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review this report were chosen for their special competencies and with regard 
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The opinions and conclusions expressed or implied in this report are those of 
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The Second Strategic Highway  
Research Program

America’s highway system is critical to meeting the mobility and 
economic needs of local communities, regions, and the nation. 
Developments in research and technology—such as advanced 
materials, communications technology, new data collection tech-
nologies, and human factors science—offer a new opportunity 
to improve the safety and reliability of this important national 
resource. Breakthrough resolution of significant transportation 
problems, however, requires concentrated resources over a short 
time frame. Reflecting this need, the second Strategic Highway 
Research Program (SHRP 2) has an intense, large-scale focus, 
integrates multiple fields of research and technology, and is  
fundamentally different from the broad, mission-oriented,  
discipline-based research programs that have been the mainstay 
of the highway research industry for half a century.

The need for SHRP 2 was identified in TRB Special Report 260: 
Strategic Highway Research: Saving Lives, Reducing Congestion, 
Improving Quality of Life, published in 2001 and based on a  
study sponsored by Congress through the Transportation Equity 
Act for the 21st Century (TEA-21). SHRP 2, modeled after the 
first Strategic Highway Research Program, is a focused, time-
constrained, management-driven program designed to com-
plement existing highway research programs. SHRP 2 focuses  
on applied research in four areas: Safety, to prevent or reduce the  
severity of highway crashes by understanding driver behavior;  
Renewal, to address the aging infrastructure through rapid design 
and construction methods that cause minimal disruptions and 
produce lasting facilities; Reliability, to reduce congestion through 
incident reduction, management, response, and mitigation; and 
Capacity, to integrate mobility, economic, environmental, and 
community needs in the planning and designing of new trans-
portation capacity.

SHRP 2 was authorized in August 2005 as part of the Safe, 
Accountable, Flexible, Efficient Transportation Equity Act: A  
Legacy for Users (SAFETEA-LU). The program is managed by the 
Transportation Research Board (TRB) on behalf of the National 
Research Council (NRC). SHRP 2 is conducted under a memo-
randum of understanding among the American Association of  
State Highway and Transportation Officials (AASHTO), the 
Federal Highway Administration (FHWA), and the National 
Academy of Sciences, parent organization of TRB and NRC. 
The program provides for competitive, merit-based selection  
of research contractors; independent research project oversight; 
and dissemination of research results.
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Asphalt pavements with delamination problems experience considerable early damage because 
delaminations provide paths for moisture damage and the development of damage such 
as stripping, slippage cracks, and pavement deformation. Early detection of the existence,  
extent, and depth of delaminations in asphalt pavements is key for determining the appropriate 
rehabilitation strategy and thus extending the life of the given pavement.

This report presents the findings of the first two phases of SHRP 2 Renewal Project R06D, 
Nondestructive Testing to Identify Delaminations Between HMA Layers. The main objective 
of the project was to develop nondestructive testing (NDT) techniques capable of detecting 
and quantifying delaminations in HMA pavements. The NDT techniques should be applicable 
to construction, project design, and network-level assessments.

During Phase 1 of the project, the research team evaluated NDT methods that could 
potentially detect the most typical delaminations in asphalt pavements. Both laboratory 
and field testing were conducted during this task. Based on the findings from this testing, 
the manufacturers of two promising technologies conducted further development of their 
products to meet the goals of this project in Phase 2. The two technologies advanced in this 
research were ground-penetrating radar (GPR) and impact echo/spectral analysis of surface 
waves (IE/SASW).

Additionally, the project developed guidelines and piloted both NDT technologies in 
collaboration with highway agencies. Once completed, the results from this additional scope  
of work will be published as an addendum to this report.

F O R E W O R D
Monica A. Starnes, PhD, Senior Program Officer, Renewal
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The research in this volume was developed by the research 
team as listed on the title page. It was lead by Dr. Nam Tran.

