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ABSTRACT 

The heat of hydration of hydraulic cements results from the complex sets of phase 
dissolution and precipitation activity accompanying the addition of water to a cement. 
This process generates heat, as well as an increased potential for thermal cracking in 
some concrete structures.  The potential heat of this hydration process is measured in two 
ways: 1) through an acid dissolution of the raw cement and a hydrated cement after seven 
days, or 2) isothermal calorimetry.  In principal, the heat of hydration should be 
predictable from knowledge of the cement composition, and perhaps some measure of the 
cement fineness or total surface area. The improved mineralogical estimates provided by 
quantitative X-ray powder diffraction, together with improved statistical data exploration 
techniques that examine nonlinear combinations of candidate constituents, are used to 
explore alternative predictive models for 7-day heat of hydration (HOH7) based on a set 
of more complete and more accurate characterizations of portland cements. In the 
modeling described in this report we make essential use of the groupings, or classes, of 
potential explanatory variables of phase, fineness, and other physical parameters. An All 
Possible Alternating Conditional Expectations (APACE) exploratory tool, created by 
combining All Possible Subsets Regression with the Alternating Conditional Expectation 
(ACE), is used to determine which variables within an explanatory variable class and 
which subsets of variables across explanatory variable classes exhibit the highest 
potential predictive power for additive nonlinear models for HOH7. While a single, 
strong candidate model for HOH7 did not emerge from these analyses, some general 
conclusions did result. Good fitting models include a key structural mineralogical phase 
(belite preferred), a calcium sulfate phase (bassanite preferred), a total fineness or surface 
area component (Blaine fineness preferred), and ferrite in conjunction with Fe2O3, or 
aluminate, or cubic aluminate. Surprisingly, TiO2 recurs as a component in good-fitting 
models. 
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CHAPTER 1- INTRODUCTION AND RESEARCH APPROACH  

1.1 Background 

Hydraulic cements react with water through a process called hydration via a series of 
chemical reactions, ultimately resulting in the precipitation of interlocking hydration 
products that provide strength to the structure.  The hydration process produces heat that 
in some concrete placements may cause expansion and, potentially, cracking upon 
cooling to ambient conditions. The temperature rise can also be beneficial in the case of 
cold-weather concrete placements, where the heat facilitates hydration and keeps the 
concrete from freezing [1]. ASTM C186 was adopted in 1944 as a standard test method 
for determining the heat of hydration of hydraulic cements.  This test procedure involves 
measurement of the heat of solution of dry cement specimens that have been hydrated for 
7 d and for 28 d.  The difference between the heat of solution values between the dry and 
the partially hydrated cement specimens is taken as the heat of hydration for that time 
period.  The heat values are expressed in SI units1 of kJ kg -1. This test is time-
consuming, involves a hazardous mixture of nitric and hydrofluoric acids, and has low 
precision with d2s values of 48 kJ kg -1 for measurements between different laboratories. 
Cements in is study range in 7 d heat from the heat values range from 261 kJ kg -1to 468 
kJ kg -1

The rate of hydration of a cement depends upon its mineralogy, the mass of each phase, 
the particle size distribution, the water-to-cement ratio, and the temperature and relative 
humidity of curing [3]. Copeland et al. [4] ascribe the total heat of hydration as 
emanating from two processes: 1) the chemical reactions in the formation of hydration 
products, thought to be responsible for 80 % of the heat, and 2) the heat of wetting of the 
subsequent colloidal hydration product accounting for the remaining 20 %. The C186 test 
utilizes a fixed water/cement ratio but the curing temperature may differ depending upon 
the rate of heat evolution. The dependence of heat of hydration on cement Type is 
illustrated by data collected by the Portland Cement Association for a sampling of 
cements produced between 1992 and 1997 (Figure 1-2), where Type III cements 
generally have higher heats of hydration and Type IV the lowest [5]. Limits on 
composition and fineness in ASTM C150 and AASHTO M85 reflect their influences on 

.  Conduction calorimetry provides an alternative with ASTM C1679, “Standard 
Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using 
Isothermal Calorimetry.” This method has been shown to be useful in the estimation of 
total heat, in assessing early-age reactions and setting problems, and in measuring the 
influences of sulfate additions and mineral admixtures on heat evolution [2]. An example 
is shown in Figure 1-1 for the first 24 h of hydration of a portland cement.  This 
procedure is generally limited to about 3 days as the rate of heat development after that 
time is difficult to measure.   

                                                 

1 Non-SI units (cal/g) may be converted by multiplying by the conversion factor 4.1868. 
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the heat of hydration. Type II cement with the moderate heat option has restrictions on 
either the sum of C3S+4.75*C3A≤100 (the heat index equation) or a seven-day heat 
release at most of 290 kJ kg -1 when measured by ASTM C186. Type IV (low heat 
cement) has limits on either phase mass fraction for C3S, C2S, and C3A of 35 %, 40 %, 
and 7 %, respectively, or a C186 heat value limit of 250 kJ kg -1 at seven days. All these 
phase estimates are from Bogue-calculated values as described in ASTM C150 and 
AASHTO M85.  

 

Figure 1-1- Isothermal calorimetry curve of heat evolution based upon a single measurement for a 
hydrating cement for 24 h shows an initial peak of heat in the first hour, followed by a dormant 
period and then a gradual rise before tapering off in heat development for the following 23 h 
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Figure 1-2- The dependence of heat of hydration, with +- 1s uncertainties indicated, on cement Type 
for a limited sampling of cements produced between 1992 and 1997 [1] 

As the specifications recognize the influences of cement phase composition on heat of 
hydration, a more accurate and more complete characterization of a cement’s 
mineralogical and textural characteristics should provide an improved data set to evaluate 
their influences. Data exploration techniques beyond multilinear regression should 
potentially yield improved models for predicting heat of hydration of portland cements. 

1.2 Effects of Cement Phase Characteristics 

Bulk chemical analyses, typically by X-ray fluorescence, are used to determine cement 
chemistry with estimates of phase abundance derived using the Bogue formulas. Errors in 
these estimates arise from the variability of clinker phase chemistry relative to the 
assumed compositions, from the failure to account for minor constituents, and from 
inaccuracy in measured analytical values [5,3]. Source materials composition, processing, 
and kiln operating conditions also affect clinker mineral composition. Subsequent 
grinding with calcium sulfates and processing additions also affect cement performance 
attributes.  

Early work on developing predictive models for heat of hydration focused on the 
contributions of the individual clinker phases, the synergistic effects of multi-phase 
cement hydration, and the heat of precipitation of the resulting hydration products 
[4,6,7,8]. Lerch [9] concluded that gypsum retards early hydration of cements that have 
high tricalcium aluminate content, while accelerating hydration of cements with low 
tricalcium aluminate content, and that the alkali aluminate (the orthorhombic form) is 
more reactive and requires a larger gypsum addition than a low-alkali aluminate (the 
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cubic form).  More recently, the accelerating effects of potassium oxide (presumably 
from the alkali sulfates and alkali-substituted tricalcium aluminate) on alite, ferrite, and 
aluminate have been demonstrated [10,11,13]. Calcium sulfate additions have an 
accelerating effect on hydration of the silicates and ferrite while retarding the initial set 
and the reactions of the aluminate phases.  Gypsum has also been seen to retard heat 
development in mixtures of clinker phases.  In cases where gypsum may have been 
partially dehydrated during cement processing forming bassanite (hemihydrate), heat 
(192 kJ kg -1) 

1.3   Previous Work on Heat of Hydration 

would evolve upon rehydration to gypsum [6,7]. Overall, this reflects the 
complex synergy of the mineral constituents of the portland cement system during the 
hydration process. Confounding this further is the influence of mineral surface areas 
exposed upon grinding.  A scanning electron microscope (SEM) micrograph of polished 
cross-section of cement particles (Figure 1-3) illustrates the multi-phase nature and 
compositional complexity of cements.  The complexity of the cement mineral 
compositions and the interactions between phases during hydration suggest that a more 
complete and more accurate characterization of cements should yield data that would 
improve predictive capabilities for cement performance characteristics. 

Taylor [3] summarized multilinear predictive models for heat (Ht ) involving least-
squares regression using mass percent Bogue potential phase compositions and 
coefficients accounting for the degree of hydration of each phase at a specific age (Eqn. 
1, Table 1-1). Note that the aluminate (C3

 

A) reaction can result in ettringite (AFt) at early 
ages and monosulfate (AFm) at later ages, with differing enthalpy of hydration, 
illustrating the complexity of the cement hydration process. Taylor [3] notes that the 
enthalpies of formation of clinker phase hydration products would refine estimates of 
potential heat evolution, but the uncertainties in their values and variability in the reaction 
stoichiometry of hydration would introduce additional errors into the estimates. 

Ht (kJ kg -1) = a(C3S) + b(C2S) + c(C3A) + d(C4

 

AF)  Eqn. 1 
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Figure 1-3- SEM backscattered electron micrograph of polished cement grains embedded in an 
epoxy illustrates the complicated shapes and multiphase particles typical of a portland cement.  
Phase code is: alite = A, belite = B, aluminate = Al, ferrite = F, alkali sulfate = Alk, and gypsum = G. 
Field Width = 500 µm 
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Table 1-1- Heat of hydration values for clinker phases, and coefficients at 7 d and 28 d.  From Taylor 
[3]  

  Value of the coefficient (kJ kg -1

Compound 

) for age (d) 

Coefficient 7 d 28 d Enthalpy of complete hydration (kJ kg -1

C

) 

3 a S 222 126 -517 ± 13 

C2 b S 42 105 -262 

C3 c A 1556 1377 -1144; -1672 (AFm, AFt reactions) 

C4 d AF 494 494 -418 

Poole summarized work relating Bogue phase composition to heat of hydration and 
developed a multilinear regression model (Eqn. 2) that utilized aluminate and alite with 
an R2 of 89 % on the data used to develop the model, exhibiting little bias, and a ±21 kJ 
kg -1 95 % confidence interval on the regression [12].  The cement fineness, as measured 
by Blaine permeability, was not found to be a significant variable in predicting heat of 
hydration with simulations showing that a change in fineness from 300 m2/kg to 400 
m2/kg resulted in an increase in heat of hydration of only 8.1 kJ kg -1 

 

in 7 days. 

