of missing data, 
in Chapters 4 and 5 we discuss analysis methods that properly account for 
the missing outcome values. 

In this concluding chapter, we bring all our recommendations together 
from the preceding chapters and offer three additional broad recommen-
dations, two addressed to the U.S. Food and Drug Administration (FDA) 
and the companies that sponsor clinical trials. One is for the FDA and the 
National Institutes of Health to use their extensive database to develop 
a better understanding of the various causes of dropout from clinical 
trials, the typical extent of missing data in different types of trials, and 
the reductions in the rates of missing data that can be anticipated from 
the application of various alternative trial designs and techniques for 
trial conduct. A second recommendation is for the training of analysts in 
the latest techniques for the treatment of missing data in clinical trials. 
Finally, a third recommendation is for various research problems to be 
pursued.
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TRIAL OBJECTIVES

Questions such as whether to continue to collect trial outcome data 
after a participant has discontinued use of the study treatment, whether 
to use a single or composite outcome measure, how long to measure out-
come data, all depend on the estimation goal of the trial. This estimation 
includes not only the outcome of interest, but also whether the focus is on 
short- or long-term effects of the intervention and the target population of 
interest. Possibilities for the latter include the “intent-to-treat” population, 
or the population of treatment compliers. Before selecting a trial design, it 
is important to decide on the primary parameter and population of inter-
est, the “causal estimand.” Once the estimand is decided, the clinical trial 
design can be optimized for the measurement of that estimand.

Recommendation 1: The trial protocol should explicitly define (a) the 
objective(s) of the trial; (b) the associated primary outcome or out-
comes; (c) how, when, and on whom the outcome or outcomes will 
be measured; and (d) the measures of intervention effects, that is, the 
causal estimands of primary interest. These measures should be mean-
ingful for all study participants, and estimable with minimal assump-
tions. Concerning the latter, the protocol should address the potential 
impact and treatment of missing data.

REDUCING DROPOUTS THROUGH TRIAL DESIGN

The interpretation of the trial findings is more difficult when partici-
pants discontinue their assigned interventions before the end of the study. 
Therefore, the trial design should be selected to maximize the number of 
participants who are maintained on the study intervention throughout the 
duration of the trial.

Recommendation 2: Investigators, sponsors, and regulators should 
design clinical trials consistent with the goal of maximizing the number 
of participants who are maintained on the protocol-specified interven-
tion until the outcome data are collected.

There is a key distinction between treatment dropout and analysis 
dropout, and although there are trials in which treatment dropout will 
understandably be substantial, there is very little reason for substantial 
amount of missing data, that is, analysis dropouts. Furthermore, for many 
trial estimands, the benefits of retaining participants in the study can be 
substantial, including to support an analysis of effectiveness (comparison 
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of treatment policies) and to be able to monitor side effects that occur after 
discontinuation of treatment. 

Recommendation 3: Trial sponsors should continue to collect informa-
tion on key outcomes on participants who discontinue their protocol-
specified intervention in the course of the study, except in those cases 
for which a compelling cost-benefit analysis argues otherwise, and this 
information should be recorded and used in the analysis.

Recommendation 4: The trial design team should consider whether 
participants who discontinue the protocol intervention should have 
access to and be encouraged to use specific alternative treatments. Such 
treatments should be specified in the study protocol.

Recommendation 5: Data collection and information about all rel-
evant treatments and key covariates should be recorded for all initial 
study participants, whether or not participants received the interven-
tion specified in the protocol.

REDUCING DROPOUTS THROUGH TRIAL CONDUCT

In addition to trial design, aspects of trial conduct can also substantially 
reduce the amount of missing data. Chapter 3 outlines specific trial conduct 
techniques that should be considered. Given the importance of reducing the 
frequency of missing data, the monitoring of missing data from the design 
stage throughout the conduct of a trial needs to be accounted for in the 
trial protocol.

Recommendation 6: Study sponsors should explicitly anticipate poten-
tial problems of missing data. In particular, the trial protocol should 
contain a section that addresses missing data issues, including the 
anticipated amount of missing data, and steps taken in trial design and 
trial conduct to monitor and limit the impact of missing data.
 
Recommendation 7: Informed consent documents should emphasize 
the importance of collecting outcome data from individuals who choose 
to discontinue treatment during the study, and they should encourage 
participants to provide this information whether or not they complete 
the anticipated course of study treatment.

Recommendation 8: All trial protocols should recognize the importance 
of minimizing the amount of missing data, and, in particular, they 
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should set a minimum rate of completeness for the primary outcome(s), 
based on what has been achievable in similar past trials. 

TREATING MISSING DATA

Missing data are often unavoidable, despite best efforts to reduce 
their occurrence in trial design and conduct. The validity of assumptions 
concerning the source of missing data can only be assessed jointly by both 
data analysts and clinicians. Therefore, it is important that the assumptions 
underlying any selected analysis technique be clearly articulated so that they 
can be evaluated by clinicians as well as by statistical analysts.

Recommendation 9: Statistical methods for handling missing data 
should be specified by clinical trial sponsors in study protocols, and 
their associated assumptions stated in a way that can be understood 
by clinicians.

Methods like last observation carried forward (LOCF) and baseline 
observation carried forward (BOCF) are commonly applied in situations in 
which their underlying assumptions are unrealistic. The analysis methods 
used should yield confidence intervals for the treatment effect that have the 
claimed coverage properties and tests should have their nominal size when 
data are missing. 

Recommendation 10: Single imputation methods like last observation 
carried forward and baseline observation carried forward should not be 
used as the primary approach to the treatment of missing data unless 
the assumptions that underlie them are scientifically justified. 

Recommendation 11: Parametric models in general, and random effects 
models in particular, should be used with caution, with all their assump-
tions clearly spelled out and justified. Models relying on parametric 
assumptions should be accompanied by goodness-of-fit procedures.

Recommendation 12: It is important that the primary analysis of the 
data from a clinical trial should account for the uncertainty attribut-
able to missing data, so that under the stated missing data assumptions 
the associated significance tests have valid type I error rates and the 
confidence intervals have the nominal coverage properties. For inverse 
probability weighting and maximum likelihood methods, this analysis 
can be accomplished by appropriate computation of standard errors, 
using either asymptotic results or the bootstrap. For imputation, it 
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is necessary to use appropriate rules for multiply imputing missing 
responses and combining results across imputed datasets because single 
imputation does not account for all sources of variability.

Recommendation 13: Weighted generalized estimating equations methods 
should be more widely used in settings when missing at random can be 
well justified and a stable weight model can be determined, as a possibly 
useful alternative to parametric modeling. 

One very useful source of information that appears to have been rarely 
used is the follow-up of a sample of participants who withdrew from a 
study. Such data could be very useful in determining reasons for withdrawal 
and their missing outcome measurements. 

Recommendation 14: When substantial missing data are anticipated, 
auxiliary information should be collected that is believed to be associ-
ated with reasons for missing values and with the outcomes of interest. 
This could improve the primary analysis through use of a more appro-
priate missing at random model or help to carry out sensitivity analyses 
to assess the impact of missing data on estimates of treatment differ-
ences. In addition, investigators should seriously consider following 
up all or a random sample of trial dropouts, who have not withdrawn 
consent, to ask them to indicate why they dropped out of the study, 
and, if they are willing, to collect outcome measurements from them.

Given that the assumptions for the missing data mechanism cannot be 
validated, the sensitivity of inferences for treatment effects in clinical trials 
to those assumptions needs to be assessed.