Field testing of the 3d-Radar ground-penetrating radar 
(GPR) system was carried out at sites in Florida, Kansas, and 
Maine. The equipment configuration used for this testing is 
shown in Figure 1.1. The data were collected at 3 nominal 
speeds: 40 mph, 20 mph, and 5 mph, and the level of detail of 
the data increased as the speed was lowered. The data analysis 
was carried out on the lowest-speed data, because these data 
had the highest level of detail. This data collection was car-
ried out on a smaller section of pavement that was selected 
to most likely include delaminations. The selection of the 
test area was based on a review of the higher-speed data, on 
observation of surface distress, and on core data available 
from previous testing conducted by the corresponding state 
department of transportation.

The primary purpose of the initial review of the GPR data  
was to identify a 2,000-ft-long section for testing of the 
mechanical wave system. An additional objective was to iden-
tify specific locations for coring, which was carried out in con-
junction with the mechanical wave testing. Mechanical wave 
testing was carried out only in Florida and Kansas, so those 
sites were reviewed.

The section selected for a more detailed analysis was based 
on a review of the three-dimensional (3-D) GPR data and on 
the observed surface conditions. The focus was on the south-
bound section, particularly the segment between Milepost 
(MP) 413 and the southbound rest area entrance. Surface 
distress observed in this area suggests some moisture damage 
in the layers below. See Figure 1.2.

Core data in this area show a total asphalt thickness 
of approximately 9 in. In 1997, the pavement was milled 
approximately 5 in. and replaced with a 1-in. friction course, 
a 1.5-in.-thick layer of 12.5 mm mix, a 1.5-in.-thick layer 

of 19 mm mix, and a 0.5-in. layer of asphalt rubber mem-
brane interlayer (ARMI). It is believed, on the basis of core 
data, that moisture damage was occurring either between the 
12-mm and the 19-mm mixes or between the 19-mm mix 
and the ARMI layer.

Figure 1.3 shows an overview of the GPR layer structure 
data for this southbound region. The section is fairly homoge-
neous, but it appears that the overall asphalt thickness is lower 
in the segment north of the rest area. Figure 1.4 shows local 
detail of the pavement cross section. Note that what appears 
to be the ARMI layer is evident periodically in the GPR data 
structure. It is possible that if this layer is impermeable, a layer 
boundary will appear in the GPR data where moisture has 
been retained. On the basis of a qualitative review of the depth 
slice data, it was recommended that the mechanical wave 
testing be carried out on a 2,000-ft-long section that began 
2,000 ft south of MP 413.

Table 1.1 is a summary of the field observations and 
selected core locations. The surface reference marks are used 
to tie the location of test data files to physical observations 
of distress or other features on the surface of the pavement.

Figures 1.5, 1.6, 1.7 and 1.8 show the core locations super-
imposed on the GPR horizontal slice and profile data. The 
top figure is the horizontal (depth) slice, the bottom left fig-
ure is the longitudinal profile, and the bottom right figure 
is the transverse profile. The numbers in circles are the core 
numbers. Figure 1.9 shows the automated activity analysis for 
the Gainesville site. The likelihood of distress is color coded. 
The location of each core was added to the analysis.

Table 1.2 is the summary log of GPR images correspond-
ing to the surface reference marks and sites identified as 
potential core locations. The table includes the references 
to Figures 1.10 through 1.20 where the GPR images are 
located.

C h a p t e r  1

3d-Radar Ground-Penetrating Radar Field Testing 
Results for Locating Cores—Florida
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Figure 1.1. 3d-Radar equipment used for field tests.
Figure 1.2. Pavement conditions between MP 413 
and rest area.

MP 413 MP 410 MP 409

Bottom of AC

Bottom of Base

Rest Area
Entrance

Figure 1.4
Distance

Pavement Surface

Figure 1.3. Overview of 20-mph GPR data for I-75 southbound (centerline).