HOH7 (kJ kg -1 ) = 133.9 + 9.36(C3A) + 2.13(C3

 

S)      Eqn. 2 

Phases not considered in these predictive models, like the alkali and calcium sulfates and 
the specific form of tricalcium aluminate, can exert significant influences on a cement’s 
hydration characteristics. It is reasonable to ask whether a more complete accounting for 
cement phases and fineness measures will provide a better set of predictive variables.  
More generally, would one expect relatively simple multilinear models to work well 
given the complexity of hydration processes?  Phase abundance directly determined by 
quantitative X-ray powder diffraction analysis (XRD) and some non-phase variables 
(particle size distribution, fineness) considered to affect heat evolution are considered in 
this work in modeling 7-day heat of hydration. This more complete accounting of the 
cement mineral composition and the inclusion of other cement characteristics has the 
potential to provide a more accurate prediction of a cement’s heat performance. 
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1.4 Problem Statement  

The heat of hydration of hydraulic cements results from the complex sets of phase 
dissolution and precipitation activity accompanying cement hydration. This process 
generates heat, as well as an increased potential for thermal cracking in some concrete 
structures.  The potential heat of this hydration process is measured in two ways: 1) 
through an acid dissolution of the raw cement and a hydrated cement after seven days, or 
2) isothermal calorimetry.   

1.5 Research Objectives 

In principal, the heat of hydration should be predictable from knowledge of the cement 
composition, cement fineness. The improved mineralogical estimates provided by 
quantitative X-ray powder diffraction, together with improved statistical data exploration 
techniques that examine nonlinear combinations of candidate constituents, are used to 
explore alternative predictive models for 7-day heat of hydration (HOH7) based on a set 
of more complete and more accurate characterizations of portland cements. 

1.6 Scope of Study  

Quantitative XRD data, bulk chemistry, and ASTM C186 heat of hydration values were 
included from 31 cements from the CCRL proficiency test program, 18 cements from a 
NCHRP program 18-05 on cement performance, and 4 cements provided by the US 
Army Corps of Engineers. The variables of phase content, size distribution and fineness 
measures, and ancillary measurements on cement characteristics, such as setting time, are 
organized into logical groupings that will be used in subsequent statistical modeling. 
Exploratory statistical tools are used to determine which representative variables of the 
key classes consistently exhibit the most predictive power for HOH7, what ranges of R2

 

 
are achieved for best nonparametrically additive nonlinear fitted models for those choices 
of variables in various combinations, and the resulting implications for the parametric 
modeling of HOH7 in terms of phases and ancillary variables. 
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CHAPTER 2-  STATISTICAL MODELING     

2.1 The Data 

In the modeling we make essential use of groupings, or classes, of potential explanatory 
variables. Initial data exploration utilized All Possible Subsets Regression (APSR) and 
Principal Components Regression (PCR) to identify linear combinations of variables that 
might be useful in predicting 7-day heat of hydration. Nonlinear transformation of key 
variables identified by APSR should increase their predictive ability, accomplished using 
Alternating Conditional Expectation (ACE) [13,14]. Our key tool will be All Possible 
Alternating Conditional Expectations (APACE) created by combining the All Possible 
Subsets Regression concept with Alternating Conditional Expectation (ACE). Using 
APACE, we can easily explore which variables within an explanatory variable class 
exhibit the highest potential predictive power for HOH7 based on additive nonlinear 
models, and which subsets of variables across explanatory variable classes exhibit the 
highest potential predictive power for additive nonlinear models for HOH7. An additive 
nonlinear model is a weighted sum of nonlinear function summands. 

The principal conclusions of this report will be (1) which representative variables of the 
key classes consistently exhibit the most predictive power for HOH7, (2) what ranges of 
R2

2.1.1 Phase Measures 

 are achieved for best nonparametrically additive nonlinear fitted models for those 
choices of variables in various combinations, and (3) resulting implications for the 
parametric modeling of HOH7 in terms of phases and ancillary variables. 

The variables (Table 2-1) are organized into logical groupings that will be used in 
subsequent statistical modeling. The complete data set is found in the Appendix, 
Quantitative XRD (QXRD) data, bulk chemistry, and ASTM C186 heat of hydration 
values were included from 31 cements from the CCRL proficiency test program, 18 
cements from a NCHRP program 18-05 on cement performance [15], and 4 cements 
provided by the US Army Corps of Engineers.  The QXRD data were the average of 
three replicates each of a bulk cement and an extraction residue after a salicylic acid / 
methanol extraction.  The chemical extraction serves to remove the calcium silicate 
phases (C3S, C2S), concentrating the interstitial phases (C3A, C4AF, periclase, alkali 
sulfates) and the calcium sulfates (gypsum, bassanite, anhydrite) to facilitate 
identification and quantitative estimates. The calcium sulfate and arcanite (K2SO4) have 
been found to affect hydration as discussed previously. Bulk oxide and Bogue-calculated 
values were used for comparative purposes and setting times and 3-day strength were 
selected as they had been mentioned in studies as being relevant [3]. Measures of 
fineness were included as it is generally thought that the fineness, or total surface area, 
should influence the rate of reaction and therefore heat evolution.  Two measures of 
fineness are used: 1) Blaine fineness which is an indirect measure of the total particle 
surface area and 2) particle size distribution by laser diffraction, which expresses a 
particle size distribution in terms of a measure of the width of the particle size 
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distribution. Setting time by Vicat needle (ASTM C191) was included as a higher heat of 
hydration may result in a more rapid setting time.  

Table 2-1- Predictor Variables and Classes used in the exploratory data analysis 

Mineral Phase by 
XRD 

(mass fraction) 

alite, belite, aluminate, cubic aluminate, orthorhombic 
aluminate, ferrite, periclase, alkali sulfates, gypsum, bassanite, 
anhydrite 

Bulk oxide content CaO, SiO2, Fe2O3, Al2O3, SO3, MgO, Na2O, K2O, TiO2, 
P2O5, ZnO, Mn2O

Fineness 

3 

Blaine; and particle size by laser diffraction: D10, D50, D90, 
Span 

Extras (other physical 
measurements) 

calcite 

Set time (Vicat) 

3d strength 

Since knowledge of the cement mineralogy is desired, the direct measurement of phases 
by XRD provides an alternative means to the Bogue phases for quantitative phase 
analysis [16].  A standard test method for clinker and cement may be found with ASTM 
C1365 [17].  XRD has been used in the cement industry since the mid-1920’s, and has 
been more widely used since the development of the commercial powder diffractometers 
in the late 1940’s.  It is ideally suited for fine-grained materials (like clinker and cements) 
for direct phase analysis as each phase produces a unique diffraction pattern independent 
of the other phases, and the intensity of which is proportional to its concentration.  
Difficulties encountered in earlier calibration-based analyses included the measurement 
of intensities and use of suitable reference standards.  These difficulties have been largely 
overcome with the development of the Rietveld method for quantitative analysis [18,19]. 

The Rietveld method uses crystal structure models for each phase as reference standards, 
allowing the structural and chemical variables for each phase to be simultaneously 
iteratively refined using the whole-diffraction pattern, employing a least-squares fitting 
procedure.  The refinement results in a set of best-fit structure models for each phase with 
scale factors coming from relative phase proportion according to Eqn. 3 [20]:  
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W p =
Sp (Z MV )p

p
∑ [Sp (Z MV )p ]

[3]

 

where 

Wp

S

  = the mass fraction of phase p, 

p

Z = the number of formula units per unit cell, 

 = the Rietveld scale factor, 

M = the mass of the formula unit, and 

V = the unit cell volume 

Results of an international inter-laboratory study produced the within- and between-lab 
uncertainties of a XRD analysis following ASTM C1365 are shown in Table 2-2, where 
results of two properly conducted tests by the same operator should not vary by more 
than ‘r’ while results of two tests on the same clinker or cement by two different 
laboratories should not differ from each other by more than ‘R’, both at 95 % confidence 
[16]. 

Table 2-2- Within-laboratory (s-within) and the between-laboratory standard deviations (s-between) 
and 95 % d2s values expressed as mass percents [16]. 

 Repeatability Within-lab Reproducibility Between-lab 

 s-within r (d2s, within) s-between R (d2s, between) 

alite 0.74 2.04 2.23 6.18 

belite 0.64 1.77 1.41 3.91 

aluminate 0.47 1.31 0.74 2.05 

ferrite 0.49 1.36 0.95 2.63 

periclase 0.23 0.63 0.32 0.89 

arcanite 0.22 0.60 0.41 1.13 

gypsum 0.21 0.59 0.58 1.62 

bassanite 0.39 1.08 0.81 2.24 

anhydrite 0.27 0.74 0.63 1.75 

calcite 0.99 2.73 0.50 1.50 
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2.1.2 Fineness Measures 

All other variables held equal, the more finely ground the cement, the more rapidly it 
would be expected to react. However, this does not always seem to be the case in actual 
practice. The practitioner is presented with multiple measures of fineness. The Blaine 
fineness is an indirect measure of total particle surface area, denominated by volume of 
material, based on time for unit volume air to flow through a cement powder packed 
cylinder [21].  It might be expected to be a good predictor of HOH7

2.1.3 Time of Setting 

 because intuitively 
the hydration reactions, and resulting heat, would increase with increased surface area. 
An alternate means of measuring cement fineness is through particle size distribution. 
Laser diffraction of cements provides size distribution data using measures of D10, D50, 
and D90, indirect measures of 10th/50th/90th percentiles of particle size distribution. 
Span, an additional variable is a function of these three, measuring the approximate range 
of the particle size distribution. The predictive performance of these measures for HOH7 
will be examined in this work. 

The Vicat test measures the penetration depth of a standardized needle, where initial and 
final set times are when the needle penetrates a cement paste less than prescribed limits 
of 25 mm and zero mm, respectively [22].  Since it is the difference between the final and 
initial Vicat time, (VicatF - VicatI), which is the true test correlative with rapidity of 
setting, we can assume that HOH7 may be expected to correlate with [1/(VicatF - 
VicatI)]. This simple example illustrates the occasional need to transform raw variables 
in order to achieve meaningful variable response.  A potential confounding factor with 
this test procedure is the use of normal consistency paste, where the prescribed water 
content for the Vicat test will vary by cement, which may affect the setting times and 
may be different from the HOH7

2.2 Tools of Statistical Modeling  

 test conditions. 

Historically, modeling responses like HOH7 or compressive strength typically have 
involved multilinear modeling of raw (as presented by test data) inputs or judiciously 
transformed inputs, with transformations motivated by established engineering 
relationships. Excellent examples of this are the multilinear Bogue models relating 
mineralogical phases to oxide compositions. Typically the existing models have been 
derived by straightforward multilinear fitting, or by forwards or backwards selection 
techniques that progress in an automated fashion through choices of subsets of potential 
predictor variables, comparing explanatory power gained by successive addition or 
deletion of variables through reductions or decreases in R2

 

, or residual variance, or F 
statistic. Over the last forty years, however, sophistication in model selection techniques 
for both multilinear candidate models and interesting nonlinear extensions of multilinear 
models has increased tremendously. 
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In our initial approach to modeling HOH7

Comparing, however, the quality and credibility of models and fits obtained using the 
linear fits provided by APSR and PCR with the nonlinear-addend multilinear fits 
obtained by the use of Alternating Conditional Expectation (ACE) and All Possible 
Subsets Alternating Conditional Expectation (APSACE), we end up emphasizing the 
results from the superior nonlinear (ACE) tool.  We find APSACE linked with the use of 
automated parametric fitting tools to be an easy-to-use, easy-to-interpret, and insightful 
approach to meaningful model search that offers an enormous extension of the classical 
model search employing multilinear functions. 

 based on the mineralogical, fineness, and 
particle size distribution data, we employed All Possible Subsets Regression (APSR) and 
Principal Components Regression (PCR). While neither technique is new, using them 
separately and in conjunction offers significant improvements over backwards / forwards 
selection techniques. 