Recommendation 15: Sensitivity analyses should be part of the primary 
reporting of findings from clinical trials. Examining sensitivity to the 
assumptions about the missing data mechanism should be a mandatory 
component of reporting.

UNDERSTANDING THE CAUSES AND DEGREE 
OF DROPOUTS IN CLINICAL TRIALS

A crucial issue that sponsors must wrestle with in planning a clinical 
trial is how much missing data they are likely to experience, how much 
could be reduced through the use of various techniques (such as those 
outlined in this report), and consequently if they implement these various 
techniques, what degree of missingness is likely to remain. The answers to 
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these questions will help trial sponsors decide on how to plan for missing 
data when determining sample size, whether steps are needed to reduce the 
amount of missing data (some of which may be resource intensive), and 
the potential for lack of robustness of final estimates of intervention effects 
to assumptions about missing data. In addition, analysts need to know 
what assumptions about the missing data mechanisms are scientifically 
defensible.

Information from previously collected clinical studies would help in 
answering these questions. Although FDA retains data from all clinical 
trials over which it has oversight, the data are confidential to the company 
that sponsored the trial and are therefore not shared. And although there 
is some research on why participants drop out of different kinds of clinical 
trials, empirical evidence is lacking for many types of trials. There is a need 
for more standardized data collection, documentation, and analysis of the 
reasons for and the frequency of missing data. Systematic investigations of 
factors related to treatment dropout and withdrawal and to missing data 
more generally are needed. 

A pharmaceutical company that has been researching interventions in 
a particular area for a long time may have internal data that can provide 
some of this information. However, if a company is small or has limited 
prior experience, having access to information from prior clinical trials 
would be extremely useful in trial design. 

Recommendation 16: The U.S. Food and Drug Administration and the 
National Institutes of Health should make use of their extensive clinical 
trial databases to carry out a program of research, both internal and 
external, to identify common rates and causes of missing data in dif-
ferent domains and how different models perform in different settings. 
The results of such research can be used to inform future study designs 
and protocols. 

While it is difficult to be specific, characteristics of a trial that has failed 
because of missing data concerns include (a) rates of missing data that are 
two to three times as large as the difference in rate of successful outcome 
between the groups; (b) differential rates of missing data across treatment 
arms, indicating a high likelihood that biases would not cancel out in the 
treatment comparison; (c) lack of a record about the reasons for missing 
data, making it unclear whether the mechanisms are MAR; (d) lack of 
auxiliary data that would be the basis for plausible missing data adjust-
ments; (e) marginal treatment effects that might be easily overturned by 
uncertainty from missing data; and (f) inadequate analysis methods that do 
not reflect uncertainty from missing data.
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Many of the analysis techniques described in Chapters 4 and 5 have 
been explored both theoretically and in applications in the research litera-
ture over the past 20 years. However, their applications to clinical trials 
have been limited. There seems to be a reticence on the part of biostatisti-
cians, both at the drug and device companies and at FDA, to embrace these 
various techniques. We conjecture that this reticence may be a by-product 
of the regulatory environment, a result of the limited development of sup-
porting software for newer methods, or a result of a lack of training and 
education. We believe that once these techniques are implemented in a few 
major clinical trials, any conservatism from the regulatory environment 
would be offset by the more effective use of the information provided by 
these techniques. Also, as pointed out in Chapters 4 and 5, software now 
exists for most of the techniques as part of the most commonly used sta-
tistical packages. The remaining possibility, training and education, can be 
addressed by making education at FDA a higher priority. It is also important 
that FDA’s clinical reviewers have some understanding of modern analysis 
methods so that they can assist in the judgment as to the reasonableness of 
assumed missing data mechanisms. 

Recommendation 17: The U.S. Food and Drug Administration (FDA) 
and drug, device, and biologic companies that sponsor clinical trials 
should carry out continued training of their analysts to keep abreast 
of up-to-date techniques for missing data analysis. FDA should also 
encourage continued training of their clinical reviewers to make them 
broadly familiar with missing data terminology and missing data 
methods.

Throughout this report, we have advocated that further research be car-
ried out in a number of important areas. We have decided to bring together 
those calls for additional research here in this final chapter. Areas in need 
of further research include 

 (1) designs for the follow-up of participants in clinical trials who have 
dropped out of the study (e.g., referred to here as analysis dropouts) and 
who have not withdrawn their consent,

 (2) collecting the typical rates and likely causes of missing data in 
various kinds of clinical trials, 

 (3) the effect of missing data on the power of clinical trials, 
 (4) how to set useful target rates and acceptable rates of missing data 

in clinical trials, 
 (5) the robustness of missing data methods such as inverse probability 

weighting methods and multiple imputation methods to assumptions, 
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 (6) the assessment of goodness-of-fit for the parametric models used 
to analyze data from clinical trials (when there is missing data), 

 (7) the performance of double-robust procedures in comparison to 
more commonly used procedures, 

 (8) the impact of missingness in auxiliary variables on the various 
current methods, and ways of reducing the associated bias, 

 (9) methods of sensitivity analysis in clinical trials, particularly for 
nonmonotone patterns in longitudinal data, 

(10) methods for assessing and limiting the impact of informative cen-
soring for time-to-event outcomes, and 

(11) how to develop effective decision rules based on the input from 
sensitivity analyses.

We have collected the highest priority of these calls for additional 
research in a final recommendation, adding to that a call for the develop-
ment of the associated software tools.

Recommendation 18: The treatment of missing data in clinical trials, 
being a crucial issue, should have a higher priority for sponsors of statis-
tical research, such as the National Institutes of Health and the National 
Science Foundation. There remain several important areas where prog-
ress is particularly needed, namely: (1) methods for sensitivity analysis 
and principled decision making based on the results from sensitivity 
analyses, (2) analysis of data where the missingness pattern is non-
monotone, (3) sample size calculations in the presence of missing data, 
and (4) design of clinical trials, in particular plans for follow-up after 
treatment discontinuation (degree of sampling, how many attempts are 
made, etc.), and (5) doable robust methods, to more clearly understand 
their strengths and vulnerabilities in practical settings. The development 
of software that supports coherent missing data analyses is also a high 
priority. 
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Appendix A

Clinical Trials:  
Overview and Terminology

Prior to the adoption of a new treatment for use in a population, it is 
important to assess the impact that the use of the treatment will have on 
the general health of the population. That is, one wants to know how the 
general health of the population after adoption of the treatment compares 
with what it would have been if the treatment had not been adopted. In 
practice, this can never be known exactly (since it is a counterfactual). But 
the governmental agencies that regulate approval of new treatments are 
charged with judging the treatment’s impact to the extent possible. This 
appendix presents an overview of the purposes and various aspects of clini-
cal trials and definitions of some of the key terms used in our study. 

BASIC TERMS

An effective treatment is one that provides improvement in the general 
health of the population viewed as a whole. An efficacious treatment is one 
that in some identifiable subpopulation results in an outcome judged more 
beneficial than that which would exist without treatment. An efficacious 
treatment may not be effective owing either to its inability to be adminis-
tered safely in a broad population or to its effect on other aspects of patient 
treatment and behaviors beyond the outcome used to evaluate efficacy. 

It is also useful to differentiate among the concepts of a simple treat-
ment, which would usually consist of a prescribed dose of given frequency 
and duration; a treatment regimen, which would usually involve rules for 
dose escalation or reduction in order to obtain greater effect while avoid-
ing intolerable adverse experiences; and a treatment strategy, which would 
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include plans for auxiliary treatments and progression to other treatments 
in the face of disease progression.