ARMI Layer

Bottom of Asphalt

Figure 1.4. Local detail of layer structure from 5-mph GPR data (MP 413 at 112 m).
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Table 1.1. Pavement References and Core Locations  
at I-75 Southbound Test Section

Description of Surface  
Reference Mark

File 
Distance (m)

Distance from 
MP 413 (ft) Offset

MP 413 111.65 0 na

Hole 139.25 91 Centerline

Unknown 156.00 146 Full width

Crack 381.25 885 RWP to LWP

Crack 386.00 900 RWP to LWP

Hole 712.77 1,972 Left of centerline

Crack 717.50 1,988 Full width, at small angle

Start of test 721.25 2,000 na

Crack 901.50 2,591 Full width

Crack 903.25 2,597 Full width

Crack 905.20 2,604 Full width

Hole 943.40 2,729 RWP

Traffic loop and cores 1,317.40 3,956 Centerline

Core locations

1 792.0 2,232 RWP

2 795.0 2,242 RWP

3 798.0 2,252 RWP

4 1,211.0 3,607 RWP

5 1,218.7 3,632 RWP

6 1,221.0 3,640 RWP

7 1,252.1 3,742 RWP

8 1,253.0 3,745 RWP

9 1,413.0 4,270 RWP

10 1,418.0 4,286 RWP

Note: LWP = left wheelpath; RWP = right wheelpath; and na = not applicable. Data used in this table 
are taken from GPR File 12-5 (No. 12 at 5 mph).
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1 2 3

Figure 1.5. Core locations 1, 2, and 3.

Figure 1.6. Core locations 4, 5, and 6.
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7 8

Figure 1.7. Core locations 7 and 8.

109

Figure 1.8. Core locations 9 and 10.
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Figure 1.9. Automated activity analysis of Gainesville, Florida, site with core locations shown.
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Table 1.2. GPR Surface Image Log

Description of Surface 
Reference Mark

File  
Distance (m)

Distance from  
MP 413 (ft) Offset Figure

MP 413 111.65 0 na

Hole 139.25 91 Centerline 1.10

Unknown 156.00 146 Full width 1.11

Crack 381.25 885 RWP to LWP 1.12

Crack 386.00 900 RWP to LWP 1.12

Hole 712.77 1,972 Left of centerline 1.13

Crack 717.50 1,988 Full width, at small angle 1.13

Start of test 721.25 2,000 na

Crack 901.50 2,591 Full width 1.14

Crack 903.25 2,597 Full width 1.14

Crack 905.20 2,604 Full width 1.14

Hole 943.40 2,729 RWP 1.15

Traffic loop and cores 1,317.40 3,956 Centerline 1.16

Potential core locations

Anomaly at 12-cm depth 795.0 2,242 RWP 1.17

Anomalies at 4-cm depth 1,218.7 3,632 RWP 1.18

Anomaly at 11-cm depth 1,252.1 3,742 RWP 1.19

Anomaly at 13-cm depth File 8, 20 mph 2,837 Centerline 1.20

Note: na = not applicable. Data used in this table are taken from GPR File 12-5 (No. 12 at 5 mph).

Figure 1.10. Hole (red arrow) at file distance 139.25 m.
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Figure 1.11. Unknown mark (red arrow) at file distance 156.00 m.

Figure 1.12. Crack (left red arrow) at file distance 381.25 m (885 ft from MP 413) and 386.00 m.

Figure 1.13. Hole (left red arrow) at file distance 712.77 m and crack (right red arrow) at file distance 717.50 m.

Figure 1.14. Crack (left red arrow) at file distance 901.50 m, 903.25 m, and 905.20 m.
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Figure 1.15. Hole (red arrow) at file distance 943.40 m.

Figure 1.16. Traffic loop (right arrow) and cores (left arrow) at file distance 1,317.40 m.

Figure 1.17. Anomaly at 12-cm depth, file distance 795.0 m.
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4 5 6

Figure 1.18. Anomalies at 4-cm depth, file distance 1,218.7 m.

