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Abstract of thesis entitled:
Computer-Aided Drug Discovery and Protein-Ligand Dock-

ing
Submitted by LI, Hongjian
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in February 2015

Developing a new drug costs up to US$2.6B and 13.5 years. To
save money and time, we have developed a toolset for computer-
aided drug discovery, and utilized our toolset to discover drugs
for the treatment of cancers and influenza.

We first implemented a fast protein-ligand docking tool called
idock, and obtained a substantial speedup over a popular coun-
terpart. To facilitate the large-scale use of idock, we designed
a heterogeneous web platform called istar, and collected a huge
database of more than 23 million small molecules. To elucidate
molecular interactions in web, we developed an interactive vi-
sualizer called iview. To synthesize novel compounds, we devel-
oped a fragment-based drug design tool called iSyn. To improve
the predictive accuracy of binding affinity, we exploited the ma-
chine learning technique random forest to re-score both crystal
and docked poses. To identify structurally similar compounds,
we ported the ultrafast shape recognition algorithms to istar.
All these tools are free and open source.

We applied our novel toolset to real world drug discovery. We
repurposed anti-acne drug adapalene for the treatment of human
colon cancer, and identified potential inhibitors of influenza viral
proteins. Such new findings could hopefully save human lives.

i



摘要

開發一種新藥需要多至 26 億美元和 13 年半的時間。為節省
金錢和時間，我們開發了一套計算機輔助藥物研發工具集，並
運用該工具集尋找藥物治療癌症和流感。
我們首先實現了一個快速的蛋白與配體對接工具 idock，相

比一個同類流行軟件獲得了顯著的速度提升。為輔助 idock 的
大規模使用，我們設計了一個異構網站平台 istar，收集了多
達兩千三百萬個小分子的大型數據庫。為在網頁展示分子間相
互作用，我們開發了一個交互式可視化軟件 iview。為生成全
新的化合物，我們開發了一個基於分子片段的藥物設計工具
iSyn。為改進結合強度預測的精度，我們利用了機器學習技術
隨機森林去重新打分晶體及預測構象。為尋找結構相似的化合
物，我們移植了超快形狀識別算法至 istar。所有這些工俱全
是免費和開源。
我們應用了此創新工具集至現實世界藥物尋找中。我們發

現抗痤瘡藥阿達帕林可用於治療人類結腸癌，亦篩選出流感病
毒蛋白的潛在抑制物。這些新發現可望拯救人類生命。
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Chapter 1

Introduction

1.1 Background

Drug discovery is an expensive and long-term business. Sum-
marized from 13 research articles published from 1980 to 2009,
original estimates of the cost of drug development ranged more
than 9-fold, from USD$92 million cash (USD$161 million capi-
talized) to USD$883.6 million cash (USD$1.8 billion capitalized)
[1]. The cost of drug development, including the price of fail-
ure and the opportunity cost, has more than doubled in the
past decade and has now reached US$2.6 billion in 2013 dollars
[2]. Discovering and developing a new molecular entity (NME)
required 11.4 to 13.5 years using the R&D performance produc-
tivity data from 13 large pharmaceutical companies across 2000
to 2007 [3]. An recent report [4] reviewed the rates of NMEs
introduction starting from 1827 through to the end of 2013, and
found that two-thirds of NMEs are controlled by a handful of
companies, and a growing number of NMEs are controlled by
marketing organizations that have little or no internal drug dis-

1
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covery or development activities.
The process of modern drug discovery typically includes tar-

get identification, hit identification, lead optimization and clin-
ical trials. A biological target is any system that can poten-
tially be modulated by a molecule to produce a beneficial ef-
fect. A target could be a fundamental pathological pathway,
altering which is expected to be curative or anti-symptomatic.
Hits are compounds that have activity at a predetermined level
against a target, but little else is known at this early stage.
Leads are optimized hits that display strong potency and selec-
tivity, physicochemical characteristics, and absorption, distribu-
tion, metabolism, excretion and toxicity (ADMET) properties.
Successful candidate leads will then be submitted to the health
authorities to get permission to conduct clinical investigations
on animals and humans.

An essential ingredient of drug discovery is to discover in-
hibitory molecules for pharmaceutical protein targets of thera-
peutic interest. Take the HIV (Human Immunodeficiency Virus)
virus for example [5]. The virus comprises several protein en-
zymes, which play critical roles in viral replication. In HIV-
infected cells, the viral reverse transcriptase reversely transcribes
viral RNA into viral DNA, the viral integrase integrates viral
DNA into human genomic DNA, and the viral protease assem-
blies viral RNA and viral proteins into a new virion. This repli-
cation cycle will be blocked if the viral proteins are inhibited.
Such inhibitors are typically small compounds called ligands,
which function through binding to the enzymatic or allosteric
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sites of target proteins.
Terminologically, screening refers to the process of discover-

ing ligands that show activity towards certain proteins of in-
terest. A library of compounds is routinely screened to short-
list candidate ligands. When this process is done in silico us-
ing computer simulations, it is called virtual screening. Re-
garding the methods in use, virtual screening can be classified
into structure-based virtual screening and ligand-based virtual
screening. Their major difference lies in whether the target
protein is present or absent. Structure-based virtual screening
uses explicit knowledge of the target protein to suggest can-
didate protein-ligand complexes commonly via a method called
docking, whereas ligand-based virtual screening does not encode
target information but infers required characteristics of binders
from known bioactive ligands.