In a phase III confirmatory study (see below), the ideal is typically an 
effectiveness study of a treatment strategy: effectiveness because it is the 
impact of a treatment on the population and a treatment strategy because 
the initial prescribed treatment may greatly affect the concomitant treat-
ments and follow-on treatments administered to patients. However, true 
effectiveness can never be tested in an unbiased fashion because the trial 
setting itself is artificial and because observational studies are always sub-
ject to unmeasured bias. Phase III studies should be much closer to an effec-
tiveness study than would be the phase II studies that might use surrogate 
biomarkers as a primary outcome in a subpopulation of the patients that 
might ultimately receive an approved treatment.

Whether the primary goal of a clinical trial is effectiveness or efficacy, 
the scientific validity of the comparison of the new treatment to some stan-
dard depends on the comparability of the groups that receive the experi-
mental and control treatments. Randomization of patients to two or more 
treatment groups is the primary tool to ensure the comparability of samples, 
at least on average. Hence, it is of utmost importance that the data from 
each clinical trial be analyzed consistent with the intent-to-treat principle, 
which dictates that each subject’s data be included in the treatment group 
to which he or she is randomized. This approach is clearly in keeping with 
an evaluation of the effectiveness of a treatment strategy, but even when 
evaluation of efficacy is the goal, the clinical trial should ideally be designed 
in such a way that all randomized patients will contribute to the estimate 
of treatment efficacy. However, in limited situations, it might be judged 
acceptable to evaluate efficacy in a modified intent-to-treat subgroup of 
randomized patients defined on the basis of measurements made prior to 
randomization and ascertained in an unbiased fashion for each treatment 
group. In this setting, safety would still be evaluated in patients who are 
not in the subgroup. 

In neither effectiveness nor efficacy studies would an analysis based 
on a compliant or per-protocol analysis population (defined as patients 
who adhered strictly to the prescribed dose, frequency, and duration of the 
assigned treatments) be considered a scientifically rigorous assessment of 
the treatment. Instead, when the efficacy of the treatment in a compliant 
population is of interest, one needs to find a way to randomize only those 
patients who can tolerate the treatment and who will adhere to the protocol 
(see below). 
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GOAL: INDICATION FOR A NEW TREATMENT

Ultimately, a new treatment is characterized by its “indication.” An 
ideal treatment indication will consist of a disease, a patient population, an 
intervention, and an outcome.

The Disease The exact medical definition of “disease” can range from 
primarily signs and symptoms (e.g., headache, pneumonia) to presumed 
causative agents (e.g., pneumococcal pneumonia, gram negative pneumo-
nia, fungal pneumonia, or carcinomatous pneumonia). The definition of 
a disease is frequently not refined further than necessary to decide on an 
appropriate treatment strategy. In this way, the identification of a beneficial 
treatment often becomes the definition of the disease (e.g., all gram negative 
pneumonias are considered together due to the common treatment chosen 
in those settings). Other times, the lack of efficacy of the usual treatment 
is incorporated into the definition of the disease (multidrug resistant Staph 
aureus). It is common that particular diseases are diagnosed through a series 
of tests and procedures. The nomenclature for the disease may include the 
method of diagnosis (e.g., culture positive gram negative septicemia). How-
ever, it is rare that any sign or symptom be “pathognomonic”—uniquely 
identifying—for the disease.

The Population of Patients Because of concurrent medical conditions, a 
treatment might be indicated only for a subpopulation of patients who 
satisfy the diagnostic criteria for the disease. There might be known safe 
and effective therapies that are regarded as the first-line treatment of the 
disease. In such a case, an indication for a new treatment might indicate the 
treatment’s use only in patients for whom the standard therapy is a priori 
judged inadvisable due to concurrent medical conditions (e.g., pediatrics, 
pregnancy, poor renal function in a drug cleared by the kidneys) or who 
cannot take the standard therapy (e.g., due to lack of tolerance with respect 
to side effects or lack of efficacy). 

The Intervention An intervention consists of a formulation of the drug(s) 
or device(s), a mode of administration, the dosing strategy, auxiliary treat-
ments, and the duration of treatment. Some treatments are combinations of 
drugs, either in a common formulation or administered separately. A mode 
of administration can include topical, oral, subcutaneous, intramuscular, or 
intravenous. In some circumstances the mode of administration may even 
stipulate special training for the person administering the treatment. The 
dose may be specified as a common level to be used by all individuals or as 
a dose specific to patient body size or body surface area. The dosing strategy 
might include a gradual increase in dose as treatment is initiated, a tapering 
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of dose as the patient is weaned from the therapy, a regimen for increasing 
or decreasing the dose in response to observed patient conditions at the 
time of dosing (e.g., serum glucose in insulin therapy) or observed patient 
response to therapy (e.g., increasing the dose if the effect is not optimal or 
decreasing the dose in the presence of treatment toxicity).

Auxiliary treatments might be administered as prophylaxis against 
known toxic effects (e.g., G-CSF with cancer treatments, antihistamines 
with drugs that tend to trigger an immune response) or for rescue from 
toxic effects (e.g., methotrexate followed by leucovorin rescue). One also 
has to indicate the frequency of administering the treatment. Finally, there 
is the duration of treatment, which might include “drug holidays.”

The Desired Outcome The intended outcome of a treatment is typically 
characterized clinically, as outcomes that materially affect the clinical mani-
festations of the disease (e.g., lower risk of mortality, relief of symptoms, 
improvement in quality of life). In some settings, a strong risk factor 
thought to represent a surrogate outcome measure of subclinical disease 
or disease risk will be used (e.g., hypertension). The distinction between 
surrogate and clinical outcomes depends on the degree to which a patient’s 
sense of well-being is directly related to the outcome or the degree to which 
it is known that any modifications in the biomarker might possibly not be 
associated with an improvement in the clinical outcome (i.e., treating the 
symptom but not the disease). The precise definition of the outcome might 
explicitly include the time frame of measurement (e.g., postprandial serum 
glucose levels) and the method of measurement (e.g., decreasing serum glu-
cose levels as reflected in Hemoglobin A1c), or the time frame might only 
be implicitly defined. 

Treatment Discovery Process

The treatment discovery process is an iterative process of studying a 
disease, hypothesizing and developing treatments, evaluating those treat-
ments, and, for successful treatments, further refining the indication to 
account for lack of efficacy or toxicities (or both) in particular subgroups 
of patients. As a rule, the scientific development of a particular treatment 
indication is often connected with that of other treatments, and thus it may 
be difficult to identify the exact process that led to the adoption of some 
treatment. Nevertheless, the following describes a general chronology of 
events.

Initially, some targeted disease is characterized from observational 
 studies (including epidemiologic studies of risk factors for the disease), clini-
cal observation of typical disease progression and predictors of outcomes, 
and laboratory studies of biochemical and histologic changes in the diseased 
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patients’ tissues. Often, this characterization of a disease starts with a con-
stellation of symptoms and signs, and much of the ensuing observational 
research is directed toward finding a causative agent. Observational studies 
of diseased patients are then often augmented by laboratory experiments 
that try to further illuminate the causation of the disease and the cellu-
lar and physiologic mechanism that cause its major complications. These 
experiments might involve in vitro studies of cell lines and animal models 
of the disease. 