7 8

Figure 1.19. Anomaly at 11-cm depth, file distance 1,252.1 m.
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109

Figure 1.20. Anomaly at 13-cm depth, File 8, 20 mph.
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Pavement sections with some delamination problems in four 
states were selected for uncontrolled field testing of the two 
nondestructive testing (NDT) techniques. However, because 
of some delays in equipment improvement, uncontrolled 
field testing did not begin until winter 2010 for the ground-
penetrating radar (GPR) technique and until spring 2011 for 
the mechanical wave technique. Weather conditions were 
not suitable for field testing in Maine and Washington State. 
Therefore, the two NDT techniques were evaluated only on 
pavement sections in Florida and Kansas. This chapter dis-
cusses the selection of coring locations and the results from 
testing cores in the laboratory.

In Florida, pavement sections selected for high-speed 
GPR testing were northbound and southbound segments 
between MP 413 and MP 409 on I-75. After the high-speed 
GPR testing was completed, results were reviewed, and an 
approximately 4,500-ft southbound section starting from 
MP 413 was selected for low-speed GPR testing. Core data in 
this area provided by the Florida Department of Transpor-
tation (FDOT) showed a total asphalt thickness of approxi-
mately 9 in. In 1996, the pavement was milled approximately 
5.5 in. and replaced with a 0.5-in. layer of asphalt rubber 
membrane interlayer (ARMI), a 2-in. layer of 19-mm Super-
pave mix, a 1.25-in. layer of 12.5-mm Superpave mix, and 

a 0.75-in. layer of open-graded friction course (OGFC). 
Based on results of indirect tensile strength testing of field 
cores, moisture damage may be occurring either between the 
12-mm mix and the 19-mm mix or between the 19-mm mix 
and the interlayer layer.

After reviewing results of the GPR testing and other infor-
mation provided by FDOT, the research team decided to 
conduct field testing of the mechanical wave technique on 
the same 2,000-ft section starting from MP 413. In addition, 
locations where anomalies were identified in the GPR results 
were selected for lightweight deflectometer testing and cut-
ting cores to verify the pavement condition. More details on 
the core locations are in Chapter 1.

Table 2.1 shows the locations where anomalies were 
found in the GPR results and where cores were extracted in 
the 4,600-ft pavement site starting from MP 413. Chapter 1 
showed the anomalies and the locations of the 10 cores in 
conjunction with the NDT test results.

All the cores were intact and brought back to the NCAT 
laboratory for testing. Results of laboratory testing accord-
ing to AASHTO T 283 test method are shown in Tables 2.2 
through 2.6. However, the mix placed in the bottom of Layer 2 
showed signs of stripping (visually ranked as No. 4 on the 
basis of AASHTO T 283).

C h a p t e r  2

Florida Cores Analysis: Coring Locations  
and Results for I-75 Pavement Site
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Table 2.1. Locations of Anomalies and Cores for I-75 
Pavement Site

Core No. Distance (ft) from MP 413 Offset GPR Observation

1 2,232 RWP No anomaly

2 2,242 RWP Anomaly

3 2,252 RWP No anomaly

4 3,607 RWP No anomaly

5 3,632 RWP Anomaly

6 3,640 RWP Anomaly

7 3,742 RWP Anomaly

8 3,745 RWP Anomaly

9 4,270 CL No anomaly

10 4,286 CL Anomaly

Note: CL = centerline.

Table 2.2. Testing Results for Layer 1 (OGFC)

Mix ID
Core 

ID
T166 
(Gmb)

% Water 
Absorbed

Corelok 
(Gmb)

Reported 
(Gmb)

Average 
Diameter 

(in.)