To really aid drug discovery, a complete toolset should in-
clude tools for both structure-based virtual screening (chapter
2) and ligand-based virtual screening (chapter 9), as well as
relevant tools and studies, e.g. a web platform (chapter 3), vi-
sualization (chapter 4), drug design and synthesis (chapter 5),
binding affinity prediction (chapters 6 and 7), pose generation
error reduction (chapter 8), and others. Eventually these tools
and studies become useful only when they are applied to real
world problems, such as finding cures for cancers (chapter 10)
and influenza (chapter 11).
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1.2 Motivation

Drug discovery is economy driven per se. Biochemical means
are both cost- and time-inefficient. This highlights the need for
cheaper and faster methods, and computer-aided drug discovery
(CADD) thus comes into the scene. Complementing expensive
laboratory experiments with cheap computer simulations is ob-
viously the right way to go. Robust computational frameworks
are indeed highly demanded by the industry in order to au-
tomate the early phases of modern drug discovery such as hit
identification and lead optimization.

Although a large amount of CADD tools have been devel-
oped over recent decades, the majority of them, unfortunately,
suffer from several notable problems. These tools 1) are com-
mercial, selling at a price that most small enterprises and aca-
demic institutions cannot afford, 2) are proprietary and closed
source, making third parties difficult to study the internal im-
plementations or locate potential bugs, 3) conform to different
standards and formats, resulting in weak data portability and
information loss, 4) require intensive and tedious configurations
and lack a friendly user interface, a great obstacle for new users
to get started, 5) run rather slowly, incapable of utilizing the
multi- and many-core architectures of modern computers, or
even worse, 6) are declared dead immediately upon their initial
release due to zero maintenance afterwards. In this thesis, we
attempt to address these shortcomings.
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1.3 Objective

We aim to develop a pragmatic and concise CADD toolset, and
ultimately apply it to the discovery of novel drugs. Keeping
several key goals in mind, we design our toolset to 1) be freely
available to the general public, 2) be released under permissive
open source licenses, 3) conform to official standards, 4) pro-
vide a responsive web version, 5) run reasonably fast, and 6)
track bugs and issues and incorporate user feedback. We em-
phasize reproducibility, which has the potential to serve as a
minimum standard for judging scientific claims when full in-
dependent replication of a study is not possible [6]. Most im-
portantly, we shall utilize our toolset to discover potent drugs
against certain diseases of therapeutic interest and hopefully
save human lives.

1.4 Thesis contributions and outline

Figure 1.1 paints the overall contributions of this thesis, which
is organized into 12 chapters.

Chapter 2 presents idock [7], our multithreaded flexible lig-
and docking tool for native support of structure-based virtual
screening in a superfast fashion. Based on the state-of-the-art
AutoDock Vina, our idock substantially revises the numerical
approximation model and enhances the fundamental implemen-
tation of various components with modern C++11 tricks. No-
tably, it encapsulates a novel feature for dimension reduction
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Figure 1.1: Contributions of this thesis.

by detecting inactive torsions. Compared with AutoDock Vina
[8], idock obtained a speedup of 3.3 in terms of CPU time and a
speedup of 7.5 in terms of elapsed time on average, making it a
very competitive tool. We have then used idock in a prospective
virtual screening campaign of docking 10,938 drug-like ligands
against HIV reverse transcriptase with minimal toxical side ef-
fects against four other human proteins for the treatment of
AIDS. This project has been published [7].

Chapter 3 presents istar [9], our versatile SaaS (Software as
a Service) web platform to promote software usage by a wide
variety of users from different disciplines. Particularly, we have
hosted idock on istar for large-scale prospective structure-based
virtual screening. Our istar website supports three novel fea-
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tures: 1) filtering ligands by desired molecular properties and
previewing the number of ligands to dock, 2) monitoring job
progress in real time, and 3) visualizing docked conformations
and outputting supplier information for easy purchasing. We
have collected as many as 23,129,083 ligands, revamped our
idock to version 2.0, and integrated RF-Score [10] as an alter-
native rescoring function. We have shown that idock achieved
comparable success rates while outperforming AutoDock Vina in
terms of docking speed by at least 8.69 times and at most 37.51
times. In combination with RF-Score, istar managed to repro-
duce Pearson and Spearman correlation coefficients of as high as
0.855 and 0.859, respectively, between the experimental and the
predicted binding affinity. We believe istar constitutes a step to-
ward generalizing the use of docking tools beyond the traditional
molecular modeling community. idock@istar is freely available
at http://istar.cse.cuhk.edu.hk/idock. This project has been
published [9]. According to Google Analytics, throughout 2014,
istar had served 460 sessions, 271 users, and 631 pageviews from
33 countries.

Chapter 4 presents iview [11], our easy-to-use interactive We-
bGL visualizer for protein-ligand complex to enable non-experts
to quickly elucidate protein-ligand interactions in a 3D manner.
As far as we are aware, iview is the only web visualizer that si-
multaneously utilizes GPU hardware acceleration and supports
three pragmatic features: macromolecular surface construction,
virtual reality effects, and PDBQT format parsing. Moreover,
based on the feature-rich version of iview, we have also de-
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veloped a concise version specifically for our idock web ser-
vice on istar to aid online protein-ligand docking. This demon-
strates the excellent portability of iview, which can be easily
integrated into any bioinformatics application that requires in-
teractive protein-ligand visualization. iview is freely available at
http://istar.cse.cuhk.edu.hk/iview. This project has been pub-
lished [11].

Chapter 5 presents iSyn [12, 13], our effective and efficient
fragment-based drug design tool that generates desired de novo
compounds with promising potency and molecular mass to com-
plement structure-based virtual screening. It features an evolu-
tionary algorithm that creates novel ligands with drug-like prop-
erties and ensures synthetic feasibility with click chemistry. In-
terfacing with our fast molecular docking engine idock and our
interactive WebGL visualizer iview, iSyn substantially reduces
the drug candidate evaluation time and increases productivity.
Benchmarking results of iSyn in generating novel inhibitors ex
nihilo of two important drug targets TbREL1 and CDK2 have
proved its strength in significantly enhancing the predicted bind-
ing affinity of the best generated ligand by more than 3 orders
of magnitude in potency within a reasonable time. iSyn is freely
available at http://istar.cse.cuhk.edu.hk/iSyn.tgz. This project
has been published [12, 13].