Based on the understanding of the disease gained from the above types 
of studies, scientists might propose a potential treatment or preventive strat-
egy. The proposed treatment is then evaluated and further refined in a series 
of preclinical laboratory and animal experiments. Such experiments might 
focus on two general approaches: in vitro characterization of the chemical 
and biochemical interactions of new drugs with cellular and extracellular 
constituents of the human body, and in vitro characterization of the effects 
of the new therapies on cellular mechanisms using cell lines or animal 
experiments in suitable species. The goal of this work is to characterize:

• pharmacokinetics, measuring the effect of dose on rates of absorp-
tion and excretion of drugs from various body compartments; 

• pharmacodynamics, measuring the intended or unintended effects 
of dose on physiologic measures; 

• toxicology, measuring the effect of dose on histopathologic lesions 
in major organ systems; 

• reproductive and embryologic effects as a function of dose; and 
• in vivo drug-drug interactions that might lead to attenuation or 

potentiation of intended or unintended effects of the treatment or that 
might affect the pharmacokinetics of the drugs.

When sufficient preclinical studies have been performed to conclude 
that the treatment is basically safe, work moves to experiments in human 
volunteers. In order to sequentially investigate safety and then efficacy and 
effectiveness issues in a manner that protects human subjects from harm, 
the process of investigating new treatments typically goes through a phased 
series of clinical trials. The considerations during each phase depend on 
whether the investigational product is targeting disease prevention, diagno-
sis, or treatment, as well as the severity of disease, the type of intervention 
(e.g., drug, biologic agent, device, or behavior), and the prior knowledge 
of treatment risks. The following thus describes only the general principles 
behind the phased investigation.
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Clinical Trial Phases

Phase I clinical trials provide initial safety data to support further test-
ing with larger samples. As the focus of these studies is primarily safety of 
investigation rather than efficacy or effectiveness of treatment, the study 
subjects are frequently a small number of healthy volunteers. A notable 
exception occurs when a treatment that is designed to be administered in 
life-threatening disease is known to have severe toxicity. For instance, in 
phase I cancer clinical trials, the treatment might be first tested in patients 
whose disease has proven resistant to all other therapies. 

“First in human” clinical trials might start with a single administration 
of the treatment at an extremely low dose in a few subjects. In the absence 
of unacceptable toxicity, subsequent patients might receive increasing 
doses. Owing to a desire to slowly increase exposure to the treatment, 
patients may not be randomized across all doses. In cancer chemotherapy 
trials, in particular, there may be no control group. Pharmacokinetic data 
might be gathered on both single doses and repeated dosing to assess the 
rates of absorption and elimination in humans. These kinds of studies 
might also consider pharmacokinetics in the presence of renal or hepatic 
impairment, as well as pharmacokinetics in the presence of meals and 
other drugs. When phase I trial results show unexpected severe toxicities, 
further consideration of the treatment might be curtailed.

Phase II clinical trials seek further safety data and preliminary evidence 
in support of biological effect. A slightly larger sample of subjects are 
administered the treatment at a dose or doses that were preliminarily judged 
safe in the phase I studies. Safety data are collected in a systematic fash-
ion, including specified monitoring of any potential side effects that were 
identified previously. Phase II studies also serve to screen for treatments 
that show some sign of biological effect, such as a biological marker that 
is a surrogate for the clinical outcome that is of interest. Products that fail 
to demonstrate a certain level of biological activity might be abandoned. 
Such a screening process is more efficient than other approaches in finding 
effective treatments from a large population of ideas. 

Even when the phase II clinical trials demonstrate a desired effect on 
the biologic outcome, it is common for investigators to use the results of 
the clinical trial to identify more specific factors: 

• a more precise definition of the disease characteristics that would 
indicate the types of patients likely to benefit most from the treatment, 

• a more refined definition of the population to be treated in order 
to eliminate subjects who might experience greater toxicity, 

• a single treatment regimen (dose or dosing strategy, frequency, 
duration, auxiliary prophylactic, or rescue therapies), or 
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• a clinical measure to serve as the primary outcome, as well as a 
statistical measure to summarize the distribution of that clinical outcome 
across subjects. 

The selection of this primary outcome (and summary measure) is based 
on consideration of (in order of importance): (1) the clinical measure that 
is most indicative of an improved clinical outcome for the patient, (2) a 
measure that the treatment might plausibly affect, and (3) an outcome that 
can be compared across treatment groups with good statistical precision.

Phase III clinical trials, which are the main focus of the panel’s report, 
are large confirmatory studies meant to establish an acceptable benefit/safety 
profile in order to gain regulatory approval for a precisely defined indica-
tion (“registrational” clinical trials). Phase III trials are well-controlled trials 
that provide scientifically credible and statistically strong evidence about 
the treatment indication hypothesized at the end of phase II investigation. 

In order for a phase III trial to be regarded as confirmatory, it is crucial 
that the hypotheses being tested be specified before the start of the trial. 
Sample sizes are typically chosen to have a high probability of ruling out 
the possibility of ineffective therapies and to estimate the treatment effect 
with high statistical precision. Collection of safety data continues to play 
a major role, as the larger sample sizes in the phase III study afford a 
 better opportunity to identify relatively rare serious toxicities. As a general 
rule, the approval process does not demand statistically proven increased 
rates of toxicities prior to providing warnings to patients and physicians. 
Depending on the disease and patient population, anecdotal occurrence of 
unexpected extremely serious adverse events will often dictate further study 
of a proposed treatment.

Evidence from phase III studies that strongly support the proposed indi-
cation will generally lead to adoption of the therapy. Sometimes, however, 
even when a proposed treatment has “met its outcome” in the overall study 
population, the indication (treatment) actually adopted might be more 
restrictive than was initially proposed due to lessened efficacy or heightened 
toxicity observed in a subgroup of patients.

Suppose, for example, that there are two subpopulations, A and B, 
and that the proposed therapy “met its outcome” in the combined sample. 
But suppose that when analyzed alone, subpopulation B did not appear to 
have an acceptable benefit/risk ratio (which indicates that subpopulation A 
exhibited a strong benefit of the treatment). Because it is not uncommon for 
proposed treatments to present safety issues, more focus is often placed on 
making sure that harmful treatments do not get adopted. In this example, 
subpopulation A might be approved to receive the new treatment, while 
regulators require additional data in support of the benefits of the treatment 
for subpopulation B.
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There are two potential drawbacks to this “data-driven” restriction of 
indication. One is that if the observed difference in treatment benefit/risk is 
spurious, subpopulation B is deprived of a useful therapy until additional 
data is gathered. The other is that if the observed difference in treatment 
benefit/risk is spurious, the commercial sponsor will have lost income from 
sales to B as well as having the added expense of further studies in that 
subgroup.

Phase IV clinical trials are postmarketing trials that are meant to evalu-
ate rare but serious effects that cannot be assessed in the smaller Phase III 
studies.

The above description is most applicable to the evaluation of new 
therapies. In disease prevention, some authors have suggested that phase III 
trials focus on efficacy by demonstrating the treatment benefit of prevention 
through some surrogate biomarker of the disease (e.g., colon polyps as a 
precursor lesion for colon cancer) and phase IV trials focus on effective-
ness, using the clinically relevant outcome in a population-based sample 
of the types of individuals likely to receive an adopted treatment. In doing 
so, these studies may also aim to evaluate changes in individual behavior 
that might mitigate the efficacy of the treatment (e.g., increased risk-taking 
behavior when vaccinated for HIV or treated for peanut allergies).