Average 
Height 

(in.)
Fail Load 

(lb)

Tensile 
Strength 

(psi)
Strip 
Rank

Lift 1  1 NA NA 1.930 1.930 3.989 0.791 900.0 181.5 3

Lift 1  2 NA NA 1.911 1.911 3.984 0.911 825.0 144.8 3

Lift 1  3 NA NA 1.928 1.928 3.995 0.887 650.0 116.7 2

Lift 1  4 NA NA 1.970 1.970 3.968 0.770 675.0 140.7 3

Lift 1  5 NA NA 1.912 1.912 3.946 0.882 712.5 130.3 3

Lift 1  6 NA NA 1.937 1.937 3.966 0.988 812.5 132.0 3

Lift 1  7 NA NA 1.910 1.910 3.936 1.096 1,075.0 158.7 3

Lift 1  8 NA NA 1.938 1.938 3.961 0.907 850.0 150.6 4

Lift 1  9 NA NA Broke NA 3.979 0.599 NA NA NA

Lift 1 10 NA NA 1.890 1.890 3.973 0.767 250.0 52.2 4

Average na na na 1.925 1.925 3.970 0.860 750.000 134.2 na

SD na na na 0.023 0.023 0.019 0.137 227.675 35.9 na

Note: OGFC = open-graded friction course; na = not applicable; NA = not available; and SD = standard deviation.
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Table 2.3. Testing Results for Layer 2 (Dense-Graded Mix)

Mix ID
Core 

ID
T166 
(Gmb)

% Water 
Absorbed

Corelok 
(Gmb)

Reported 
(Gmb)

Average 
Diameter 

(in.)

Average 
Height 

(in.)
Fail Load 

(lb)

Tensile 
Strength 

(psi)
Strip 
Rank

Lift 2  1 2.352 0.9 NA 2.352 3.989 2.056 1,725.0 133.9 4

Lift 2  2 2.403 0.5 NA 2.403 3.984 2.104 1,550.0 117.7 4

Lift 2  3 2.371 0.4 NA 2.371 3.995 2.142 1,750.0 130.2 4

Lift 2  4 2.357 1.2 NA 2.357 3.968 2.309 1,400.0 97.3 4

Lift 2  5 2.310 1.5 NA 2.310 3.946 2.094 1,550.0 119.4 4

Lift 2  6 2.319 4.1 2.301 2.301 3.966 1.675 1,100.0 105.4 4

Lift 2  7 2.359 0.3 NA 2.359 3.936 1.681 1,425.0 137.1 4

Lift 2  8 2.359 0.9 NA 2.359 3.961 1.726 1,425.0 132.7 4

Lift 2  9 2.355 1.1 NA 2.355 3.979 2.299 1,900.0 132.2 4

Lift 2 10 2.356 0.6 NA 2.356 3.973 2.400 1,925.0 128.5 4

Average na 2.354 1.2 na 2.352 3.970 2.049 1,575.0 123.4 na

SD na 0.026 1.1 na 0.029 0.019 0.268 254.7 13.3 na

Note: na = not applicable; NA = not available.

Table 2.4. Testing Results for Layer 3 (ARMI)

Mix ID
Core 

ID
T166 
(Gmb)

% Water 
Absorbed

Corelok 
(Gmb)

Reported 
(Gmb)

Average 
Diameter 

(in.)

Average 
Height 

(in.)
Fail Load 

(lb)