Chapter 6 presents our study on the use of random forest
(RF) to improve binding affinity prediction, with Cyscore [14]
as a baseline. We show that the simple functional form typically
implemented in classical scoring functions is detrimental for the
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predictive performance, and substituting machine learning tech-
niques like RF for the commonly-used multiple linear regression
(MLR) model can improve predictive performance. We point
out that a significant drawback for MLR-based scoring func-
tions is their incapability of exploiting abundant training sam-
ples, so they cannot benefit from the increasing availability of
future experimental data. On the other hand, we perform cross
validation to show that feeding more training samples to RF can
increase its predictive performance, and using more structural
features appropriately can also substantially boost its predictive
accuracy. We conclude that one can strongly improve Cyscore
by changing the regression model from MLR to RF and expand-
ing the feature set as well as the sample set. This project has
been published [15].

Chapter 7 presents our another study on the use of RF to
boost the predictive performance of classical scoring functions,
this time with AutoDock Vina [8] as a baseline. With the help
of a proposed novel benchmark, we demonstrate that the im-
provement of using RF over MLR will be larger as more data
becomes available for training, as regression models implying ad-
ditive functional forms do not improve with more training data.
We discuss how the latter opens the door to new opportunities in
scoring function development. We also discuss the applicability
domain of MLR- and RF-based scoring functions, and demon-
strate that the tendency of RF-based scoring functions to overfit
training data is not a limitation but simply a trait. We also sug-
gest that incorporating ligand- and protein-only properties into



CHAPTER 1. INTRODUCTION 10

the scoring function is a promising path to future improvements.
Finally we provide software to directly re-score Vina-generated
poses in order to facilitate the translation of this advance to en-
hance structure-based molecular design. This project has been
published [16, 17].

Chapter 8 presents our further study on the use of RF to
re-score docked poses instead of crystal poses, because the lat-
ter are usually unavailable in the common scenario of large-
scale prospective virtual screening, such as our istar web service
[9]. We investigate the impact of pose generation error on the
predictive performance of both classical and machine-learning
scoring functions, and find that re-training the scoring func-
tions on docked poses can be a simple and quick solution to
reduce the negative impact of pose generation error. Moreover,
we study the scoring functions’ capability of predicting the near-
native pose that is most conformationally closest to the crystal
pose, and observe that machine-learning scoring functions, while
excelling at binding affinity prediction, performed much worse
than Vina at native pose prediction. We explain that this could
be due to the confounding factor that the docked poses were
all generated and optimized by Vina. This project has been
published [18].

Chapter 9 presents a pragmatic implementation of USR (Ul-
trafast Shape Recognition) [19] and its extension USRCAT (USR
with Credo Atom Types) [20] based on our istar web platform in
order to quickly and conveniently search for compounds struc-
turally similar to a query ligand in terms of shape. Our molecu-
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lar database is populated with more than 23 million diverse com-
pounds so as to reduce the possibility of missing compounds with
similar shape to the query. We perform screening time analy-
sis, based on which we exploit three levels of parallelism with a
novel implementation of sum of absolute differences using AVX
(Advanced Vector Extensions) to accelerate job execution. Our
USR@istar supports a query ligand in SDF, MOL2, XYZ, PDB
or PDBQT format, and interfaces with our iview WebGL visual-
izer for interactive visualization of high-score hits. USR@istar is
freely available at http://istar.cse.cuhk.edu.hk/usr. Our results
for 19 query ligands of different molecular sizes have shown that
USR and USRCAT lead to very different output compounds in
their top 5 matches. We are meanwhile surprised to discover
that different file formats of the same input ligand affect the
classification of pharmacophoric subsets. Our implementation
USR@istar requires just 30 seconds to complete a query when
the precalculated features are loaded in advance. In addition,
we have also briefly described USRT (USR with Torsions), the
very first USR-like algorithm that can identify different confor-
mations of the same ligand. One of its biggest applications is to
circumvent the task of conformer generation.

It is worthwhile to highlight that all of the above CADD
tools are free and open source under permissive licenses. We
emphasize reproducibility [6].

The chapters above are well connected in that idock (chap-
ter 2) serves as a fundamental docking engine, istar (chapter 3)
provides a web interface, iview (chapter 4) permits online visu-
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alization, iSyn (chapter 5) generates new compounds, machine-
learning models (chapters 6, 7 and 8) improve binding affinity
prediction, and USR@istar (chapter 9) searches for similar com-
pounds. The chapters below describe prospective applications
of our pragmatic toolset.

Chapter 10 describes our case study of CDK2-related can-
cers. CDK2 (Cyclin-dependent kinase 2) is a key factor reg-
ulating the cell cycle G1 to S transition and a hallmark for
cancers. We used idock [7, 9] prospectively for the first time
in identifying potential CDK2 inhibitors from 4,311 approved
small molecule drugs using a repurposing strategy so as to min-
imize drug toxicity. Totally 44 CDK2 structures were collected
and ensemble docking was carried out. Among the top com-
pounds sorted by idock score, nine were purchased and tested
in vitro. Among them, the anti-acne drug adapalene exhibited
the highest anti-proliferative effect in human colon cancer. We
demonstrated for the first time that adapalene treatment sig-
nificantly increased the percentage of cells in G1 phase, and
decreased the expressions of CDK2, cyclin E and Rb, as well as
the phosphorylations of CDK2 on Thr160 and Rb on Ser795.
We showed for the first time that oral adapalene treatment sig-
nificantly and dose-dependently inhibited tumor growth in vivo
in nude mice subcutaneously xenografted with human colorectal
cancer cells. Adapalene (20 mg/kg) showed strong anti-tumor
activity, comparable to that of the leading cancer drug oxali-
platin (40 mg/kg). The combination with adapalene and ox-
aliplatin exhibited the highest therapeutic effect. These results
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indicated for the first time that adapalene is a potential inhibitor
of CDK2 and a candidate anti-cancer drug for the treatment of
human colorectal cancer.