GOAL OF EFFECTIVENESS VERSUS EFFICACY

Evidence-based medicine often involves a stepwise process that closely 
parallels the parts of a treatment indication described above. These steps 
consider (1) patient population (the definition of the disease and any restric-
tions on patient characteristics apart from disease manifestations), (2) 
intervention, (3) comparison (alternatives to the intervention that might be 
considered), and (4) outcome (the clinical condition that is desired), and 
they are referred to as PICO. Distinctions between effectiveness and efficacy 
are given below in the context of PICO.

Effectiveness: Phase III Trials

An effective treatment is one that provides improvement in the general 
health of the population viewed as a whole: “general health” in some sense 
considers the average state of health of the population. An “effectiveness 
trial” enrolls a representative sample from the population of patients who 
would eventually receive the treatment. The effectiveness study should 
strive for an inclusive setting, which might include both independently 
living as well as institutionalized patients, and it should, insofar as safety 
permits, not restrict patients based on concomitant disease unless such a 
restriction will be in the ultimate indication. 
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Ideally, the eligibility criteria would consist of inclusion criteria that 
define the population of patients that would ultimately be in the indication 
for the treatment, the criteria would also delineate patients who might be 
inappropriate for a randomized controlled trial evaluating an unproven 
therapy. The intervention would then be administered as it will be given to a 
patient, which might include (a) decreased dosage due to lack of tolerability, 
(b) lack of compliance on the part of the patient, (c) auxiliary treatments 
used to prevent or treat unintended effects of the treatment, and (d) other 
changes of patient or treating clinician behavior. 

The trial would then compare the new intervention to the treatment the 
population of patients would otherwise (in the absence of the new inter-
vention) have received and evaluate an outcome that is the best summary 
of “general health” for the patient population, which might be affected by 
(a) other changes in behavior that are associated with receiving the treat-
ment, and (b) the timing of the intervention and the timing and methods of 
measurement for the outcome.

Efficacy: Phase II Trials 

Treatment efficacy can be defined in a subset of the patients who would 
eventually be treated, and it can be based on an outcome that is merely 
thought to be an indicator of eventual clinical benefit. An “efficacy trial” 
might enroll patients from a defined subset of diseased patients who are 
most likely to show evidence of treatment effect. This could be because 
(a) they have been previously (prior to randomization) found to be able to 
tolerate the treatment (e.g., during a screening “run-in” phase), (b) they 
have been previously (prior to randomization) found to be compliant with 
randomized controlled trial procedures (e.g., during a screening “run-in” 
phase), or (c) there is reason to believe prior to randomization that they 
are relatively more likely to have a beneficial treatment effect than the 
population of all patients with the disease. A key point is that all random-
ized patients will be analyzed for their outcomes. Any “enrichment” of the 
sample to maximize response needs to be done prior to randomization. 

The intervention must be clearly defined and may differ from the even-
tual (“effectiveness”) intervention for several reasons: (a) the care providers 
administering the treatment are more highly trained, (b) the treatment 
protocol is more rigidly enforced, (c) inducements for high compliance are 
used, or (d) auxiliary treatments and additional treatments in the presence 
of lack of efficacy are restricted or proscribed. In addition, the care that the 
comparison groups receive might not be the standard of care the patient 
would have received in the absence of the randomized controlled trial. 
Moreover, the primary outcome may not be the clinical outcome of great-
est public health relevance because it may be measured using techniques or 
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schedules that do not coincide with usual clinical practice (e.g., heightened 
radiographic surveillance for subclinical progression of cancer rather than 
examinations based on clinical events), or it may be an intermediate marker 
that is believed, but not known, to be a necessary and sufficient indicator 
of the true clinical outcome (e.g., tumor response in a cancer clinical trial, 
arrhythmias in studies of survival following myocardial infarction).

Notes on Efficacy Versus Effectiveness

True effectiveness can never be tested in an unbiased fashion because 
the randomized controlled trial setting itself is artificial and because obser-
vational studies are always subject to unmeasured bias. Nonetheless, it is 
important that in phase III trials, the effectiveness of a therapy be assessed 
as accurately and precisely as possible. 

An efficacious treatment may not be effective for at least four major 
reasons. First, the kind of patients who were not represented in the efficacy 
trial have worse clinical outcomes that overwhelm any benefit seen in the 
efficacy trial sample. This may happen because (a) they have a heightened 
susceptibility to serious adverse events leading to poor clinical outcomes; 
(b) they cannot tolerate the treatment, and the therapeutic window for 
administering alternative therapies has passed; (c) the broader population of 
patients includes individuals whose disease is so mild or so severe that the 
intervention provides no benefit, but those patients do experience toxicities; 
or (d) off-label use of the therapy confers risk but no benefit at a level that 
outweighs the benefit in the more restrictive population in the indication.

Second, the intervention tested in the efficacy trial differs from the inter-
vention that would be realized in the more inclusive population of patients 
with the disease or condition, because (a) the skill of the investigators 
administering the intervention is necessary for the treatment benefit, but 
that skill is not present in the general setting; (b) the efficacy trial restricted 
use of auxiliary treatments that interact negatively with the experimental 
treatment; (c) the efficacy trial restricted use of auxiliary treatments that are 
in wide use in the population and provide the same benefit as the treatment 
(perhaps with fewer toxicities); or (d) the compliance of patients with the 
experimental therapy is markedly worse than was achieved in the efficacy 
trial, and the toxic effects of the therapy are manifested with lesser exposure 
than the beneficial effects.

Third, the comparison group in the efficacy trial does not encompass 
the true standard of care that patients would receive in the absence of the 
experimental treatment, and the experimental treatment does not provide 
added benefit over that standard of care.

Fourth, the primary outcome used in the efficacy trial is not predictive 
of the true clinical outcome, because (a) the predictive value of an interme-
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diate marker is affected by the treatment (i.e., “treating a symptom, not the 
disease”); (b) the schedule of outcome assessment in the efficacy trial led to 
additional beneficial auxiliary treatments that are not realized in standard 
medical care; or (c) the population of patients changed their behavior (e.g., 
risk taking) when taking a treatment that is or is thought to be protective.

DEFINITIONS

Treatments

As noted above, it is useful to differentiate between the concepts of a 
simple treatment, a treatment regimen, and a treatment strategy. 

• Treatment (sometimes referred to as nominal experimental treat-
ment) includes formulation, administration, dose (fixed, per weight, per body 
surface area, adaptive), frequency (including drug holidays), and duration.

• Treatment regimen includes nominal experimental treatment as 
above, prescribed prophylactic treatments to prevent adverse events, dose 
modifications in the presence of adverse events or demonstrated efficacy, 
and prescribed auxiliary treatments for known adverse events.

• Treatment strategy includes treatment regimen as above, patient 
compliance, auxiliary treatments according to the usual standards of care, 
and rescue treatments for lack of effect following the usual standards of 
care with prior characterization of potential rescue treatments. Rescue treat-
ment may represent (a) a second-line (less effective) treatment used in failure 
of primary therapy, (b) a crossover to an established standard of care that is 
used as the control treatment, (c) a crossover to the experimental treatment, 
or (d) a progression to a treatment known to be more effective, but avoided 
for other reasons (e.g., opiates in pain relief). The treatment strategy is what 
is truly tested when randomized controlled trial data is analyzed. 