In this work, we adapt the tool to all possible linear combinations of nonlinearly 
nonparametrically transformed versions of the explanatory variables, thus extending the 
scope of the approach enormously. Since our algorithm assays combinations by 
exhaustion, we limit ourselves to combinations of less than or equal to 10 variables. But 
for the size of the dataset being examined, and the number of explanatory variables being 
considered, that does not appear to be unduly restrictive. Nonetheless, since a number of 
the basic techniques used in developing and selecting multilinear models are still 
applicable, in practice or at least in motivating more modern approaches, we spend a little 
time discussing APSR and associated statistics. 

2.2.1 Prescreening Variables: Scatter Plots 

A fundamental principle of modern exploratory data analysis, including model selection, 
is to prescreen data using graphics. Visualization almost always contributes significantly 
to understanding. Graphical prescreening enables the modeler to (1) scan for outlying 
data or obviously anomalous patterns in data, (2) to gauge the potential statistical 
explanatory power and potential model meaningfulness of each explanatory variable 
assessed against the response [variable] of interest (HOH7

 A simple multiplot (Figure 2-1) with associated, or overlaid, table of correlation 
coefficients (Figure 2-2) is of tremendous value in either motivating selection of variables 
before the modeling or theorizing why a semi-automated selection technique such as 
APSACE ends up selecting the best-fit models that it does after the modeling. 

). 

A cross-correlation table of the variables serves another purpose. Variables that cross-
correlate highly may contain much the same explanatory information for the proposed 
model. Incorporating both in a model may lead to either an unnecessary degree of 
redundancy, or overfitting, in the model or to numerical instabilities (e.g., 
multicollinearities) in the numerical fitting procedure. Alite and belite (variables C3S and 
C2S, respectively) are highly anticorrelated (typically in the -0.80 to -0.90 range). This is 
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a natural result of their physical co-occurrence as calcium silicates at the expense of one 
another, depending upon the availability of lime during the clinkering process. The 
natural modeling solution is to employ one or the other, selecting the variable for the 
model situation that gives the best goodness-of-fit statistics. 

 

Figure 2-1- Scatter plots are a useful visualization tool to pre-screening tool to look for patterns and 
anomalous data. 
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Figure 2-2- The correlation matrix is a useful data screening tool to assess both the correlation 
between individual variables and 7d heat of hydration, both for correlations and anti-correlations 
(C3S and C2S) between variables.
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2.2.2 Transformations  

Often, rather than dealing with raw explanatory and response variables in their original form, it 
may be necessary to transform the raw variables, or combinations of raw variables, in some 
manner so as to elicit their best contribution to a model. An example is provided by the 1/[VicatF 
- VicatI] transformation discussed above, where the subtraction gives a more meaningful time 
relevant entity for modeling, and inversion is pre-performed because it is anticipated that time to 
set and HOH7 will be inversely related. We sometimes work with log(Blaine) and log(HOH7) 
rather than Blaine and HOH7 themselves because logging brings the fineness and heat numbers 
down to the scale of other contributors to the model, and because it is common to log transform 
lengths, areas, volumes, or density type numbers to achieve distribution conformity or 
homogenize variances. The cement engineering literature abounds in rules of thumb, which 
correspond to potential transformations. For example, the Lime Saturation Factor (LSF) in Eqn. 
4 is a ratio. 

 

Alumina Ratio, Silica Ratio, Alkali-Sulfate Ratio all correspond to transformations of basic 
(oxide) variables which may map more directly to certain structural properties of the cement. 
Generally speaking, we transform for physical meaningfulness, for model simplicity, and for 
"statistical niceness." Niceness refers, for example, to transforming to achieve homogeneity or 
homoscedasticity where the variance or standard uncertainty of an input variable expands, 
contracts, or varies in a random fashion over the range of the variable being studied.  

2.2.3 Log Odds Transform 

Another example of a potentially useful transformation, suggested by Tukey and Mosteller [23] 
is the log odds transformation for mineral phase and oxide composition fractions (Figure 2-3, 
Figure 2-4). The idea is that log odds transformations of percent compositions may distribute 
more normally than the raw percent compositions themselves. This is because percent 
compositions expressed as fractions may follow a Beta distribution and log odd is approximately 
Gaussian. 

The log odds transformation is computed by first expressing percent composition as a decimal 
fraction (67 % becomes 0.67) and then computing log(comp)/log(1-comp). Computing a 
correlation coefficient to quantify straightness of normal probability plots for each phase and 
each oxide quantifies goodness of normal fit. Motivated by the normality enhancing performance 
of the transform demonstrated in these plots, we periodically throughout this work compare raw 
phase or raw oxide predictive performance to log odd(phase) or log odd(oxide) predictive 
performance via All Possible Subsets ACE. 

Log odds transforming the phases results in no improvement for alite, ferrite, total aluminate, or 
bassanite.  However, improvement is achieved for belite, cubic aluminate, orthorhombic 
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aluminate, periclase, anhydrite, gypsum, and calcite as seen in the correlation coefficient at the 
top of each plot labeled PPCC.  

 

 

 

Figure 2-3- Normal probability plots of raw phases and log odds phases for alite, belite, ferrite, and aluminate 
indicates an improvement only for the belite phase.  The Y-axis is sorted sample data and the X-axis is 
Gaussian median order statistic predictions of sample data 
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Figure 2-4- Normal probability plots of raw phases and log odds phases for total aluminate, aluminate forms 
and periclase show improvement for the aluminate forms and for periclase. The Y-axis is sorted sample data 
and the X-axis is Gaussian median order statistic predictions of sample data 
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2.3 All Possible Subsets Regression (APSR) 

All Possible Subsets Regression regresses a response variable against all possible multilinear 
combinations of a pre-selected set of explanatory variables, typically screening for the best 
model fits from among the many fitted using criteria such as R2 or R2

adjusted and exhibiting only 
the best models fit as judged by the goodness-of-fit criteria. In standard software2

 So, for example, if there are 10 candidate explanatory variables, APSR software performs 

, the many 
regressions performed in APSR are multilinear regressions with up to 32 input variables. While 
it is a linear tool, it is still an excellent screening device, and to be preferred to forward or 
backwards model subset selection. 

 

 

210 −1( )=10C1+10C2 + ...+10C10 Eqn. 5 

or 1,023 regressions, where "10C1" refers to all possible 1-variable-at-a-time models, "10C2

 

RSS =
HOH7 − Model Pr ediction[ ]2

N − P( )all data
∑ Eqn. 6

" 
refers to all possible 2-variable-at-a-time-combination models, and so forth. Goodness-of-fit is 
typically assessed by Residual Sum of Squares (RSS). RSS is automatically the chief figure of 
merit for assessing goodness-of-fit of a model, coming as it does directly from the definition of 
least squares as searching for those model parameters that minimize RSS: 

 

where the summation is taken over all the data points, N is the number of data points, P is the 
number of parameters being fitted (typically either number of explanatory variables or (number 
of explanatory variables + 1 if an additive constant is being fitted as well). Since an RSS of zero 
denotes a perfect error-less fit, the closer to zero the RSS from a real data fit the better [24]. 

 

The Coefficient of Determination, or R2

 

, 

 

R2 =
pred HOH7( )− mean HOH7( )( )2∑

HOH7 − mean HOH7( )( )2∑
Eqn. 7  

 

                                                 
2 BMDP: http://www.statistical-solutions-software.com/products-page/bmdp-statistical-software/ 
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quantifies the improvement of the model-under-investigation's predictive performance over the 
naive mean model’s (the most primitive model’s) prediction. It is often referred to as quantifying 
the percent of variation in the data explained by the model, where the statistic is multiplied by 
100 to express it in percent terms. Expressed in that way, it is clear that the closer the value of 
the R2

2.3.1 Misspecification: Model Bias 

 to 1, or 100, the better. 1 or 100 connotes a perfect fit. 

In comparing candidate models' performance, it is not enough to restrict attention to goodness-
of-fit statistics. Because, in general, the more variables (parameters) one adds to a model, the 
better the fit will be. There is also the issue of protecting against model misspecification, or 
model bias, referring to the possible inclusion of too few or too many predictor variables in the 
model. For example, on any given pass of an all possible subsets routine (APSR or APSACE), if 
variables are being included that shouldn't be in the model, the variances (noise levels) of model 
coefficients and predictions increases and pushes predictions off target. On the other hand, if too 
few variables are being included in the model, the model will be biased and predictions pushed 
off target. 

Since simply increasing the number of variables incorporated in a model will automatically tend 
to improve such goodness-of-fit statistics, reference must also be made to an adjustment for bias 
statistic such as Mallow's Cp

2.3.2 Mallow's C

, where the "bias" in question refers to the biasing of a model by the 
incorporation of too few or too many explanatory variables.  

The Mallow's C

p 

p

 

 statistic is a very useful statistic for assessing misspecification when comparing 
multilinear models. It assesses the balance between bias due to too few variables and variance 
due to too many variables by evaluating: 

 

Cp =
VAR predHOH7( )( )∑

σ 2

 

 
 
 

 

 
 
 
+

BIAS predHOH7( )( )∑
σ 2

 

 
 
 

 

 
 
 
    

 

 

 

= p +
s2 −σ 2

∧ 

 
 

 

 
 ⋅ n − p( )

σ 2
∧ Eqn. 9 
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where p is the number of parameters in the candidate model, s2

 

σ 2
∧

 is the residual mean square for 

the candidate model, and is an estimate of the true model variance. 

A Cp value of close to p is indicative of least misspecification in a candidate model. The use of 
Cp in conjunction with a goodness-of-fit metric like R2 

2.3.3 Ensuring Model Validity 

is probably the single most reliable 
approach to "fitting blind", i.e. searching by statistical trial-and-error for a model where no 
scientifically derived candidate model exists [25,26,27]. 