Chapter 11 describes our case study of influenza A. We tar-
geted at three novel protein targets: the tail-loop binding do-
main of nucleoprotein, the PB1-binding domain of PA and the
cap-binding domain of PB2 in the RNA-dependent RNA poly-
merase (RdRP). We utilized idock [7, 9] to perform structure-
based virtual screening of 273,880 cheaply available compounds,
and identified hits that were predicted to establish strong in-
teractions with their respective viral protein target and hence
believed to exhibit strong inhibitory effects. These identified
compounds may serve as promising candidates for subsequent
investigations in vitro and in vivo.

The appendix lists my journal and conference publications
during my PhD study career in chronological order.

2 End of chapter.



Chapter 2

idock: protein-ligand docking

The increasing availability of macromolecular structural data
catalyzes the development of protein-ligand docking methods.
AutoDock Vina is a competitive protein-ligand docking tool well
known for its fast execution and high accuracy. Nevertheless,
when docking a massive number of ligands, Vina has to be run
multiple times, repeating protein parsing and grid maps building
over and over again. There are tremendous requests for revis-
ing Vina to reuse precalculated data and incorporate built-in
support for virtual screening.

We developed idock, which inherits from AutoDock Vina the
accurate scoring function and the efficient optimization algo-
rithm, but substantially improves the fundamental implemen-
tation and numerical model for even faster execution. idock
achieved a speedup of 3.3 in terms of CPU time and a speedup
of 7.5 in terms of elapsed time on average when benchmarked on
docking 10,928 drug-like ligands. To demonstrate the pragmatic
utility of idock, we presented our effort of finding potentially

14
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promising compounds with strong potency and minimal side ef-
fects for the treatment of AIDS. idock is free and open source,
available at https://GitHub.com/HongjianLi/idock.

This project was published in Proceedings of the 2012 IEEE
Symposium on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB) on 9 May 2012 [7].

2.1 Background

Over recent decades, there has been a continual increase in the
number of new therapeutic targets available for drug design.
Advances in crystallography and nuclear magnetic resonance
spectroscopy have revealed substantial structural details of pro-
teins and protein–ligand complexes. The structures of biological
macromolecules at atomic level are being routinely resolved and
deposited into the world’s largest and freely accessible reposi-
tory called Protein Data Bank (PDB) [21, 22]. Meanwhile, the
biological activity data of small molecules are also being regu-
larly collected into public databases such as ChEMBL [23] and
PubChem [24]. As of 15 Sep 2014, there are 103,199 struc-
tures in PDB, 1,638,394 compounds records in ChEMBL and
1,112,090 bioassays in PubChem. The rapid evolution of struc-
ture resolving techniques and the availability of structural and
bioactivity resources highly catalyze the development of protein-
ligand docking methods for structure-based virtual screening.
Very often, the target protein is a viral enzyme of interest, and
the small organic ligands that are predicted to inhibit the viral
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(a) Crystal conformation. (b) Docked conformation.

Figure 2.1: An intuitive example of two conformations of a ligand.

enzyme are what we want to discover.
Protein-ligand docking is a method which predicts the pre-

ferred conformation and binding affinity of a small ligand when
bound to a macro protein to form a stable complex. The lig-
and conformation refers to its spatial position, orientation, and
torsions, if any. Figure 2.1 shows the crystal conformation and
a docked conformation of the marketed HIV drug maraviroc
in complex with the human CCR5 chemokine receptor (PDB:
4MBS). The protein is rendered in molecular surface represen-
tation colored by atom types, where nitrogens (likely positively-
charged regions) and oxygens (likely negative-charged regions)
are in blue and red, respectively. The ligand is rendered in stick
representation with the same color scheme, where nitrogen and
oxygen atoms are in blue and red, respectively. The binding
cavity on the protein surface is depicted by a green cubic box.
The putative intermolecular hydrogen bonds are shown as cyan
dashed lines. The docked conformation was predicted by idock
[7] and the figure was created by iview [11].
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The binding affinity is a numerical value that suggests how
strongly the interactions are formed between the protein and
the ligand upon binding. Empirically, it is the overall effect of
various chemical interactions involved, such as van der Waals
force, electrostatic force, salt bridges, hydrogen bonding, hy-
drophobic effects, pi interactions, halogen interactions, metal
interactions, and the like. It is usually estimated by the scor-
ing function employed in a docking tool. The binding affinity is
usually expressed in pKd unit, which is the negative logarithm
of dissociation constant Kd. In Figure 2.1 the binding affinities
of the crystal and docked conformations were predicted to be
8.27 and 8.01 pKd, respectively, by RF-Score [10]. The binding
affinity can be alternatively expressed in terms of free energy
∆G in kcal/mol unit, which is usually a negative value. The
lower the free energy, the higher the binding affinity.

Structure-based virtual screening can be regarded as a mas-
sive version of docking. Instead of a single ligand, a database
of ligands are docked against the target protein, then ranked
according to their predicted binding affinity, and finally the top
ones are selected for further investigations.

When a docking program is treated as a black box, its input
includes the 3D structures of a protein and a ligand, and its out-
put includes several predicted conformations and their predicted
binding affinity. Regarding the protein input, the PDB database
[21, 22] almost serves as the unique de facto data source. Regard-
ing the ligand input, there are dozens of data sources. The GDB-
17 database [25] enumerates 166 billion organic small molecules.
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The PubChem database [26] comprises 53 million unique struc-
tures and 160 million substance records. The ZINC database [27,
28] contains over 35 million purchasable compounds in ready-to-
dock, 3D formats. The TCM@Taiwan database [29] comprises
37,170 TCM (Traditional Chinese Medicine) compounds from
352 TCM ingredients. Regarding the output visualization and
analysis, PyMOL (http://www.pymol.org), Chimera [30], VMD
[31], AutoDockTools4 [32], ViewDock TDW [33], PoseView [34]
and LigPlot+ [35] are popular tools to visualize docked confor-
mations and plot putative interaction charts. AuPosSOM [36]
can be used to cluster docked conformations. BEDROC [37] and
SLR [38] can be used as statistical metrics for docking method
evaluation.