Tensile 
Strength 

(psi)
Strip 
Rank

Lift 3  1 2.165 1.1 NA 2.165 3.989 0.812 250.0 49.1 1

Lift 3  2 2.174 2.7 2.199 2.199 3.984 0.629 300.0 76.2 4

Lift 3  3 2.169 1.4 NA 2.169 3.995 0.560 200.0 56.9 1

Lift 3  4 2.156 2.3 2.202 2.202 3.968 0.570 150.0 42.2 4

Lift 3  5 2.045 3.3 2.087 2.087 3.946 0.499 100.0 32.3 3

Lift 3  6 2.064 1.4 NA 2.064 3.966 0.444 100.0 36.2 1

Lift 3  7 2.068 2.4 2.096 2.096 3.936 0.780 300.0 62.2 4

Lift 3  8 2.078 1.7 NA 2.078 3.961 0.891 350.0 63.1 4

Lift 3  9 2.269 0.5 NA 2.269 3.979 0.572 275.0 77.0 1

Lift 3 10 2.218 0.9 NA 2.218 3.973 0.572 250.0 70.0 1

Average na 2.141 1.8 NA 2.155 3.970 0.633 227.5 56.5 na

SD na 0.074 0.9 NA 0.070 0.019 0.146 87.0 16.1 na

Note: ARMI = asphalt rubber membrane interlayer; na = not applicable; NA = not available.
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Table 2.5. Testing Results for Layer 4 (Dense-Graded Mix)

Mix ID
Core 

ID
T166 
(Gmb)

% Water 
Absorbed

Corelok 
(Gmb)

Reported 
(Gmb)

Average 
Diameter 

(in.)

Average 
Height 

(in.)
Fail Load 

(lb)

Tensile 
Strength 

(psi)
Strip 
Rank

Lift 4  1 2.313 0.6 NA 2.313 3.989 1.359 1,450.0 170.3 1

Lift 4  2 2.222 1.4 NA 2.222 3.984 1.132 1,050.0 148.2 2

Lift 4  3 2.256 1.2 NA 2.256 3.995 0.918 1,025.0 177.9 1

Lift 4  4 2.241 0.8 NA 2.241 3.968 1.459 1,050.0 115.4 1

Lift 4  5 2.234 1.1 NA 2.234 3.946 0.872 600.0 111.0 1

Lift 4  6 2.260 0.3 NA 2.260 3.966 1.420 1,150.0 130.0 1

Lift 4  7 2.306 0.4 NA 2.306 3.936 1.631 1,575.0 156.2 2

Lift 4  8 2.304 0.6 NA 2.304 3.961 1.715 1,300.0 121.8 2

Lift 4  9 2.294 0.6 NA 2.294 3.979 0.782 800.0 163.7 1

Lift 4 10 2.334 0.4 NA 2.334 3.973 0.577 450.0 125.0 1

Average na 2.276 0.8 NA 2.276 3.970 1.187 1,045.0 141.9 na

SD na 0.039 0.4 NA 0.039 0.019 0.387 354.9 24.3 na

Note: na = not applicable; NA = not available.

Table 2.6. Testing Results for Layer 4 (Dense-Graded Mix)

Mix ID
Core 

ID
T166 
(Gmb)

% Water 
Absorbed

Corelok 
(Gmb)

Reported 
(Gmb)

Average 
Diameter 

(in.)

Average 
Height 

(in.)
Fail Load 

(lb)