 To ensure model validity generally, one seeks:  

1. physical meaningfulness: use of scientifically meaningful variables in the model, 

2. goodness-of-fit: in the RSS or R2 

3. parsimony: employing as few variables as possible in the model without overly under-
fitting and without sacrificing too much goodness-of-fit, 

metric, 

4. avoiding misspecification, 

5. cross validation: testing the goodness-of-model achieved on a set of training data by 
cross-validating against a non-training set (not performed in this study). 

Since we will later use APSACE in this work rather than APSR, we do not directly assess (4) by 
some numerical criterion such as Cp. This in future work would probably be a remediable 
oversight. Since ACE models consist of (nonparametrically) transformed variables combined 
additively, it should be possible to define an analogue of the Cp

As preparation and motivation for the numerical experiments reported on in this study, we 
subjected various combinations of the chief untransformed variable classes to APSR analysis. 
The results of the best for each combination are summarized in Table 2-3 for groupings of: 1) 
Oxides and Mineral Phases, 2) Mineral Phases and Finenesses, 3) Oxides and Finenesses, 4) 
Mineral Phases and Extras, 5) Oxides and Extras, 6) calcium sulfate phases, fineness, and extras.  
The group extras, as described before included variables such as Vicat, 3 day strength, and loss 
on ignition (LOI). From these combinations, key variables were selected, generating grouping 7 
in Table 2-4, noted as the best of best reflecting the comparatively high R

 statistic, which would 
automatically assess for misspecification. 

2 and Cp statistic close 
to the number of variables.  It is interesting to note that the combination of alite and aluminate 
that form the basis for the ASTM and AASHTO heat index equation does not appear in this 
table, although alite in combination with other phases, fineness measures, and oxides does. 
While the R2

  

 values are not strong for these models, they serve to indicate potentially interesting 
candidate variables for the subsequent step of nonlinear transformation of the data, where the 
correlations do improve markedly.  
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In each instance of class combination, the combination with the best statistics is reported. In 
categories where the mineral variables were included (five of seven), some form of calcium 
sulfate is selected as a key variable, specifically bassanite and/or anhydrite. Taylor [3] notes that 
aluminate and ferrite reactions are moderated by the presence of calcium sulfates, and that the 
form of calcium sulfate, as discussed earlier, affects its availability in solution, with bassanite 
being the most soluble, followed by gypsum and then anhydrite.  Alite and ferrite have high 
potential enthalpies of hydration. This reflects the potential importance of the calcium sulfates in 
the reaction process that have not been accounted for in models developed to date.   

Table 2-3- APSR regression results according to the untransformed variable class combinations.  

Variable Class Combinations C Rp R2 2 

1) alite, ferrite, bassanite, Fe

adj. 

2O3, TiO 5.55 2 .50 .45 

2) alite, bassanite, span -0.92 .32 .28 

3) SiO2, Fe2O3, MgO, SO3, TiO 2.95 2 .37 .30 

4) C3 2.52 Ao, anhydrite, bassanite, 3d str .42 .37 

5) SiO2, Fe2O3, MgO, SO3, TiO2 3.40 , Blaine .39 .31 

6) bassanite, 3d strength, Blaine 3.19 .35 .31 

7) alite, ferrite, anhydrite, bassanite, Blaine, Fe2O3, TiO2 7.44      (best of best) .55 .48 

When the particle size distribution variables (D10, D50, D90 and span) and Blaine fineness are 
included among the candidate predictor variables, one fineness variable is generally selected.  
Most often the Blaine fineness is chosen, reflecting the significance of the cement fineness in 
HOH7. In Group 1, alite, ferrite and bassanite are the mineral phases which, according to Taylor, 
[3], have a significant contribution to the heat output.  The occurrence of bassanite may affect the 
hydration process through 1) acceleration of alite hydration and 2) suppression of aluminate and 
ferrite phase reactions.  Fe2O3 and TiO2 significance may lie in their occurrence primarily in the 
ferrite phase, and to a lesser extent co-occurrence with the aluminates and belite [3].   

In Group 2, with mineral phases and fineness, alite and bassanite were selected from the phase 
variables while a fineness variable “span” was selected; the Blaine fineness was not included for 
selection in this grouping. Group 3 included oxides and fineness as determined by PSD (no 
Blaine).  A repeat of the Fe2O3 and TiO2 occurs.  In Group 4, mineral phases and other, we see 
the first selection of an aluminate phase with orthorhombic (alkali) tricalcium aluminate. The 
orthorhombic aluminate is the principal aluminate form in cements with low concentrations of 
aluminate, but does occur in small amounts in high-aluminate cements.  The co-occurrence of the 
calcium sulfates anhydrite and bassanite may also reflect the controlling effect they have on the 
aluminate reactions.  Group 5 examined the oxides, Blaine, Vicat, and 3 day strength. From this 
set we again see the Fe2O3 and TiO2 and Blaine fineness. In Group 6 which included the 
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calcium sulfates, fineness, and extras of LOI, Vicat and 3d strength, we see that the calcium 
sulfate bassanite, strength, and Blaine are selected.   

Extracting from each of the first six combinations the variables contributing most frequently to 
the best performing models yields the overall best performing model in "best of best." It is a 7-
variable (8-parameter with the additive constant) model with a Cp = 7.44 and an R2 of 55 %, 
which is the highest R2 reported in the Table. The variables selected in the "best of best" are of 
interest, and will recur in what follows. The presence of one main structural phase (alite) along 
with sulfate phases anhydrite and bassanite should be noted. In what follows, ferrite and Fe2O3 
will frequently appear as a selected co-occurring pair. The presence of Blaine signals that 
fineness may be important for HOH7 prediction, and Blaine may be the best predictor from 
among the fineness variables considered. Interestingly, TiO2 recurs frequently in conjunction 
with Fe2O3 and ferrite in good models. We will see this again when we explore nonlinear 
transformations with APSACE-selected models with R2 

2.4 Principal Components Analysis 

> 0.90.  

The data were also subjected, combining different variable classes as inputs, to Principal 
Components (PC) Analysis and PC Regression. PC creates a new variable set, called the 
principal components that are linear combinations of the old variables. The PC's are 
uncorrelated/orthogonal with/to one another. The first PC establishes the "direction" in the new 
coordinate system in which the data exhibit maximal variability. The second PC establishes a 
second direction, orthogonal to the first, in which the data exhibits next (second) most 
variability. All of this is achieved via a straightforward eigenanalysis of either the covariance or 
correlation matrix of the original set of variables. We used correlation, as is done in many real 
data applications, because the normalization to a [-1,+1] scale provided by passage to correlation 
obviates interpretation problems with variables that have highly disparate magnitudes. 

PC analysis is a popular multivariate analysis technique [26,28]. The mathematics and associated 
inferential (statistical) procedures are valid and interpretation of results is straightforward. 
However, an additional advantage sought by practitioners, and where the analysis becomes 
particularly cogent, is if the PC's, can be interpreted in a physically meaningful manner. The first 
PC is almost always a linear combination of the original raw variables that may have a simple 
physical interpretation. Other PC's may present signed "contrasts" between subgroups of 
components: so, a contrast between a longitudinal direction and a transverse direction might 
represent a kind of aspect ratio. The kinds of examples that are presented in textbooks do have 
this quality: the PC's are interpretable. Regrettably, in our many attempts to analyze the PC data 
considered here nothing ever presented itself to us as being simply interpretable. Linear 
transformations of the input variables ended up being interpretable as just that: linear 
transformations of the input variables, with no obvious heritable meaning. For this reason, we do 
not report any of the PC work done in this study. 
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2.5 Alternating Conditional Expectation 

Alternating Conditional Expectation (ACE) is a technique that greatly extends the scope of 
classical multilinear model selection techniques [13,29].  Given HOH7 data with associated 
candidate predictor variables Xk, the ACE algorithm finds transformations of the predictor 
variables and of the HOH7 response variable that maximize the correlation between f(HOH7), 
the transformed HOH7, and ∑gk(Xk

For example, Figure 2-5 depicts an ACE transformation example, with original variable on the 
X-axis and ACE-transformed variable on the Y-axis, C

), the sum of the transformed predictor variables. The 
development and proof of the validity of the algorithm used to produce these transformations is 
complicated. ACE theory involves the eigenanalysis of conditional expectations interpreted as 
projection operators in Hilbert spaces of functions. The transformations are produced 
nonparametrically in the forms of pictures [31], graphs relating transformed to original variable 
for each of the variables including HOH7 response. Such pictures can be parametrically modeled 
either from first principles or by the use of automated software. As the transformation graphs can 
assume many forms, they need to be evaluated for credibility for incorporation into the 
predictive model. This evaluation is performed by analyzing each transformation picture for 
physicality and smoothness. Transforms that would appear to be approximately straight lines, 
low order polynomials, exponential or logarithmic functions, or circular functions are candidates 
for incorporation in a model. Transforms with severe inflection points or that have the 
appearance of multiple distinct behaviors adjoined, for example, might not be considered 
candidates for incorporation in the model, or might be modeled distinctly for each simple sub-
model regime. 

3S, C3Ac, C3Ao, C4AF all appear 
reasonably smooth, and possibly even linear. The cusp of the C4AF graph and the blip on the 
C3S graph can be thought of as reflecting possibly one or several aberrant data points in an 
otherwise clearly shaped transform, so these variables would not necessarily be removed from 
consideration. The graph of C3

In using the ACE algorithm, one notices very quickly that ACE drives R

A, on the other hand, presents much more of a challenge in trying 
to visualize the physicality of the transformed variable represented by the picture. Other graphs 
(periclase or bassanite) could perhaps be heurized as a linear ramp-up asymptoting or a curving 
fall-off followed by a second rise: viz, they can be visually smoothed into credible model 
components, but parameterizing the associated patterns would be considerably more challenging. 

2 up dramatically. 
Modeling HOH7, if one feeds 7 or 8 candidate explanatory variables one can easily obtain R2 
values on the order of 0.80 to 0.95, possibly irrespective of how meaningful the incorporated 
variables are for the "true" prediction of HOH7. Some of the transformations will look smooth 
and easily parameterizable, but some will not. However, one should not simply drop the 
transformed variables that look unphysical and proceed with the ACE transforms produced on 
the remainder. This is for two reasons, both stemming from the same root cause: the set of ACE 
transforms produced from a set of variables depends critically on the whole ensemble of 
variables presented to the algorithm. So, running the algorithm and deleting variables from 
model inclusion after the fact results in (1) decrease in R2 to uninteresting levels, and more 
importantly, (2) the remaining transformed variables are incorrect from an ACE procedure point 
of view, because rerunning ACE on the remaining variables alone may produce new or modified 
transform pictures, some possibly resembling the corresponding full-set pictures, but others not. 
One might use a property of persistence of transform shape for a particular variable throughout 
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changing combinations of variables as a strong argument for the significance of the persistent 
variable and its persistent transformation for inclusion in the predictive model; however, one 
cannot count on such persistence. 