When a docking program is treated as a white box, it consists
of two typical components, an algorithm to explore the confor-
mational space, and a scoring function to predict the binding
affinity given a sampled conformation. There is a huge body of
docking tools, e.g. DOCK [39, 40], AutoDock 4 [32], AutoDock
Vina [8], QuickVina [41], PLANTS [42–44], FITTED [45, 46],
CRDOCK [47], LiGenDock [48], and PharmDock [49], as well
as scoring functions, e.g. RF-Score [10, 50], SFCscore [51, 52],
LISA [53], NNScore 2.0 [54], ID-Score [55], and Cyscore [14].
More can be found in literature surveys [56, 57].

Amongst a sea of docking programs, AutoDock Vina [8] (here-
after Vina for short) is a competitive one because not only it
is free and open source under Apache License 2.0, but also it
has been shown to improve the average accuracy of the bind-
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ing mode predictions [8] and run faster than its counterpart
AutoDock 4 [32] by an order of magnitude when benchmarked
on virtual screening for HIV protease inhibitors [58]. Released in
the second half of 2010, Vina has been cited over 1,700 times and
adopted by a wide community of researchers. Apart from the
Vina docking tool itself, there is a PyMOL plugin for AutoDock
and Vina [59]. MOLA [60] is a bootable, self-configuring sys-
tem for virtual screening using AutoDock4/Vina on computer
clusters. VSDK [61] is a console application system of virtual
screening of small molecules using AutoDock Vina on Windows.
AUDocker LE [62] is a GUI for virtual screening with AutoDock
Vina on Windows. VinaMPI [63] enables multiple receptor
high-throughput virtual docking on high-performance comput-
ers. VinaLC [64] is another MPI implementation of Vina. All
these auxiliary tools facilitate the use of Vina under various set-
tings.

Vina has become increasingly attractive thanks to a series
of success stories by third parties. To name a few, Vina was
used for 1) docking studies on the HEPT derivatives of HIV-
1 reverse transcriptase [65], 2) for side-chain residue flexibility
study of VEGFR-2 (Vascular Endothelial Growth Factor Re-
ceptor 2), which is a known protein target for anti-angiogenic
agents [66], 3) for identification of novel inhibitors of sirtuin 2,
which is a NAD+-dependent histone deacetylase enzyme [67],
and 4) for repurposing study of FDA-approved drugs for can-
cer therapy in order to screen for compounds that potentially
inhibit MDM2, which an E3 ubiquitin ligase that polyubiquiti-
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nates p53 [68]. Such exciting success stories prove the real power
of protein-ligand docking, Vina in particular, for computer-aided
drug discovery.

2.2 Motivation

Although Vina is popular and competitive and well known for
its fast execution and high accuracy, it is optimized for single-
ligand docking rather than virtual screening. When it comes to
docking a large pool of ligands, Vina has to be invoked mul-
tiple times, repeatedly parsing the same protein and creating
the same internal data structures such as grid maps. There
are enormous requests from the community for modifying and
recompiling Vina to make it support virtual screening in a su-
perfast manner by reusing protein data and grid maps. We were
motivated by the desire to provide built-in support for virtual
screening and therefore developed idock.

2.3 Objective

We interpreted the source code of Vina, and rewrote it in our
own programming style so as to implement advanced features in
idock freely without constraints. Our major goal was to signifi-
cantly increase the docking speed without sacrificing the docking
accuracy. To achieve this goal, we revised the underlying nu-
merical approximation model, and implemented a novel feature
to reduce the dimensionality of variables to be optimized. We
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incorporated a large amount of C++11 implementation tricks to
speedup idock. Meanwhile, we decided to extend the software
availability to support more chemical elements and more oper-
ating systems. Lastly, we utilized idock to attempt to address
a real life drug discovery problem.

2.4 Methods

2.4.1 Flowchart

Figure 2.2 shows the overall flowchart of idock. During initial-
ization, idock precalculates the scoring function for all possible
combinations of atom type pairs and interatomic distances. It
parses the protein and determines the atom types with the help
of residue sequence, and creates a thread pool to hold reusable
threads. Then it enters a loop and fetches a ligand from a user-
specified input folder to perform docking. It parses the ligand
and determines the atom types with the aid of branch informa-
tion, and meanwhile automatically detects and deactivates in-
active torsions. It builds grid maps of 0.15625Å granularity by
default on the fly with multithreading, and distributes multiple
independent Monte Carlo tasks to the thread pool for concur-
rent execution. Then it merges the conformations from sepa-
rate threads and clusters them with root mean square deviation
RMSD 2.0Å, and writes them to the user-specified output folder
and displays the predicted free energy on screen. It automati-
cally proceeds with the next ligand until all are docked. Finally
it destroys the thread pool and releases memory resources.
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Figure 2.2: idock flowchart.

2.4.2 PDBQT specification

PDBQT is the protein and ligand input and output format used
by AutoDock [32, 69], Vina [8], idock [7], and QuickVina [41]. Its
official definition is at http://autodock.scripps.edu/faqs-help/faq/what-
is-the-format-of-a-pdbqt-file. In PDBQT format (Figure 2.3),
ligands can be treated as flexible with the idea of a torsion tree
to represent the rigid and rotatable pieces. There is always one
root, and zero or more branches. Branches can be nested. Every
branch defines a rotatable bond.