Tensile 
Strength 

(psi)
Strip 
Rank

Lift 5  1 2.300 1.4 NA 2.300 3.989 1.681 1,400.0 132.9 1

Lift 5  2 2.196 2.8 2.180 2.180 3.984 1.971 1,550.0 125.7 1

Lift 5  3 2.279 0.9 NA 2.279 3.995 2.213 1,900.0 136.8 1

Lift 5  4 2.254 1.6 NA 2.254 3.968 2.086 1,475.0 113.4 2

Lift 5  5 2.282 0.9 NA 2.282 3.946 2.429 1,600.0 106.3 2

Lift 5  6 2.251 1.3 NA 2.251 3.966 2.268 1,425.0 100.8 2

Lift 5  7 2.327 1.3 NA 2.327 3.936 1.584 1,300.0 132.7 2

Lift 5  8 2.301 1.3 NA 2.301 3.961 1.878 1,550.0 132.7 1

Lift 5  9 2.246 0.4 NA 2.246 3.979 1.716 1,775.0 165.5 1

Lift 5 10 2.229 0.5 NA 2.229 3.973 1.517 1,675.0 176.9 1

Average na 2.267 1.2 NA 2.265 3.970 1.934 1,565.0 132.4 na

SD na 0.039 0.7 NA 0.042 0.019 0.311     181.1 24.0 na

Note: na = not applicable; NA = not available.
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Field testing of the 3d-Radar ground-penetrating radar (GPR) 
system was carried out at sites in Florida, Kansas, and Maine. 
The equipment configuration used for this testing is shown in 
Figure 3.1. The data were collected at 3 nominal speeds: 40 mph, 
20 mph, and 5 mph. The level of detail of the data increased as 
the speed was lowered. The data analysis was carried out on the 
lowest-speed data, because these data had the highest level of 
detail. This data collection was carried out on a smaller section 
of pavement that was selected to most likely include delamina-
tions. The selection of the test area was based on a review of the 
higher-speed data, on observation of surface distress, and on 
core data available from previous testing conducted by the cor-
responding state department of transportation.

The primary purpose of the initial review of the GPR data 
was to identify a 2,000-ft long section for testing of the mechan-
ical wave system. Figure 3.2 gives the limits of the test section on 
US-400 in Kansas. An additional objective was to identify spe-
cific locations for coring, which was carried out in conjunction 
with the mechanical wave testing. Table 3.1 lists the location of 
the cores. Figures 3.3 through 3.6 provide GPR results related 
to the core locations.

C h a p t e r  3

3d-Radar Ground-Penetrating Radar Field Testing 
Results for Locating Cores—Kansas

Figure 3.1. 3d-Radar equipment used for field tests.

Note: MP = milepost. 

North Bridge End Location - Bridge at MP 417.78

Reference Location - south
joint of bridge deck at MP 
417.1 (asphalt-to-concrete 
transition)

Start Location - Bridge at MP 417.1

Figure 3.2. Limits of test section for coring.
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Table 3.1. Kansas US-400 Test Section and Core Locations

Location

KDOT 
Video 
Frame

GPR 
(m)

GPR 
(ft)

Distance 
from 

South 
Bridge 

Deck Joint 
(ft)

County 
MP State MP Offset Depth (m) Depth (in.)

Reference locations

South Bridge Deck, 
south joint

7,579 171.48 562.5 0.0 4.992 417.097 na na na

Core 19 7,671 908.75 2,980.7 2,418.2 5.450 417.555 NB Between center of 
lane and LWP

Stripped and missing 
below 5.5 in.

Pavement marker 7,678 970.53 3,183.3 2,620.9 5.488 417.593 LWP na na

North Bridge Deck, 
south joint

7,715 1,263.38 4,143.9 3,581.4 NA NA na na na

Suggested core locations

1—GPR Anomaly 7,620 501.00 1,643.3 1,080.8 5.197 417.302 Centerline of lane 0.100 3.9

2—GPR Anomaly 7,643 688.00 2,256.6 1,694.2 5.313 417.418 RWP 0.138 5.4

3—GPR Anomaly 7,665 864.00 2,833.9 2,271.5 5.422 417.527 Centerline of lane 0.072 2.8

4—GPR Anomaly 7,692 1,085.00 3,558.8 2,996.3 5.559 417.664 RWP 0.117 4.6

5—GPR Anomaly 7,693 1,093.00 3,585.0 3,022.6 5.564 417.669 LWP 0.130 5.1

6—GPR Anomaly 7,701 1,154.60 3,787.1 3,224.6 5.603 417.708 RWP 0.081 3.2

7—Additional core NA 259.50 851.3 288.8 5.047 417.152 Centerline of lane na na

8—Additional core NA 302.00 990.4 427.9 5.073 517.178 Centerline of lane na na

Note: The shaded cells indicate the location of the core. KDOT = Kansas Department of Transportation; MP = milepost; LWP = left wheelpath; NB = northbound;  
RWP = right wheelpath; NA = not available; na = not applicable.