Study Design

The following are some common study designs for randomized clinical 
trials:

• Randomized cohort design: eligible patients are randomized to 
therapy and followed for outcomes.

• Prerandomization run-in: patients are started on a placebo to mea-
sure compliance with treatment and study procedures or are started on an 
experimental treatment to ensure tolerance.

• Randomized withdrawal: All subjects start on experimental treat-
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ment, and proof of efficacy is based on worsened clinical status following 
randomized withdrawal.

Time Frame of Measurement

The following are some common time frames for randomized clinical 
trials:

• Single fixed study time: outcomes are assessed at some fixed time 
defined postrandomization.

• Interval study time: outcome is averaged over a specified interval of 
time postrandomization, or outcome is contrasted over a specified interval 
of time postrandomization.

• Single fixed event time: outcome is assessed at some time defined 
by a particular event (e.g., childbirth).

• Interval based on event: outcome is assessed over the interval up to 
a particular event (e.g., time until liver transplant).

• Administratively censored time to event: outcome is time to some 
defined event, length of follow-up may vary by individual, and censoring 
occurs only due to time from randomization to data analysis.

• Time to event subject to competing risks: outcome is time to some 
defined event providing it occurs prior to another (nuisance) event that would 
preclude ability to measure, length of follow-up may vary by individual, and 
(scientific relevance depends on whether competing risk is noninformative 
and whether other processes will alter risk of the (nuisance) event. 

Scientific Outcomes

Two scientific outcomes for randomized clinical trials are common. One 
is clinical outcomes, which include survival, specific quality-of-life factors 
(e.g., serious events leading to hospitalization, diminished functioning such 
as nonfatal myocardial infarctions, resolution of a chief complaint such as 
headache), and general quality of life. The other is surrogate outcomes, which 
include modification of risk factors for clinical outcomes (e.g., blood pres-
sure, HbA1c), intermediate subclinical outcomes (e.g., tumor progression), 
and biomarkers (e.g., PSA).

There are also studies with multiple outcomes. They include 

(1) Coprimary outcomes: the treatment must demonstrate effect on 
each of several outcomes separately, though there are situations in which 
the individuals do not need to meet each of the outcomes, which would 
include cases when safety and efficacy are evaluated separately.
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(2) An outcome index: an index for each individual is defined as the 
sum or average of measurements made on several different outcomes. 

(3) Composite outcomes, which include: (a) good outcome is defined 
by an individual’s meeting all outcomes, (b) bad outcome is defined by an 
individual’s failing to meet any of the outcomes, and (c) time of bad out-
come is defined as the earliest occurrence of any undesirable event.

Subject Participation

Eight levels of participation for subject participants can be specified. 

1. Screening only: an individual is considered for inclusion, may have 
protocol-specified measurements, and there are no protocol-specified inter-
ventions or treatments. 

2. Run-in: individuals receive protocol specified interventions, namely, 
placebo (for general compliance behavior) or experimental (for tolerance 
to treatment), and are nonrandomized (for individual specific measures) 
or randomized (for investigator training). Evaluation of outcomes will 
not be included in evaluation of efficacy or effectiveness, but if an indi-
vidual receives an experimental treatment, safety outcomes likely will be 
evaluated. 

3. Enrolled: patients are included who were ever assigned (by the 
criterion specified in the protocol) to receive the study intervention, and, in 
a randomized study, they are subjects who receive a randomization code.

4. Active participation with treatment: subjects adhere to some part of 
nominal treatment or treatment regimen, or subjects adhere to monitoring 
schedule. 

5. Active follow-up after study treatment discontinuation: a subject 
has stopped nominal treatment or treatment regimen but is adhering to full 
monitoring schedule. 

6. Reduced follow-up after study treatment discontinuation: a sub-
ject has stopped nominal treatment or treatment regimen, as well as most 
invasive or inconvenient monitoring schedule, and but is still followed for 
passively observable major clinical outcomes (e.g., survival). 

7. Loss to follow-up: clinical investigators cannot contact the par-
ticipant, though participation may resume as “active participation with 
treatment,” “active follow-up after study treatment discontinuation,” or 
“reduced follow-up after study treatment discontinuation” in the event the 
participant is later found. 

8. Withdrawn consent: the subject has withdrawn consent for further 
participation of any kind.
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Analysis Populations

The scientific and statistical validity of a randomized controlled trial 
depends on the comparability of the treatment groups. That comparability 
is achieved (on average) at the start of a study by randomizing patients to 
treatments. All events that occur postrandomization are then, plausibly, the 
result of the treatment assignment. Several terms are used to describe 
the analysis populations often discussed in clinical trials:

• Intent to treat: covers all patients who were ever enrolled. Patients are 
included in their assigned treatment group. In a randomized study, this popu-
lation guarantees comparability of treatment groups, and only this analysis 
population allows generalizability to specified eligibility criteria.

• Modified intent to treat: covers a subsample of enrolled patients 
for which the comparability of randomized groups and generalization of 
specified eligibility criteria is valid. Subjects are included in their assigned 
treatment group regardless of treatment actually received. Exclusion of 
enrolled patients is based on criteria defined prior to enrollment, though 
the reporting of the measurements used as the basis might be delayed for 
logistical reasons. No postrandomization events can be allowed to influence 
eligibility. The purpose is generally to focus an efficacy (not effectiveness) 
analysis for a subset of patients for whom the treatment is hypothesized to 
work best, but logistics precludes identification of that group in real time. 
As an example, an efficacy trial of a treatment for gram negative sepsis may 
use only those patients whose blood cultures obtained prior to enrollment 
are found to be positive for gram negative organisms on the laboratory 
reading performed 48 hours postspecimen collection. 

• Experimental treatment population (per protocol): Covers the sub-
set of enrolled patients who received any amount of the study drug (or other 
treatment). Patients are included in the assigned treatment group. This 
group does not include patients who were randomized but never received 
any treatment. Comparability of treatment groups is compromised in an 
unblinded study because the reasons for not administering the assigned 
treatment might be based on investigators’ or subjects’ biases. 

• Safety population: covers the patients included for the experimental 
treatment population, but any patient receiving the experimental interven-
tion is analyzed with the experimental group.

Types of Clinical Trial Data

The types of data collected in a clinical trial can be characterized by 
their ultimate use:
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• Prerandomization: data include determination of eligibility, indi-
cation of stage or severity of disease, indication of concomitant risk fac-
tors, and indication of important subgroups for specified or exploratory 
analyses. 

• Postrandomization primary treatment compliance: data include 
information on compliance (dose reduction, delay, and termination, 
 protocol-specified adaptations versus patient/provider choice) and on 
 realized treatment, which includes duration of treatment, cumulative dos-
ing, and dose intensity. 

• Postrandomization concomitant or auxiliary treatments: data 
include safety and efficacy outcomes, including intermediate measures and 
surrogate measures, as well as measures of secondary outcomes.

Mechanisms of Missing Data

There are a variety of ways that data that are intended to be collected 
in a clinical trial can be missing. A patient can fail to be included in the 
denominator for which measurement is scientifically relevant for at least 
two major reasons. One is that the patient was never included for scientific 
reasons (e.g., pregnancy test in men) or for efficiency reasons. The second 
is that the patient is no longer included due to end of protocol-specified 
time frame due to scientific reasons (e.g., death), efficacy or efficiency 
reasons (e.g., symptom relief in a trial separating efficacy and safety analy-
ses), or ethical reasons (e.g., crossover to a known, more effective rescue 
therapy).