The torsion tree is represented with some records specific to
the PDBQT format. A ROOT record precedes the rigid part
of the molecule, from which zero or more rotatable bonds may
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Figure 2.3: PDBQT content of a ligand.
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emanate. The rigid root contains one or more ATOM or HET-
ATM records in PDBQT style. These records resemble their
traditional PDB counterparts, but diverge in columns 71-79 in-
clusive, where the first character in the line corresponds to col-
umn 1. The Gasteiger partial charge is stored in columns 71-76
inclusive in %6.3f format, i.e. right-justified, 6 characters wide,
with 3 decimal places. The AutoDock atom type is stored in
columns 78-79 inclusive in %-2.2s format, i.e. left-justified and
2 characters wide. An ENDROOT record follows the last atom
in the rigid root. The ROOT/ENDROOT block of atoms is
given first in the PDBQT file.

Sets of atoms moved by rotatable bonds are enclosed by
BRANCH and ENDBRANCH records. These BRANCH/ENDBRANCH
blocks follow the ROOT/ENDROOT block. Both BRANCH
and ENDBRANCH records give two integers specifying the se-
rial numbers of the first and second atoms involved in the ro-
tatable bond. BRANCH/ENDBRANCH blocks can be nested.
The last atom in a branch is followed by an ENDBRANCH
record, whose serial numbers of the two atoms in the rotatable
bond match those in the corresponding BRANCH record.

The last line contains a TORSDOF record, which is followed
by an integer specifying the number of torsional degrees of free-
dom in the ligand.



CHAPTER 2. IDOCK: PROTEIN-LIGAND DOCKING 25

(a) Positional degree of free-
dom.

(b) Orientational degree of
freedom.

(c) Torsional degree of free-
dom.

Figure 2.4: Conformational degree of freedom.

2.4.3 Conformational modeling

A conformation refers to a combination of position, orientation,
and torsions, if any. Figure 2.4 shows the positional, orienta-
tional and torsional degree of freedom. In (a), the two confor-
mations in different colors only differ in their spatial position.
One conformation can be transformed to the other simply by
a spatial translation. In (b), the two conformations only differ
in their orientation. One conformation can be transformed to
the other simply by a spatial rotation. In (c), the two confor-
mations only differ by one torsion. One conformation can be
transformed to the other by a rotation along the corresponding
rotatable bond, shown in the center of the subfigure, by a cer-
tain degree applied only to the child branches of that rotatable
bond.

In the root or any branch, the atomic positions are relative
to each atom because of no rotatable bond therein. Hence it
is possible to model the conformation of the root or a branch
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by the the 3D coordinate of a reference atom as well as a nor-
mal vector to represent the orientation, while the positions of
the other atoms in the same branch can be recovered with the
relative atomic positions. The reference atom can be chosen
to be the atom connecting the parent branch, i.e. the second
atom involved in the rotatable bond or the Y atom in the line
of “BRANCH X Y”. It is always the first atom of the current
branch if the PDBQT file is produced by AutoDockTools4 [32].
As for the representation of orientation, a normalized quaternion
typically features better numerical stability than a directional
triplet.

Once the conformation of the root or a branch is determined,
the orientation of a child branch can be derived by that of the
parent branch and a torsion, which is essentially the rotating
angle along the connecting rotatable bond and thus falls in the
range of [–π, π]. The position of the reference atom of the child
branch (the Y atom) is fixed relative to the first atom involved
in the connecting rotatable bond (the X atom) and is invariant
of the torsion applied. Therefore, the conformation of a child
branch can be uniquely identified by the conformation of its
parent branch and a torsion value. Eventually in a cascade way,
the conformation of a flexible ligand can be modeled by the
conformation of the root and a set of torsion values as many as
the number of rotatable bonds.

Mathematically, a ligand conformation can be modeled by
a numerical vector c = (x, y, z, q0, q1, q2, q3, t1, t2, ..., tn), where
(x, y, z) represents the position of the reference atom (the first
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atom) of the root, (q0, q1, q2, q3) represents the orientation of the
root, with q20 + q21 + q22 + q23 = 1, and (t1, t2, ..., tn) represents the
torsions of all child branches, with n being the number of rotat-
able bonds and ti ∈ [−π, π] for i ∈ [1, n]. The conformational
degree of freedom is at least 6, 3 from the position and 3 from
the orientation. Nowadays modern drugs usually have 4 or more
torsions, so the conformational degree of freedom is generally at
least 10. In other words, there are generally at least 10 variables
to optimize during conformational sampling.

2.4.4 Scoring function

The scoring function estimates the binding affinity given a con-
formation (equation (2.1)). The binding affinity predicted by
idock is expressed in terms of free energy. The lower the free
energy, the higher the binding affinity.

e = f(c) = f(x, y, z, q0, q1, q2, q3, t1, t2, ..., tn) (2.1)

Both idock and Vina share the same scoring function, which
consists of a conformation-dependent part and a conformation-
independent part. The conformation-dependent part is a weighted
sum of five terms over all the pairs of atom i and atom j that
can move relative to each other. It is calculated from equations
(2.2) and (2.3) where ti and tj are the atom types of i and j re-
spectively, and rij is their interatomic distance. The five terms
are calculated from equations (2.4) to (2.8) where dij is the sur-
face distance calculated from equation (2.9) where Rti and Rtj
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are the Van der Waals radii of ti and tj respectively (Figure 2.5).
All the units are in Å. The weighting coefficients and the cut off
at rij = 8Å of the five terms are borrowed from Vina. The op-
timization algorithm tries to find the global minimum of e and
other low-scoring conformations, which it ranks subsequently.

e =
∑
i<j

eij (2.2)

eij = (−0.035579) ∗Gauss1(ti, tj, rij)

+ (−0.005156) ∗Gauss2(ti, tj, rij)

+ (+0.840245) ∗Repulsion(ti, tj, rij)

+ (−0.035069) ∗Hydrophobic(ti, tj, rij)

+ (−0.587439) ∗HBonding(ti, tj, rij) (2.3)

Gauss1(ti, tj, rij) = e−(dij/0.5)
2 (2.4)

Gauss2(ti, tj, rij) = e−((dij−3)/2)2 (2.5)

Repulsion(ti, tj, rij) =

d2ij if dij < 0

0 if dij ≥ 0
(2.6)
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Figure 2.5: Relationship between surface distance dij and interatomic dis-
tance rij.