South Bridge
Asphalt bottom

North Bridge

Figure 3.3. Centerline GPR data collected at 5 mph between MP 417 and MP 417.8.
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1

2

3

Figure 3.4. Sample GPR depth slice data at core locations 1 through 3.
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4

5

6

Figure 3.5. Sample GPR depth slice data at core locations 4 through 6.
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Note: Core numbers are shown on plot.

Figure 3.6. Results of automated activity analysis (see Volume 1, Chapter 3, Uncontrolled Field  
Evaluation section).
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Pavement sections with some delamination problems in four 
states were selected for uncontrolled field testing of the two 
nondestructive testing (NDT) techniques. However, because 
of some delays in equipment improvement, uncontrolled 
field testing did not begin until winter 2010 for the ground-
penetrating (GPR) technique and until spring 2011 for the 
mechanical wave technique. Weather conditions were not suit-
able for field testing in Maine and Washington State. Therefore, 
the two NDT techniques were evaluated only on pavement 
sections in Florida and Kansas.

In Kansas, a westbound pavement section between Milepost 
(MP) 412 and MP 425.5 on US-400 was selected for high-
speed GPR testing. Results of the high-speed GPR testing 
were then reviewed, and a pavement section of approximately 
3,500 ft starting from MP 417.1 was selected for low-speed 
GPR testing. On the basis of core data provided by the Kansas 
Department of Transportation (KDOT), the pavement thick-
ness of the long section varied from 13.5 to 19 in., and the pave-
ment thickness of the short section was approximately 13.5 in. 
This section was a full-depth asphalt pavement. In 1988, an 
8-in. dense-graded asphalt base layer was built on top of sub-
grade and then surfaced with a 2-in. asphalt layer. In 1991, this 
section was overlaid with an asphalt layer 1 to 1.5 in. thick. 
Another surface layer approximately 2-in. thick was placed 
on top of this section in 1999. The data also showed that all the 
cores cut from the short section broke at a depth of between 
1.75 and 4.75 in. from the surface, and the base layer had a 
severe stripping problem.

After reviewing the GPR test results and other information 
provided by KDOT, the research team decided to conduct 
field testing of the mechanical wave technology on the same 
3,500-ft section starting from MP 417.1. Locations where 

anomalies were identified in the GPR results were selected 
for lightweight deflectometer testing and cutting cores to ver-
ify the delamination condition. This chapter discusses the  
selection of coring locations and the results from testing cores 
in the laboratory.

Table 4.1 shows the locations where anomalies were found 
in the GPR results and where cores were extracted in the 
3,500-ft pavement site starting from MP 417.1. Figures 4.1 
and 4.2 show the anomalies and the locations of the first six 
cores in conjunction with the NDT test results. All the cores 
cut from the short section broke at a depth of between 1.75 
and 4.75 in. from the surface, and the base layer had a severe 
stripping problem. Figure 4.3 shows that Core 6 broke during 
coring and had severe stripping problems in the lower layers.

C h a p t e r  4

Kansas Cores Analysis: Coring Locations  
and Results for US-400 Pavement Site

Table 4.1. Locations of Anomalies and Cores  
for US-400 Pavement Site

Core
Distance (ft) from 
South Deck Joint Offset

GPR 
Observation

Core 
Condition

1 1,080.8 CL Anomaly Stripped

2 1,694.2 RWP Anomaly Stripped

3 2,271.5 CL Anomaly Stripped

4 2,996.3 RWP Anomaly Stripped

5 3,022.6 LWP Anomaly Stripped

6 3,224.6 RWP Anomaly Stripped

7 288.8 CL Anomaly Stripped

8 427.9 CL No anomaly Stripped

Note: CL = centerline.
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Figure 4.1. Locations of Cores 1, 2, and 3.
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4
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6

Figure 4.2. Locations of Cores 4, 5, and 6.

Figure 4.3. Severe stripping problems in Core 6.
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