There is also item nonresponse, which can be due to: (1) clinical inad-
visability for specific invasive procedures (e.g., liver biopsy in patient with 
bleeding disorder), (2) patient refusal for specific invasive procedures or 
measurements (e.g., refused biopsies), (3) patient refusal to answer specific 
questions (e.g., sexual behavior, income), or (4) patient’s missing clinic visits 
on time-sensitive measurements. 

There is administrative missingness, when the protocol allows study 
termination prior to complete data collection on each subject, leading to 
missing repeated measures or censored time to event. There is also missing-
ness from competing risks (e.g., censoring by death from other causes in a 
cancer clinical trial), missingness due to treatment noncompliance (which is 
relevant when trying to evaluate a treatment or treatment regimen, rather 
than a treatment strategy), missingness due to loss to follow-up, missingness 
due to withdrawal of consent, and missingness due to data editing (values 
out of range).
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Sensitivity Analysis

In the body of the report, we focus our discussion of sensitivity analyses 
on sensitivity to the assumption about the underlying mechanism producing 
the missing values. There are other aspects of a statistical model for which 
sensitivity should be assessed. Here is an outline of the steps leading to a 
comprehensive sensitivity analysis for such models:

(1) Presumed mechanisms of missing data: steps would include identi-
fication of data likely to be missing, speculation on mechanisms leading to 
that missing data, and specification of analyses of missing data patterns.

(2) Planned analyses to deal with missing data: presumed model 
assumes either missing completely at random, missing at random, or miss-
ing not at random (as defined in Chapter 3); the population with available 
data that will be used (e.g., complete cases, all available data, etc.); the 
variables that will be used; how variables will be modeled; distributional 
assumptions; the statistical model; and the statistical paradigm (Bayesian, 
frequentist, likelihood).

(3) Sensitivity analyses: one will need (a) a framework for exploring 
effect of distributional assumptions, (b) a framework for exploring effect of 
variable modeling (e.g., linear, dichotomized, interactions), (c) a framework 
for exploring effect of considering other variables, (d) a framework for 
exploring effect of changing population used for modeling, (e) a framework 
for exploring effect of assumptions of missing at random or missing not at 
random, and, finally, (f) possible augmented data collection that can shed 
light on assumptions.
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Appendix B

Biographical Sketches of 
Panel Members and Staff

RODERICK J.A. LITTLE (Chair) is Richard D. Remington collegiate pro-
fessor of biostatistics in the School of Public Health at the University of 
Michigan. Previously, he held positions at the World Fertility Survey, as an 
American Statistical Association (ASA)/National Science Foundation fellow 
at the U.S. Census Bureau, and in the Department of Biomathematics at 
the University of California at Los Angeles. His areas of research focus 
on the analysis of data with missing values in many areas of application, 
including clinical contexts. He received the ASA’s Wilks’ Memorial Award 
in 2004, and he gave the president’s invited address at the Joint Statistical 
Meetings in 2005. He is an elected member of the International Statisti-
cal Institute and a fellow of ASA. He received a B.A. with honors in mathe-
matics from Cambridge University and an M.S. in statistics and operational 
research and a Ph.D. in statistics from the Imperial College of Science and 
Technology of London University.

MICHAEL L. COHEN (Study Director) is a senior program officer for the 
Committee on National Statistics where he directs studies involving statis-
tical methodology, in particular on defense system testing and decennial 
census methodology. Formerly, he was a mathematical statistician at the 
Energy Information Administration, an assistant professor in the School of 
Public Affairs at the University of Maryland, and a visiting lecturer in the 
Department of Statistics at Princeton University. A fellow of ASA, he has a 
B.S. in mathematics from the University of Michigan, and M.S. and Ph.D. 
degrees in statistics from Stanford University.
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RALPH D’AGOSTINO is chair of the Mathematics and Statistics Depart-
ment, professor of mathematics/statistics and public health, and director of 
the Statistics and Consulting Unit and the executive director of the M.A./
Ph.D. program in biostatistics, all at Boston University. He has been affili-
ated with the Framingham Study since 1982, and is coprincipal investigator 
of the core contract and director of data management and statistical analysis 
for the study. His major fields of research are clinical trials, epidemiology, 
prognostics models, longitudinal analysis, multivariate analysis, robust-
ness, and outcomes/effectiveness research. He is a fellow of ASA and the 
Cardiovascular Epidemiology Council of the American Heart Association. 
He has twice received the special citation of the commissioner of the U.S. 
Food and Drug Administration (FDA), and he was named statistician of the 
year by the Boston Chapter of ASA. He received A.B. and A.M. degrees in 
mathematics from Boston University and a Ph.D. in mathematical statistics 
from Harvard University. 

KAY DICKERSIN is director of the Center for Clinical Trials at the 
 Bloomberg School of Public Health and professor in the Department of 
Epidemiology, both at Johns Hopkins School of Public Health. Previously, 
she served as the director of the Center for Clinical Trials and Evidence-
based Health Care at Brown University and held faculty positions in the 
Department of Epidemiology and Preventive Medicine and the Department 
of Ophthalmology at the University of Maryland School of Medicine. 
Her areas of research include randomized clinical trials, trials registers, 
systematic reviews and meta-analysis, publication bias, peer review, and 
evidence-based health care. She has received a Howard Hughes Fellowship 
in medical research from Harvard Medical School, and she is an elected 
member of the Institute of Medicine. She received B.A. and M.A. degrees 
in zoology from the University of California at Berkeley and a Ph.D. in 
epidemiology from the School of Hygiene and Public Health of Johns 
Hopkins University. 

SCOTT S. EMERSON is professor of biostatistics in the Department of 
Biostatistics at the University of Washington. Previously, he held faculty 
positions at the Fred Hutchinson Cancer Research Center and the Univer-
sity of Arizona. His areas of research are clinical trials, sequential testing, 
survival analysis, categorical data, nonparametric Bayesian statistics, classi-
fication and regression trees, statistical consulting, and computer-intensive 
methods in statistics. He is a fellow of ASA. He received a B.A. in physics, 
an M.S. in computer science, and an M.D. from the University of Virginia, 
as well as a Ph.D. in biostatistics from the University of Washington.
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JOHN T. FARRAR is assistant professor of epidemiology in the Department 
of Biostatistics and Epidemiology at the University of Pennsylvania School 
of Medicine. Previously, he held positions at the Children’s Hospital of San 
Francisco, at the New york Hospital of Cornell Medical Center in New 
york, and in the Department of Neurology of Memorial Sloan kettering 
Cancer Center. His areas of research include studies of pain and symptom 
management. Other interests include pharmaco-epidemiological studies 
using large databases, functional neuroimaging studies of the neurological 
manifestations of pain related disease, and novel methodologies in the 
design and execution of clinical trials. He received a Sc.B. from Brown 
University, an M.S. in clinical epidemiology from the University of Penn-
sylvania School of Medicine, an M.D. from the University of Rochester 
School of Medicine, and a Ph.D. in epidemiology and biostatistics from the 
University of Pennsylvania School of Medicine. 

CONSTANTINE FRANGAKIS is associate professor in the Department of 
Biostatistics in the Bloomberg School of Public Health at Johns Hopkins 
University. His areas of research include the development of designs and 
methods of analyses to evaluate treatments in medicine, public health 
and policy (causal inference), as well as new methods for studies that 
explore the factors that can be controlled. He is an elected fellow of the 
Center for Advanced Studies in the Behavioral Sciences, and the recipient 
of the H.C. yang Memorial Faculty Award in Cancer Prevention from 
Johns Hopkins University. He received a B.Sc. in mathematics with statistics 
from Imperial College of the University of London and his A.M. and Ph.D. 
degrees in statistics from Harvard University. 