Hydrophobic(ti, tj, rij) =


1 if dij ≤ 0.5

1.5− dij if 0.5 < dij < 1.5

0 if dij ≥ 1.5

(2.7)

HBonding(ti, tj, rij) =


1 if dij ≤ −0.7

dij/(−0.7) if − 0.7 < dij < 0

0 if dij ≥ 0

(2.8)

dij = rij − (Rti +Rtj) (2.9)

The conformation-dependent part can be seen as the sum of
intermolecular and intramolecular contributions. Hence equa-
tion (2.2) can be rewritten into equation (2.10) where einter is
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the summation over all the heavy atoms between the protein and
the ligand, and eintra is the summation over all the 1-4 ligand
heavy atoms that are separated by at most three consecutive
covalent bonds and can move relative to each other.

e = einter + eintra (2.10)

The conformation-independent part penalizes einter for lig-
and flexibility. The predicted free energy of the kth conforma-
tion for output, denoted as e′k, is calculated from equation (2.11)
where k is the subscript for conformation, ek is the conformation-
dependent score of the kth conformation calculated from equa-
tion (2.2), eintra,1 is the eintra of the first, i.e. lowest-scoring
conformation, NInactTors is the number of inactive torsions (i.e.
hydroxyl groups —OH, amine groups —NH2 and methyl groups
—CH3), and NActTors is the number of active torsions (other
than the three types) of the ligand. Note that eintra,1, rather
than eintra,k, acts as subtrahend in order to preserve the rank-
ing.

e′k =
ek − eintra,1

1 + 0.05846 ∗ (NActTors + 0.5 ∗NInactTors)
(2.11)

The value of eij is basically a function of three variables,
namely ti, tj, and rij. These three variables have both a known
lower bound and a known upper bound, so it is possible to pre-
calculate the scoring function. Since there are 15 atom types im-
plemented in idock, the pair of ti and tj can have 120 (=15*16/2)
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different combinations. Since rij is cut off at 8Å, idock uniformly
samples 16,384 points in range [0, 8] to turn the continuous do-
main into a concrete domain, resulting in an average absolute
error of merely 0.002 kcal/mol. During program initialization,
idock precalculates eij from equation (2.3) for 120*16,384 pos-
sible combinations of ti, tj, and rij. During optimization, idock
approximates the true value of eij by direct assignment rather
than linear interpolation so as to fast evaluate eij at the cost of
a little bit longer precalculation time and a bit more memory
storage.

2.4.5 Grid maps

Grid maps are often built in order to fast evaluate einter. A grid
map of atom type t is constructed by placing virtual probe atoms
of atom type t along the X, Y, Z dimensions of the search box at
a certain granularity. Figure 2.6 illustrates a grid map, where
the virtual probe atoms are shown in purple, and the surround-
ing protein residuals are shown in ball-and-stick representation.
The einter value of these probe atoms are precalculated, so the
einter value of a ligand heavy atom can be approximated in some
way. In Vina, the grid map granularity is hard coded to be
0.375Å, and the approximation is done by linear interpolation
of the 8 corner probe atoms of the residing subbox. This kind of
interpolation involves reading of 8 einter values, computation of
3 α values, 12 floating-point subtractions, 24 floating-point mul-
tiplications, and 7 floating-point additions, which turned out to
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be a performance bottleneck when we profiled Vina. In contrast,
idock exposes grid map granularity as an optional program ar-
gument with a tuned default value of 0.15625Å. Likewise, due
to a higher density of probe atoms, idock substitutes direct as-
signment for linear interpolation for much faster evaluation of
einter at the cost of longer precalculation time and larger mem-
ory storage. Therefore, grid maps are built on the fly only when
necessary and abstracted into parallel tasks, which are then dis-
tributed to the thread pool for concurrent execution.

2.4.6 Optimization algorithm

Both idock and Vina use Monte Carlo algorithm for global op-
timization and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [70]
Quasi-Newton method for local optimization. Figure 2.7, modi-
fied from the Figure 2 in [56], shows this optimization procedure.
A succession of steps consisting of a mutation and a BFGS local
optimization are taken, with each step being accepted accord-
ing to the Metropolis criterion. These steps are repeated over
N iterations, where N correlates to the complexity of the lig-
and regarding, for instance, the number of heavy atoms and the
number of torsions. BFGS approximates the inverse Hessian
matrix of the scoring function. So it uses not only the value of
the scoring function but also its gradient, which are the deriva-
tives of the scoring function with respect to the position and
orientation of the ligand, and the torsions for the active rotat-
able bonds in the ligand. A BFGS iteration derives a descent
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Figure 2.6: Grid map for fast evaluation of einter
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Figure 2.7: Monte Carlo optimization algorithm.

direction from the approximate inverse Hessian matrix, then
derives a step length along the descent direction by line search,
and updates the approximation of inverse Hessian matrix. Both
programs achieve multithreading by concurrently running multi-
ple independent Monte Carlo tasks starting from random initial
conformations.

Though both programs share similar optimization algorithms,
their fundamental implementations differ considerably. Com-
pared with Vina, the Monte Carlo iterations in idock are far
fewer and the BFGS iterations are more. On one hand, the
fewer number of Monte Carlo iterations is compensated by a
larger number of parallel Monte Carlo tasks, which is 64 by
default in idock compared to 8 in Vina, guaranteeing better
conformational diversity and higher CPU utilization on modern
multi-core computers. On the other hand, the stopping criterion
of BFGS local optimization does not depend on an estimated
number of iterations, which is the case in Vina, but depends
on the outcome of line search. The BFGS local optimization
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stops if and only if no appropriate step length can be obtained
by line search, thus decreasing the probability of missing local
optimums.