Since “re-ACE-ing” subsets of variables often gives different transformations from ACE-ing the 
original full set, it is clear that the appropriate way to proceed for optimal variable selection 
purposes is to perform an All Possible Subsets ACE (APSACE) of the original full set of 
variables. That is, match HOH7 response to one variable at a time, then two variables at a time, 
then three variables at a time, etc., ACE-ing each distinct combination and saving the outputs, 
the transform pictures and associated R2 statistics, for each combination. That is what we have 
done, using a relatively simple nested loop type of S-plus code3 [30,31]. Doing this guarantees 
that the ACE transform outputs for each distinct combination of variables is, mathematically 
meaningful and complete, and that the associated R2 is correct. The code is sufficiently 
inefficient and produces sufficiently voluminous output, that we typically run it on at most 8 

 

Figure 2-5- ACE Transforms where the x-axes are the original variables and the y-axes are the transformed 
variables 

                                                 
3 http://spotfire.tibco.com/products/s-plus/statistical-analysis-software.aspx 
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variables at a time. For future work, one might consider augmenting the APSACE statistics with 
a Cp analog and then outputting only the highest R2 with Cp

2.6 Synergizing Clusters for ACE Analysis 

 closest to p combinations. In doing 
so, however, one might easily ignore interesting subsets of variables that are consistent 
contributors to good models and that consistently transform cleanly. 

We examine clusters of variables that synergize to give high R2 

1. we run APSACE on the variable clusters defined earlier on in this document, and take special 
note of individual variables (e.g., phase or oxide variable) that recurrently contribute to high R

and smooth transformations 
through a three-step process where, 

2

2. we then run APSACE on combinations of variables (up to 8 at a time) that cross cluster 
boundaries: sulfate phases with fineness, again searching for high R

 
explanatory clusters and that "look physical" (smooth, model-able) in their ACE transforms, 

2

3. informed by the selections of steps 1 and 2, we seek models that incorporate variables from   
all the variable classes that yield high R

 model contributors and 
smooth transforms, and 

2 

2.6.1 Cluster Analysis 

and smooth variable transforms. 

2.6.1.1  Phase clusters 

“APSACEing” the raw phase cluster of variables by itself does not yield immediate insight into 
which stand-alone phase (in raw untransformed form) or combination of such yields the best 
explanatory power for HOH7D.  However, certain observations can be made. Transforms 
involving alite and belite tend frequently to oscillatory behavior, often on a rising, falling, or 
shifting background line. Almost consistently throughout, C3Ac behaves better than C3Ao as an 
explanatory variable because its ACE transforms are nearly always smoother than those of 
C3Ao. This is possibly the result of the low concentrations of the orthorhombic form of 
aluminate and the uncertainty in estimating its concentrations. This agrees well with observations 
made in the section devoted to aluminate ACE-ing. Some of the variables, e.g. periclase, can be 
extremely noisy and unpatterned, especially in regions of low periclase concentration. The lack 
of any obviously clear phase-based model can be taken as an indication that additional variables 
are missing.  The fault lies in either poor R2 or high R2

 

 combinations exhibiting poor ACE curves 
for phase components (Figure 2-6, Figure 2-7). Data transformation of the mineral constituents 
may improve these findings and the addition of additional physical variables (fineness, for 
example) may result in improved models.  
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Table 2-4- Selected phase clusters exhibit either a high R2 and poor quality data transforms, or a low R2

R

 and 
smooth transforms. 

Phase Cluster 2 

.42 alite       

.68 alite belite      

.73 alite  C3  Ac    

.86 alite belite C3 CAc 3 ferrite Ao   

 

Figure 2-6- Alite and cubic aluminate provide a relatively high R2 but poor transforms, particularly for alite.  
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Figure 2-7- Including the primary cement phases results in a high R2 (0.86), but rough transform curves for 
several of the constituents.  
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2.6.1.2  Oxide Clusters 

The oxide clusters illustrate the power of ACE to pull out unusual combinations of predictor 
variables with very high R2 for HOH7 prediction. Raw (untransformed) oxides were ACE'd to 
predict raw (untransformed) HOH7. The results are summarized in Table 2-5 with transform 
plots in Figure 2-8 through Figure 2-11. The easily recognized recurring high contributors were 
CaO, MgO, TiO2, and SO3. The CaO-TiO2 cluster is combined with each of the other oxides one 
at a time. The MgO-TiO2 cluster is combined, one added variable at a time, with each of the 
other oxides. Multiple features of these results are quite striking. One is the fact that, suitably 
(ACE-) transformed, one can achieve 93 % explanatory power for HOH7 with the two variables 
MgO and TiO2, alone. Equally striking is that with the triples CaO-MgO-TiO2 and CaO-SO3-
TiO2

Going to the corresponding ACE pictures, however, presents a puzzle. The MgO and TiO

 one can achieve 96 % explanatory power. 

2 
transformations appear to be relatively flat, hovering around zero, unstructured when paired by 
themselves. When coupled with another player, as in CaO-TiO2-MgO, (R2 = 0.96), the MgO has 
a nicely inflected broadly unimodal transformation shape, while TiO2 and CaO continue to 
remain flat, near zero, and uninflected. Is this a numerical artifact of ACE? Or are these pictures 
and R2

  It is striking that with the exception of the MgO-TiO

 values telling us something about an underlying relationship between these parsimonious 
oxide combinations and HOH7 prediction? 

2 doublet, the most powerful explanatory 
combinations are triplets: CaO-TiO2-SO3, CaO-TiO2-MgO, MgO-TiO2-SO3. 
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Table 2-5- Oxide clusters for combinations of TiO2

R

 and either CaO or MgO with other oxides.  

Oxides (CaO, TiO2 2   plus) 

.81 CaO TiO  2     

.96 CaO TiO SO2  3    

.78 CaO TiO  2 Al2O  3   

.86 CaO TiO  2  SiO  2  

.82 CaO TiO  2   Fe2O  3 

.96 CaO TiO  2    MgO 

 

R Oxides (MgO, TiO2 2

.93 

 plus) 

MgO TiO  2     

.93 MgO TiO SO2  3    

.92 MgO TiO  2 Al2O  3   

.87 MgO TiO  2  SiO  2  

.91 MgO TiO  2   Fe2O  3 

.96 MgO TiO  2    CaO 
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Figure 2-8- Oxide cluster transforms for R2=0.96 combination of CaO, TiO2, and SO3 

 

Figure 2-9- Oxide cluster transforms for R2=0.96 combination of MgO, TiO2, and SO3 
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Figure 2-10- Oxide cluster transforms for R2=0.96 combination of CaO, TiO2, and MgO 

 

Figure 2-11- Oxide cluster transforms for R2=0.93 combination of MgO and TiO

 

2 
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2.6.1.3  Aluminate Clusters 

Aluminate, C3A-c, and C3A-o were deliberately incorporated into the data so we could compare 
their relative performance in predicting HOH7, as their enthalpy of hydration provided in Table 
1-1 is the highest of any of the clinker phases. Furthermore, previous studies found that the 
aluminate form appeared to significantly affect heat [9]. Aluminate is the sum of the cubic (c) 
and orthorhombic (o) forms of tricalcium aluminate.  They were run in APSACE without, and in 
combination with, a structural phase, belite, and a sulfate phase, bassanite, to ascertain which 
component might demonstrate the most modeling power. Results are summarized in Table 2-6. 
From the Table it is immediately clear that the combination of aluminate with belite and 
bassanite, with an R2 of 0.81 and a somewhat smooth ACE transform (Figure 2-12), easily 
dominates the individual predictive performance of the two component aluminate analytes. 
Aluminate's nearest competitor, in terms of the two aluminate subcomponents, is C3A-c, which 
gives a 0.60 R2

Table 2-6- Total aluminate, cubic and orthorhombic plus structural phase cluster 

 and rough transform, in combination with belite and bassanite. We conclude that 
there is no modeling advantage in using subconstituents C3A-c or C3A-o over using aluminate 
itself. 

R  2 

.54 Aluminate    

.55  C3  A-c  

.32   C3  A-o  

.44  C3 CA-c  3  A-o  

.81 Aluminate   Belite, Bassanite 

.60  C3  A-c  Belite, Bassanite 

.55   C3 Belite, Bassanite A-o 
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Figure 2-12- Transforms of aluminate phases plus structural phases (belite and bassanite) result in a 0.81 R2

2.6.1.4 Fineness cluster 

 
the total aluminate, belite, and bassanite exhibiting fairly smooth transformed curves. 

Three measures of fineness or particle size distribution were run against a “background” of alite, 
ferrite, and bassanite for predictive power comparison. Blaine and Span (a function of D10, D50, 
and D90 reflecting the width of the particle size distribution) were taken in untransformed form 
as given. D10, D50, D90, however, were also combined into a possibly more meaningful 
variable in the following way. Mean and standard deviation approximations for the distribution 
represented by the D percentiles: 

         M = (D10+D50+D90)/3 

         S = (D90-D10)/2.56 

were combined into a coefficient of variation 

         CV = 100*(S/M)  

expressed as a percent. 
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 APSACE results are shown in Table 2-7, with ACE transforms shown in Figure 2-13 and Figure 
2-14. The results are unequivocal: Blaine is the most powerful predictor from among the 3 
fineness measures, both in stand-alone mode (R2 = 0.54 with smooth ACE transform) and in 
conjunction with alite and bassanite (R2

 Table 2-7- All Possible Subsets ACE for Fineness and Phase 

 = 0.74 with relatively smooth transforms for Blaine, 
alite, bassanite). This makes good sense, as described earlier in this report, since Blaine is an 
indirect measure of overall cement particle surface area, which a fortiori must correlate strongly 
with heat release. From all possible subsets of 6 variables run, ferrite tended to be relatively 
noncontributory when taken in conjunction here the finenesses. It is interesting to note that the 
stand-alone Blaine transform strongly resembles pictorially the Blaine transform in conjunction 
with alite and bassanite. A consistent feature of the Blaine transforms in most of the clusters that 
include Blaine fineness is a kink at approximately 3700 Blaine, which is roughly in accordance 
with the upper range of Type I, II, and V cements compared to the finer Type III cements [32]. 
This suggests that the cement Types should be modeled separately. 