JOSEPH W. HOGAN is professor in the biostatistics section of the Program 
in Public Health and a faculty member in the Center for Statistical Sciences, 
both at Brown University. His research focuses on statistical methods for 
missing data, causal inference, and sensitivity analysis, including work on 
informative dropout and noncompliance. Recent topics of investigation 
include formulation of coherent sensitivity analyses for understanding the 
effects of missing data assumptions on statistical inferences, use of infor-
mative prior distributions to characterize assumptions about missing data 
mechanisms, and use of flexible models such as regression splines for ana-
lyzing incomplete longitudinal data. He is a fellow of ASA. He received a 
B.A. in mathematics from the University of Connecticut, an M.S. in statis-
tics from the University of Southern California, and a Ph.D. in biostatistics 
from Harvard University. 
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GEERT MOLENBERGHS is professor of biostatistics at Universiteit 
 Hasselt and katholieke Universiteit Leuven in Belgium. He was the found-
ing director of the Center for Statistics at Universiteit Hasselt, and he is 
also the director of the Interuniversity Institute for Biostatistics and sta-
tistical bioinformatics. His research interests focus on surrogate markers 
in clinical trials, and on categorical, longitudinal, and incomplete data. 
He has served as president of the International Biometric Society, and he 
received the Guy Medal in Bronze from the Royal Statistical Society and 
the Myrto Lefkopoulou Award from the Harvard School of Public Health. 
He received a B.S. degree in mathematics and a Ph.D. in biostatistics (1993) 
from Universiteit Antwerpen.

SUSAN A. MURPHY is H.E. Robbins professor of statistics in the Depart-
ment of Statistics, research professor at the Institute for Social Research, 
and professor of psychiatry, all at the University of Michigan. Her primary 
interest is in causal inference and multistage decisions, sometimes called 
dynamic treatment regimes or adaptive treatment strategies. Prior to her 
current position, she held faculty positions in the Department of Statistics 
at the Pennsylvania State University. She is a fellow of ASA and the Institute 
of Mathematical Statistics, and she is an invited fellow at the Center for 
Advanced Study in the Behavioral Sciences. She received a B.S. in math-
ematics from Louisiana State University and a Ph.D. in statistics from the 
University of North Carolina at Chapel Hill. 

JAMES D. NEATON is professor of biostatistics in the Division of Bio-
statistics in the School of Public Health at the University of Minnesota. His 
areas of research include the design and conduct of clinical trials and the 
application of statistical models to the analysis of data arising from inter-
vention studies. He has served as president of the Society for Clinical Trials, 
as editor in chief of Controlled Clinical Trials, and on numerous data and 
safety monitoring committees. He is a fellow of ASA. He received B.A. 
and M.S. degrees in biometry from the University of Minnesota and a Ph.D. 
in biometry from the University of Minnesota.

ANDREA ROTNITZKY is a professor in the Departmento de Economia at 
the Universidad Torcuato Di Tella in Buenos Aires, Argentina. She is also a 
visiting professor in the Department of Biostatistics at the Harvard School 
of Public Health, where she previously held faculty positions. Her areas of 
research include inference with missing data, causal inference from observa-
tional studies with time dependent treatment and confounders, analysis of 
clinical trials with noncompliance, recovery of information from surrogate 
marker data in clinical trials, analysis of informatively censored data, and 
semiparametric efficiency theory. She received a B.S. in mathematics from 
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the Universidad de Buenos Aires in Argentina, and M.A. and Ph.D. degrees 
in statistics from the University of California at Berkeley. 

DANIEL SCHARFSTEIN is a professor and director of the graduate pro-
gram in the Department of Biostatistics in the Bloomberg School of Public 
Health at Johns Hopkins University. His research interests focus on infer-
ences about population parameters when they are not estimable from 
observed data without the imposition of strong, untestable assumptions. 
He focuses on both frequentist and Bayesian approaches to evaluating the 
robustness of results to such assumptions as missing at random and no 
unmeasured confounding. He received a B.S. in economics and in applied 
science from the University of Pennsylvania, an M.S. in operations research 
from Georgia Tech, and M.S. and Ph.D. degrees in biostatistics from the 
Harvard School of Public Health. 

WEICHUNG (JOE) SHIH is professor and chair of the Department of Bio-
statistics at the University of Medicine and Dentistry of New Jersey, where 
he also holds appointments in the Cancer Institute of New Jersey and the 
Environmental and Occupational Health Sciences Institute. Previously, he 
was a senior investigator and director of scientific staff in the Department 
of Clinical Biostatistics and Research Data Systems at Merck. His research 
interests include statistical methods for handling missing data and adaptive 
designs of clinical trials. He is a fellow of ASA and is an elected member of 
the International Statistics Institute. He received the Excellence in Service 
Award for participating in the advisory board of FDA of the U.S. Depart-
ment of Health and Human Services. He received a Ph.D. degree in statistics 
from the University of Minnesota. 

JAY P. SIEGEL is group president for biotechnology, immunology, and oncol-
ogy research and development and worldwide regulatory affairs, quality 
assurance, and benefit risk management at Johnson & Johnson. He also 
serves as the president of Centocor Research and Development. In addition to 
previous positions at Johnson & Johnson, he served as the director of Office 
of Therapeutics Research and Review in the Center for Biologics Evalua-
tion and Research at FDA, where he was also the founding director of the 
Division of Clinical Trial Design and Analysis. His areas of research include 
the development of new biotechnology pharmaceutical products, new uses 
for approved products, and new technologies for the efficient manufacture 
of such products. He has received numerous awards from the U.S. Depart-
ment of Health and Human Services for his government work, including 
the Distinguished Service Medal, the highest honor awarded by the Public 
Health Service. He is a fellow of the American College of Physicians and of 
the Infectious Disease Society of America. He received a B.S. in biology from 

The Prevention and Treatment of Missing Data in Clinical Trials

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/12955


��� MISSING DATA IN CLINICAL TRIALS

California Institute of Technology and an M.D. from the Stanford University 
School of Medicine. 

HAL STERN is professor and chair of the Department of Statistics at the 
University of California at Irvine. Previously, he held faculty positions at 
Harvard University and at Iowa State University, where he directed gradu-
ate studies and held the Laurence H. Baker chair in biological statistics. 
His interests are in the areas of Bayesian methods, model diagnostics, and 
statistical applications to biological and social sciences. He received a B.S. 
in mathematics from the Massachusetts Institute of Technology and M.S. 
and Ph.D. degrees in statistics from Stanford University.
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COMMITTEE ON NATIONAL STATISTICS

The Committee on National Statistics (CNSTAT) was established in 1972 
at the National Academies to improve the statistical methods and informa-
tion on which public policy decisions are based. The committee carries 
out studies, workshops, and other activities to foster better measures and 
fuller understanding of the economy, the environment, public health, crime 
education, immigration, poverty, welfare, and other public policy issues. It 
also evaluates ongoing statistical programs and tracks the statistical policy 
and coordinating activities of the federal government, serving a unique role 
at the intersection of statistics and public policy. The committee’s work is 
supported by a consortium of federal agencies through a National Science 
Foundation grant.
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