R fineness 2 phase 

.54 Blaine    

.32  CV   

.19   Span  

.74 Blaine   alite, bassanite 

.59  CV  alite, bassanite 

.56   Span alite, bassanite 

 

Figure 2-13- ACE Transform for Blaine fineness that yields an R2 of 0.54 
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Figure 2-14- ACE Transforms for Blaine fineness, alite, and bassanite that yield an R2

2.6.1.5 Sulfate Cluster 

 of 0.74 

To examine relative predictive powers of sulfate phase variables, SO3, anhydrite, bassanite, and 
gypsum were run in conjunction with "background" variables belite, Blaine, ferrite, Fe2O3. 
Results focusing on (belite + Blaine) combined with one stand-alone sulfate compound at a time 
are summarized in Table 2-8. While gypsum gives the highest R2 (0.34) in stand-alone mode, 
bassanite, gypsum, and SO3 give comparable R2's (0.69, 0.73, 0.72) in conjunction with belite + 
Blaine (Figure 2-15 through Figure 2-18). However, bassanite stands out for the smoothness of 
its ACE transform. The remarkable smoothness of the bassanite transform can be compared, for 
example, to the generally rougher anhydrite transform in richer, better-fitting models from this 
large APSACE set of outputs. Compare Figure 2-19 and Figure 2-20, the fit of (bassanite + 
gypsum + Fe2O3) with (belite + Blaine), giving an R2 of 0.88, with the fit of (anhydrite + 
gypsum + SO3) + (belite + Blaine), also giving an R2

 

 of 0.88. The smoothness of the bassanite 
transform seen here is typical of bassanite's transform behavior across many of the bassanite-
including models drawn from this experiment, and across cluster-crossing experiments as well.  
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Table 2-8- Sulfate Cluster APSACE Results  

R Calcium Sulfate Phase 2 Oxides Belite,  Blaine 

.30 Anhydrite     

.31  Bassanite    

.34   Gypsum   

.27    SO  3 

.60 Anhydrite    Belite, Blaine 

.69  Bassanite   Belite, Blaine 

.73   Gypsum  Belite , Blaine 

.72    SO Belite, Blaine 3 

.88  Bassanite Gypsum  Belite, Blaine 

.88 Anhydrite  Gypsum Fe2O Belite, Blaine 3 

 

Figure 2-15- ACE transform for anhydrite, belite, and Blaine with an R2 of 0.60. 
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Figure 2-16- ACE transform for bassanite, belite, and Blaine with an R2 of 0.69. 
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Figure 2-17- ACE Transforms for gypsum, belite, and Blaine with an R2 of 0.73 are rough. 

 

Figure 2-18- ACE Transforms for SO3, belite, and Blaine with an R2 of 0.72 are rough. 

Statistical Modeling of Cement Heat of Hydration Using Phase and Fineness Variables

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22917


 
39 

 

Figure 2-19- (bassanite + gypsum + Fe2O3) with (belite + Blaine), giving an R2 of 0.88, illustrates the smooth 
bassanite ACE transform. 
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Figure 2-20- (anhydrite + gypsum + SO3) + (belite + Blaine), also giving an R2 of 0.88, but the ACE 
transforms are much rougher. 
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2.6.1.6 Extras cluster 

 To ascertain if the "extra" variables (LOI, 1/Vicat, Calcite, strength) have any HOH7 predictive 
power, they were run in APSACE mode with belite, Blaine, and bassanite. The results are 
displayed in Table 2-9. In stand-alone mode, while 1/Vicat by itself gives an R2 of 0.66, the ACE 
transform picture is highly nonstructured and uninformative (Figure 2-21). Strength, 
interestingly, gives an R2 

 Combining these variables with (belite + bassanite + Blaine), however, tells a different story. 
The (belite-Blaine-bassanite) combination by itself gives an R

of 0.58 in stand-alone mode, with a relatively clean and smooth 
unimodal transform profile. 

2 of 0.71, with smooth transforms 
for each of the three participating variables (Figure 2-22). However, when extra variables are 
added one at a time, in three of the cases, the R2 decreases. For calcite however, it increases to 
0.78. Note that in the three cases of decrease, either one or two of the participating variables in 
the 4-variable models exhibit suboptimal, rough or sparse, ACE profiles (Figure 2-23). Only the 
(calcite+belite+bassanite+Blaine) (R2

Table 2-9- Extra variables with phase and fineness variables belite, bassanite, and Blaine. 

 = 0.78) combination appears to have smooth ACE 
transforms. 

 

 

 

 

 

 

 

 

 

R extras 2 phase, Blaine 

.66  1/VICAT      

.44   Calcite     

.58    Strength    

.71     Belite Bassanite Blaine 

.57  1/VICAT   Belite Bassanite Blaine 

.78   Calcite  Belite Bassanite Blaine 

.58    Strength Belite Bassanite  Blaine 
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Figure 2-21- The 1/Vicat ACE curve yields a relatively high R2 but exhibits a rough structure that would be 
difficult to model, unless the (overlaid) point(s) at 0.007 can be ignored. 

 

Figure 2-22- The belite, bassanite, Blaine variables yield an R2 of 0.71 but a rough belite curve and a break in 
the Blaine curve at around 3800. 
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Figure 2-23- Belite, bassanite, Blaine and calcite ACE output gives an R2

2.6.2  Explicit Parameterization of ACE outputs: an example 

 of 0.78 and reasonably smooth 
curves 

Running APSACE on a candidate predictor set that includes aluminate, ferrite, bassanite, Blaine, 
and 1/Vicat yields four different high-R2 subclusters. In Table 2-10, each subcluster is labeled 
with its R2, and the individual variables within the subclusters are labeled with a description of 
the appearance of the associated ACE transformation. Multiple observations can be made from 
this Table and Figure 2-24 through Figure 2-27. It is interesting that the ACE transform for 
1/Vicat is close to linear for all subclusters until bassanite is added. This is an example of the 
kind of persistence of inclusion in high R2

Why might a model incorporating these variables be good? Blaine fineness is an indirect 
measure of the total surface area of cement powder particles, which should certainly affect heat 

 models coupled with persistence of transformation 
shape that was mentioned above. It is, in contrast, interesting to note how very sensitive the 
shape and overall appearance of the aluminate transform is to the co-inclusion or -exclusion of 
the other variables from the parent cluster. Looking at the alternatives, and taking into account 
the need for parsimony (the fewer the modeling variables the better) and smoothness, the ferrite 
– Blaine – (1/Vicat) combination seem to be the most attractive for this set of candidate 
variables. 

Statistical Modeling of Cement Heat of Hydration Using Phase and Fineness Variables

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22917


 
44 

release. Ferrite occurs as medium- to fine-grained crystals that should exhibit greater surface area 
than some of the other "structural" mineral phases and its enthalpy of complete hydration given 
in Taylor [3] of -418 kJkg-1

For illustration purposes only, we show how one of the APSACE-suggested models of Table 2-
10 can be parametrized by using automated software. The second example from Table 2-10 
combines relatively smooth or linear transforms with a relatively high R

 ranks just below that of alite. However, at 7 days, the reaction 
coefficient is almost twice that of alite (Table 1-1).  And, as explained above, high HOH7 may 
also promote a rapid setting time, associated with a low Vicat. 

2 (0.88), the plots of each 
transformed variable being shown in Figure 2-28 through Figure 2-30. The code (TableCurve2D) 
fits up to 3000 parametric models to X Y input, and sorts them according to goodness-of-fit 
assessed by R2. Classes of models fit include multilinear, polynomials in x,(1/x), rational 
functions (quotients of polynomials) in x,(1/x), circular functions and Fourier-type sums, log, 
exp. and polynomials in log, exp, Chebychev polynomials, and simple classes of nonlinear 
models. From a large menu of potential parametric fits to any given ACE transform, we select 
the model that seems to give the best combination of high R2

If ACE(HOH7) is model-able either as a simple linear function (which in practice it is often) or 
more generally as an explicitly invertible function (e.g., log-to-exp or sin-to-arcsin), then we 
obtain a completely explicitly parametrized model for HOH7 in terms of ferrite, bassanite, and 
(1/Vicat). The three-variable ACE model developed here, without the explicit parameterization, 
gives an R

, visual goodness-of-fit, and is 
parsimonious in the number of parameters used in the parameterization. 

2 = 0.88 on the data modeled. The two-variable Poole gives an R2  = 0.76. However, 
the model considered here for illustrative purposes only, is just one among dozens of high- R2 
(R2

Table 2-10- Small clusters of variables that provide high R

> 0.90) candidate models that APSACE has identified in this work. 

2

R

 and smooth transformations.  Individual 
variables and a description of the transform shape are provided. 

 2     

.78 
 

Aluminate 

smooth, with 
edges 

  Blaine 

smooth with cusp 
1/VICAT 

almost linear 

.88 
 

 Ferrite 
smooth with dropoff 

 Blaine 
smooth with asymptote 

1/VICAT 
almost linear 

.90 
 

Aluminate 

rough 
Ferrite 

line with tent 
 Blaine 

smooth 
1/VICAT 

almost linear 

.86 Aluminate 

multi-modal 
Ferrite 

rough 
Bassanite 

high-low 
disconnect 

Blaine 

rough 
1/VICAT 

tent 
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Figure 2-24- ACE transforms for aluminate, Blaine, 1/Vicat with an R2 of 0.78. 

 

Figure 2-25- ACE transforms for ferrite, Blaine, and 1/Vicat yields a combination of a smooth transform and 
high R2 of 0.88. This is the combination chosen to illustrate explicit parameterization. 
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Figure 2-26- ACE transforms for ferrite, aluminate, Blaine, and 1/Vicat yields an R2 of 0.90 but the curves for 
ferrite and aluminate appear rough. 
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Figure 2-27- ACE transforms for aluminate, ferrite, bassanite, Blaine, and 1/Vicat yields an R2 of 0.86. 
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Figure 2-28- Ferrite ACE transform is approximately described by a simplified cubic function. 

 

Figure 2-29- Transformed Blaine fineness can be described by a mixed x-(1/x) quadratic. 
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Figure 2-30- Transformed 1/Vicat results in an almost linear structure. 

As illustrated in Figure 2-28 through Figure 2-30, a simplified cubic fit captures the main 
structure in the ferrite transform, a x-(1/x) quadratic captures Blaine structure, and a line captures 
the descent of the (1/Vicat) transform. It should be clear that approximate parametric fitting of 
each ACE transformation will contribute to a diminution of the overall model fit's R2 (0.88), as 
each approximate parametric fit reduces that variable's contribution to R2

Substituting the best-fit parametrizations into the APSACE candidate model gives 

. 

 

ACE HOH7( )= ACE(F) + ACE(B) + ACE(V )

= (0.06 + 0.009F 2 − 0.0007F 3) + 535 − 0.12B + 9 ⋅10−6( )B2 −
773336

B
 
 
 

 
 
 + −120V +1.3( )

where 

 F = ferrite 

 V = 1/Vicat 

 B = Blaine 
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If ACE(HOH7) were easily parametrically invertible (approximately a straight line), the 
application of the inverse of ACE(HOH7) to the right hand side of the equation would yield a 
parametric equation for HOH7 in terms of ferrite, Blaine, and inverse Vicat.  In this example, 
however, the pictorial ACE transform of HOH7 (Figure 2-31) is sufficiently rough that a simply 
invertible parameterization is unavailable.
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Figure 2-31- The roughness of the ACE(HOH7) transform (upper-right) precludes a simple invertible parametrization
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CHAPTER 3- CONCLUSIONS AND FUTURE DIRECTIONS 

3.1 Conclusions 

This work has not resulted in a simple parametric model for HOH7. Instead, we have found 
simple conclusions concerning the variables and the data considered that may offer general 
guidance on the modeling of HOH7. It is to be strongly emphasized that the one explicitly 
parameterized model presented is meant to be illustrative of the power of the technology only. 

Good fitting models for HOH7 often incorporate - 

1. A structural mineralogical phase component (belite preferred); 

2. A sulfate phase component (bassanite preferred); 

3. A total fineness or particle surface area component (Blaine preferred); 

4. Ferrite in conjunction with Fe2O3, and possibly TiO2 or aluminate or C3

    C

Ac, but not    

3

Of the extra variables offered here for incorporation in models, good fitting models seem 
indifferent to the inclusion of - 

Ao 

1. 1/Vicat (generally) 

2. compressive strength 

3. calcite 

The prevalence of noisy and multistructured ACE plots in this study can be attributed to multiple 
potential causes: 

 1. The variables are inappropriate: variables are included that have no true HOH modeling 
content, and variables which should be included - like precipitation products known to influence 
heat evolution - are not. 

 2. The inclusion of too many types of cements in the dataset is inappropriate. In the future, 
attention should be focused for this kind of modeling on one specific Type of cement. It should 
be easier to capture predictive power for a relatively homogeneous class of cement than for an 
aggregate of different Types of cements representing possibly different heat evolution 
mechanisms. 

It is interesting in this regard that occasionally sharp transitions, or inflection\ points in the ACE 
plots could correspond to transition points in the variable being ACE transformed from a range 
of values characteristic of one Type of cement to a range of values characteristic of another 
Type. 
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There are certainly researchers who would argue that the phenomenon under study is much too 
complex to be captured by a simply parameterized model, regardless of how it is derived. 
Nonetheless, complex phenomena are often model-able in the large, by coarse-grained 
parameterizations. Until a commonly accepted, validated fine-grained model emerges, there is 
always the possibility that macro-modeling of key variables can provide some useful explanatory 
power for phenomena like HOH7. 
In this work, which has not exhaustively explored the various transformation possibilities 
outlined above, we have found that 

 1. Certain physically meaningful transformations must be applied if the variable(s) are to have a 
chance of entering meaningfully into a model: e.g., 1/(VICATF - VICATI). 

2. As a transformation inducing (a) change of magnitude to values commensurate with other 
variables entering into the model, and (b) a degree of variance homogeneity, the log 
transformation of HOH7 and Blaine in particular have been routinely compared with results 
achieved by use of the raw variables. Generally, with other variables entering the mix, 
approximately equivalent R2

3. The log odds transformation has not proven particularly useful in cases where it has been tried, 
but bears further examination if newer, more appropriate, datasets are modeled. 

 values are achieved and there is not always a noticeable 
improvement in the smoothness of the ACE transformations. 

4. Common transformations reported in the literature, but not examined here, should be tested in 
further work of this kind: Lime Saturation Factor, Alumina Ratio, Silica Ratio, Alkali-Sulfate 
Ratio, and variables derived from precipitation products. 

The data we have used here for demonstration purposes may be inadequate for credible model 
development.  They may cover too broad a range of cements, over too broad a range of HOH7s 
to be simply and explicitly model-able. The break in the Blaine transform curve that consistently 
occurs is at a value that roughly corresponds to the differences between Type III (mean Blaine of 
556 M2/kg) and Types I, II, and V (roughly 380 M2

3.2 Future Directions 

/kg) suggests that these should be modeled 
separately. The data may be lacking significant, strong variables. Taylor [3] notes that hydration 
products also have an enthalpy of hydration, but they were not included here.  The inclusion may 
result in higher predictive power for HOH7 than the variables examined so far. 

In future work, we would investigate subsets of the data, concentrating on specific cement Types 
and variables like belite, bassanite, 1/Vicat, and Blaine have shown promise based on the data 
utilized in this study. This could be accomplished by: 

1. Organizing many of our best candidate several-variable component models for general insight 
into which variables offer generally the best predictive power for HOH7. 

2. Expanding old and new datasets to include wider ranges of variables, for example 
precipitation products or widely used "derived variables" (ratio's, fraction's, for example), and 
further exploring the utility of transformations. 
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3. Developing different classes of models for more narrowly defined classes of cements: Type 
I's, Type II's, Type III’s, Type V’s, and C 1157 and C 595 cements. 

4. Cross-validating existing best candidate models, when new data appropriate for cross-
validation becomes available.
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APPENDIX: CEMENTS DATA 
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Cement Source Alite Belite Ferrite Aluminate C3Ac C3Ao Periclase Anhydrite Bassanite Gypsum Calcite 
140 1 64.2 16.8 6.8 5.2 4.0 1.2 0.7 2.1 1.9 0.6 0.4 

141 1 58.9 12.4 7.7 8.4 8.4 0.0 1.8 0.6 1.8 3.7 0.6 

142 1 51.8 22.3 11.7 5.1 5.1 0.0 3.8 0.3 2.4 0.3 0.3 

143 1 59.6 23.5 12.4 2.8 1.7 1.0 0.8 0.4 0.4 1.3 0.4 

144 1 51.4 23.0 6.5 9.5 8.3 1.1 0.0 0.2 1.7 0.8 2.5 

145 1 55.7 19.2 5.3 11.3 10.4 0.9 1.4 0.5 2.2 1.0 2.1 

146 1 56.3 21.9 9.8 2.4 0.4 2.1 2.9 0.3 3.2 0.5 0.3 

147 1 63.8 12.5 12.3 2.8 2.1 0.7 2.3 1.1 1.9 1.7 2.3 

148 1 56.9 15.8 12.8 5.7 1.4 4.3 0.1 0.0 4.0 0.4 0.5 

149 1 56.3 19.9 9.8 6.2 4.1 2.1 1.4 0.0 0.3 4.5 0.3 

150 1 58.4 19.2 11.6 4.9 3.7 1.1 1.1 0.0 1.2 2.4 0.2 

151 1 63.3 13.4 11.9 5.1 2.5 2.6 0.5 0.3 3.7 0.8 0.8 

152 1 64.0 12.7 8.1 8.8 5.4 3.4 1.2 0.1 2.5 0.9 0.6 

153 1 59.3 20.2 11.6 2.9 2.4 0.4 0.2 0.0 0.8 2.2 2.7 

154 1 65.3 9.9 9.1 3.8 0.1 3.8 1.2 0.3 2.6 0.5 6.5 

155 1 64.2 17.9 9.7 4.7 4.3 0.4 0.1 0.1 2.3 0.6 1.2 

156 1 51.7 24.1 6.1 10.3 10.3 0.0 0.2 0.6 1.4 0.6 3.5 

157 1 52.9 21.1 11.0 3.8 0.6 3.2 1.8 0.0 1.0 2.3 3.2 

158 1 60.4 13.0 11.9 4.0 0.3 3.6 0.8 0.2 2.1 1.7 3.7 

159 1 49.3 21.8 6.0 10.3 9.0 1.3 0.8 0.3 1.3 3.2 5.4 

160 1 58.7 11.1 15.5 5.9 4.1 1.7 0.2 0.4 0.5 1.9 4.0 

161 1 57.7 18.4 12.8 3.5 2.9 0.6 0.8 0.3 1.8 1.7 0.8 

162 1 55.1 21.0 14.4 1.8 1.8 0.0 2.4 0.2 2.5 1.5 1.8 

163 1 62.0 13.5 10.1 6.8 2.6 4.2 1.1 0.3 2.2 2.0 0.3 

164 1 48.8 24.2 15.2 2.8 2.8 0.0 0.0 4.5 3.2 0.6 0.5 

165 1 46.0 28.7 11.2 3.5 2.6 1.0 1.6 0.5 2.1 1.3 3.0 

166 1 51.5 13.7 9.4 6.6 6.0 0.6 0.9 2.8 2.6 0.9 4.3 

167 1 52.5 18.6 10.2 7.7 7.7 0.0 2.4 0.5 3.3 0.3 0.5 

168 1 53.8 18.6 7.7 9.2 9.2 0.0 3.7 0.2 2.3 0.1 0.9 

169 1 45.9 28.7 10.6 3.8 1.5 2.3 0.9 1.5 1.5 1.2 2.1 

170 1 51.9 18.3 8.6 6.0 0.9 5.1 0.3 0.1 4.5 0.8 4.2 
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Cement Source Alite Belite Ferrite Aluminate C3Ac C3Ao Periclase Anhydrite Bassanite Gypsum Calcite 

1007 2 62.3 14.3 5.6 10.4 10.4 0.0 2.0 0.1 3.5 0.0 0.1 

1015 2 60.5 12.4 8.5 5.9 1.1 4.7 0.6 1.3 1.1 1.5 0.3 

1016 2 53.7 16.3 10.4 8.6 7.8 0.8 0.7 0.1 3.4 1.1 0.5 

1017 2 57.8 19.2 12.1 4.3 3.4 0.9 0.7 0.2 2.5 1.5 0.3 

1020 2 60.3 15.3 10.6 4.9 3.4 1.5 0.1 0.4 2.8 0.5 0.2 

1024 2 57.2 12.9 12.2 5.4 3.8 1.5 0.1 0.1 1.1 2.9 6.6 

1027 2 59.5 17.3 13.5 3.4 2.8 0.6 0.7 0.6 1.9 0.9 1.3 

1028 2 60.0 14.3 13.9 3.5 3.3 0.2 0.6 2.5 1.4 1.0 1.1 

1039 2 55.8 18.1 11.5 5.3 2.6 2.7 0.1 0.1 4.3 0.0 0.0 

1043 2 67.8 7.0 7.0 8.1 6.3 1.7 2.2 1.0 1.4 1.4 0.3 

1051 2 53.7 20.6 12.5 3.2 1.2 2.0 3.1 0.1 3.3 0.5 0.1 

1059 2 63.4 11.0 6.2 6.6 6.6 0.0 0.9 1.1 0.5 4.2 0.0 

1060 2 55.5 18.3 11.6 5.9 3.2 2.7 0.2 0.1 1.7 2.5 0.3 

1104 2 61.8 13.7 11.8 4.6 2.5 2.1 0.1 0.5 2.1 1.5 0.4 

2312 2 64.0 13.3 14.0 1.3 0.3 1.0 0.2 0.3 2.8 0.1 0.2 

2322 2 60.9 12.6 13.8 1.7 1.7 0.0 0.4 1.1 2.5 0.1 0.2 

2334 2 56.2 13.6 10.3 6.0 0.8 5.2 2.4 0.4 2.4 1.9 0.5 

2403 2 56.1 17.6 12.7 3.7 3.7 0.0 0.2 0.0 4.2 1.6 0.2 
ERDC 18-

01 
3 29.82 32.47 19.25 5.05 2.86 2.2 0.4 0 1.9 0.23 8.8 

ERDC 26-
05 3 56.5 12.54 13.47 0.89 0 0.89 2.57 4.07 3.49 0.12 3.9 

ERDC 
70070 

3 39.37 24.45 14.75 1.11 0 1.11 2.65 4.37 2.4 2.79 0.53 

ERDC 24-
08 3 26.57 46.05 11.73 6.11 0 6.11 4.8 0 3.32 0.9 0 
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Cement D10 D50 D90 Span Blaine LOI VicatI VicatF Str3d SiO Al2 2O Fe3 2O
140 

3 
1.98 12.39 35.16 2.68 4023 0.84 136 256 3253 21.490 5.082 2.729 

141 2.40 12.61 37.13 2.75 3971 1.88 138 253 4063 18.940 5.680 2.458 

142 2.50 10.46 31.15 2.74 4166 0.20 128 236 3904 20.233 4.669 2.739 

143 1.56 10.21 30.84 2.87 3982 1.51 120 217 3871 21.143 4.500 3.531 

144 1.63 11.26 39.54 3.37 4123 2.15 90 173 3611 20.327 5.324 2.354 

145 1.76 12.52 39.66 3.03 3669 1.21 126 229 3846 19.758 5.658 2.126 

146 1.51 9.57 30.73 3.05 4335 1.07 136 248 3724 22.186 3.363 3.121 

147 1.53 10.97 32.76 2.85 4114 1.61 98 204 4068 19.638 4.327 3.264 

148 1.66 12.10 36.11 2.85 3756 1.64 140 245 3775 20.231 4.788 3.162 

149 2.33 12.90 40.22 2.94 3828 1.98 120 222 3539 20.180 4.990 3.030 

150 1.66 12.10 36.11 2.49 3862 1.67 135 231 3485 20.720 4.660 3.180 

151 1.78 11.95 37.20 2.96 3788 1.42 98 190 3982 20.030 4.910 3.460 

152 1.64 11.11 35.27 3.03 4086 1.35 133 232 3955 19.960 5.680 2.400 

153 2.45 13.12 37.40 2.66 3913 2.01 157 269 3414 20.870 5.030 3.440 

154 2.25 13.52 42.84 3.00 3887 1.81 138 241 3243 22.120 3.470 2.900 

155 1.46 11.57 33.28 2.75 4042 1.56 89 184 3867 20.450 5.000 3.343 

156 1.40 11.09 39.58 3.44 3941 2.48 118 209 3807 20.170 5.720 2.213 

157 1.93 11.13 31.98 2.70 3888 2.91 152 272 3253 21.110 3.730 3.360 

158 1.69 10.73 30.51 2.69 4006 2.71 129 243 3954 20.830 4.000 3.000 

159 1.55 12.79 40.72 3.06 3662 2.65 124 236 3783 20.030 5.100 1.990 

160 1.58 12.75 36.73 2.76 3795 2.48 115 226 3539 20.510 5.120 3.620 

161 2.17 12.95 38.09 2.77 3686 1.67 121 229 3653 20.360 5.180 3.660 

162 2.61 14.26 40.14 2.63 3740 2.00 139 253 3554 20.340 4.750 3.530 

163 1.81 13.94 40.88 2.80 3698 1.44 165 272 3624 20.590 4.930 2.750 

164 2.10 13.18 42.19 3.04 3720 1.09 129 235 3598 20.200 5.130 4.240 

165 1.98 13.20 39.45 2.84 3803 2.14 123 232 3557 20.630 4.490 2.900 

166 1.87 12.04 36.67 2.89 4061 2.40 118 223 4252 19.040 5.260 2.380 

167 1.06 8.17 28.29 3.33 5237 0.84 142 257 5109 19.290 5.920 2.440 

168 1.26 10.88 36.21 3.21 4083 0.86 128 241 4189 19.910 5.110 2.140 

169 1.32 9.77 26.61 2.59 4161 2.30 148 264 2976 22.070 3.170 3.700 

170 1.31 11.93 42.96 3.49 4124 2.78 89 185 3064 21.710 3.770 2.480 
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Cement D10 D50 D90 Span Blaine LOI VicatI VicatF Str3d SiO Al2 2O Fe3 2O
1007 

3 
2.08 12.86 35.37 2.59 3663 0.73 115 190 4801 19.720 5.270 1.970 

1015 2.05 11.26 34.85 2.91 4345 1.44 60 145 4152 21.120 4.420 2.480 

1016 2.30 13.49 40.24 2.81 3831 1.02 115 205 3303 20.450 5.610 2.900 

1017 2.57 14.20 38.71 2.55 3384 0.84 143 298 3900 21.250 4.290 2.440 

1020 1.87 12.97 41.25 3.04 3803 0.70 90 145 4589 20.290 5.540 2.900 

1024 3.54 14.42 37.59 2.36 4009 2.11 110 170 3860 20.080 5.470 2.900 

1027 2.42 12.35 37.02 2.80 4179 1.74 85 170 4549 20.200 4.580 2.590 

1028 2.62 13.46 39.06 2.71 4029 1.71 90 185 3760 19.610 5.250 2.600 

1039 2.27 12.92 38.30 2.79 3871 1.41 100 165 3528 20.490 5.140 2.540 

1043 2.03 13.21 43.05 3.11 3871 1.23 135 205 3422 20.560 5.020 1.940 

1051 2.07 13.07 37.29 2.69 3950 1.12 150 235 3674 20.540 4.560 3.180 

1059 1.87 12.66 37.82 2.84 3850 1.46 92 175 3767 20.770 4.550 1.520 

1060 2.27 13.50 37.13 2.58 3600 1.46 84 170 4404 21.080 4.700 3.120 

1104 2.22 12.64 36.83 2.74 3768 1.52 83 170 4921 21.330 4.040 2.880 

2312 2.13 12.63 35.95 2.68 3622 0.59 200 285 3289 21.450 4.010 4.020 

2322 2.02 11.99 35.03 2.75 3930 0.70 90 165 4218 20.680 4.840 3.230 

2334 1.89 11.39 34.02 2.82 4104 1.36 145 225 3740 20.400 4.630 2.910 

2403 2.17 12.64 35.33 2.62 4048 1.52 125 150 4271 20.260 4.450 3.200 
ERDC 18-

01 
2.856 13.106 36.935 2.6 3470 1.2 186 304 1830 21.800 5.300 4.500 

ERDC 26-
05 2.48 14.111 46.964 3.15 3200 1.05 247 382 1545 21.600 2.800 4.200 

ERDC 
70070 

2.188 15.558 51.896 3.2 3100 0.88 398 582 2030 21.100 5.000 3.000 

ERDC 24-
08 1.735 12.308 36.938 2.86 3430 1.7 337 448 1590 23.000 3.200 3.500 
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Cement CaO MgO SO Na3 2 KO 2 7dHOH O 
140 64.559 1.355 2.837 0.093 0.186 344 

141 61.488 2.612 4.728 0.405 1.042 351 

142 61.555 4.330 3.500 0.317 1.086 330 

143 63.730 1.680 2.735 0.121 0.719 317 

144 64.513 0.966 3.037 0.111 0.757 317 

145 62.670 2.504 3.651 0.349 1.165 341 

146 63.160 3.576 2.417 0.281 0.394 324 

147 63.850 3.500 2.610 0.132 0.692 347 

148 64.270 1.360 2.901 0.132 0.823 340 

149 62.240 2.450 3.480 0.320 0.826 327 

150 63.990 2.210 2.370 0.068 0.695 330 

151 64.730 1.340 3.120 0.269 0.320 330 

152 64.460 2.060 2.660 0.191 0.500 363 

153 63.730 1.180 2.770 0.110 0.420 329 

154 63.550 2.380 2.740 0.110 0.690 323 

155 64.910 1.000 2.850 0.090 0.360 342 

156 63.600 1.190 3.270 0.140 0.870 326 

157 63.490 2.540 2.230 0.213 0.470 316 

158 64.930 1.660 2.350 0.114 0.310 342 

159 64.360 1.270 3.680 0.120 0.510 353 

160 62.930 0.920 3.160 0.065 0.750 324 

161 63.890 1.170 2.730 0.094 0.630 331 

162 61.890 3.550 3.000 0.127 0.530 334 

163 63.940 1.870 2.880 0.196 0.682 328 

164 63.640 1.060 3.580 0.058 0.383 323 

165 62.650 2.590 3.230 0.160 0.726 319 

166 63.490 2.080 3.680 0.156 1.175 348 

167 61.640 3.110 4.390 0.355 1.068 350 

168 62.280 3.880 3.480 0.226 1.227 339 

169 63.470 2.000 2.150 0.201 0.429 305 

170 64.320 1.440 2.750 0.092 0.628 316 
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63 

Cement CaO MgO SO Na3 2 KO 2 7dHOH O 
1007 63.140 3.270 3.430 0.320 1.150 301 

1015 63.890 1.990 2.810 0.470 0.670 403 

1016 63.940 1.880 3.000 0.179 0.117 209 

1017 63.370 2.040 3.190 0.390 0.710 321 

1020 64.970 1.040 2.730 0.112 0.830 314 

1024 63.770 1.150 3.130 0.121 0.790 334 

1027 62.650 2.090 3.260 0.200 0.930 468 

1028 62.430 2.110 4.350 0.200 1.090 428 

1039 63.100 1.740 3.840 0.180 1.000 287 

1043 63.770 3.770 2.730 0.090 0.560 392 

1051 61.010 5.010 3.480 0.250 0.820 222 

1059 63.710 2.480 3.050 0.056 0.017 357 

1060 63.960 1.220 2.680 0.096 0.610 348 

1104 63.850 1.250 2.680 0.133 0.360 311 

2312 64.650 1.390 2.380 0.199 0.490 289 

2322 64.650 1.850 2.900 0.038 0.540 322 

2334 61.760 3.960 3.180 0.320 0.570 322 

2403 63.810 1.550 4.130 0.156 0.460 257 
ERDC 18-

01 61.600 1.400 2.400 0.030 0.600 269 

ERDC 26-
05 

63.100 3.600 2.800 0.120 0.230 261 

ERDC 
70070 62.900 3.200 2.800 0.240 0.090 269 

ERDC 24-
08 61.500 3.700 2.200 0.490 0.300 285 
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