2.4.7 Native support of virtual screening

Vina is optimized for single-ligand docking rather than virtual
screening. When it comes to docking a large pool of ligands,
Vina has to be invoked multiple times, repeatedly parsing the
same protein and creating the same grid maps, thus degrading
performance.

idock supports virtual screening in a native manner. It docks
a directory of ligands instead of a single ligand, and reuses pro-
tein and grid maps (note the loop in the flowchart in Figure
2.2). Given a very large amount of ligands to dock, idock indi-
rectly supports two-phase virtual screening via two consecutive
runs. In the first run, idock performs coarse but fast virtual
screening without writing any conformations to file, aiming to
quickly shortlist a few candidate compounds. This can be done
by setting the grid map granularity to a coarse value and setting
the maximum number of output conformations to zero. In the
second run, idock performs fine but slow virtual screening with
a significantly larger number of Monte Carlo tasks per ligand,
writing as many conformations to file as possible and aiming to
refine the predicted free energy as well as predicted conformation
of candidate compounds. Such a two-phase docking methodol-
ogy can remarkably reduce overall execution time while avoiding
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the risk of filtering out potentially promising compounds, con-
trolling the false negative rate at an acceptable level.

2.4.8 Detection of inactive torsions

idock automatically detects and deactivates certain torsions which
are presented and activated in the input file in PDBQT format
but have no impact on the overall scoring, such as hydroxyl
groups —OH, amine groups —NH2 and methyl groups —CH3,
because they only rotate the hydrogens. Figure 2.8 shows an
example ligand which contains 4 active torsions defined by the
python script prepare_ligand4.py provided by AutoDock Tools
[32]. Two of them, highlighted in yellow, only rotate hydrogens
and thus have no contributions to the scoring. They are re-
classified as inactive torsions and deactivated while being parsed
in idock. This kind of automatic deactivation of pre-activated
torsions reduces the torsional degrees of freedom to optimize in
the local optimization step (equation (2.1)), leading to easier
finding of local minimums.

2.4.9 Implementation tricks

idock implements a lightweight thread pool in order to reuse
threads and maintain a high CPU utilization throughout the
entire screening procedure. During program initialization, idock
creates a thread pool of N threads, where N is the number of
CPU cores automatically detected, or can be specified by user
via a command line argument. The threads sleep while idle.
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Figure 2.8: An example of inactive torsions, highlighted in yellow.

When tasks arrive, the threads compete for tasks. The thread
that completes its current task will automatically fetch a pend-
ing one to execute until all are done. Synchronization is imple-
mented to ensure the full completeness of tasks and availability
of results. The task here is an abstract concept in programming
sense and can be instantiated either as scoring function tasks,
grid map tasks or Monte Carlo tasks. To be exact, the thread
pool indeed parallelizes the precalculation of scoring function,
the creation of grid maps, and the execution of Monte Carlo
tasks.

idock implements a lightweight thread-safe progress bar to
report progress every 10% Monte Carlo tasks per ligand. idock
better supports rvalue references and move semantics in C++11
to boost performance. idock flattens the tree-like recursive data
structure of ligand as used in AutoDock Vina into simple lin-
ear array structure to ensure a high data cache hit rate and
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easy coding. idock accelerates the assignment of atom types by
making use of residue information for the protein and branch
information for the ligand.

idock supports reading and writing compressed ligand files
with in gzip/bzip2 format, resulting in a file footprint as low as
just one eighth of the raw size using gzip. This new functionality
turns out to be quite handy given an enormous amount of ligands
to dock.

Both idock and Vina support 16 common chemical elements,
which are H (hydrogen), C (carbon), N (nitrogen), O (oxygen),
F (fluorine), Mg (magnesium), P (phosphorus), S (sulfur), Cl
(chlorine), Ca (calcium), Mn (manganese), Fe (iron), Zn (zinc),
Se (selenium), Br (bromine), and I (iodine). idock adds 9 ad-
ditional elements, which are Na (sodium), K (potassium), Co
(cobalt), Ni (nickel), Cu (copper), Sr (strontium), Cd (cad-
mium), Hg (mercury), and As (arsenic). Supporting these addi-
tional elements is helpful because Na+, K+, Co2+, Ni2+, Cu2+,
Sr2+, Cd2+, and Hg2+ ions are present in some protein-ligand
complexes, such as those with PDB ID of 1I2S, 1FPI, 1QCA,
1ELR, 1IBG, 2RIO, 1HSL, and 1AVN, respectively. Hence idock
supports as many as 25 chemical elements, covering the majority
of protein and ligand atom types.

idock outputs verbose information to docked PDBQT files,
including total free energy normalized by torsional degree of free-
dom, total free energy, inter-ligand free energy, intra-ligand free
energy, putative hydrogen bonds, and per-atom inter-ligand free
energy. The normalized total free energy is used in ligand rank-
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ing. The output of total free energy, inter-ligand free energy and
intra-ligand free energy provides an alternative ranking option
using derived efficiency indexes [71–73]. The per-atom inter-
ligand free energy facilitates interaction hotspot determination,
and helps improving potency by altering certain chemical moi-
eties while retaining those critical for binding.

idock extracts the above records from docked PDBQT files,
sorts them in the ascending order of normalized total free en-
ergy, and writes them to a CSV (Comma-Separated Vector) file
for subsequent analysis. Users can derive their own efficiency
indexes [71–73] and re-sort the records for their particular ap-
plications.

idock enables automatic recovery. While docking is in progress,
in case the process gets killed accidentally and restarted some
time later, which is common in computer cluster environments,
idock not only resumes docking from the previous stopping point,
skipping ligands that had been already docked in a previous run,
but also detects and reports possible file content errors, ensuring
all the output ligands are written appropriately.

2.5 Application

We applied idock to a real world drug discovery problem so as
to demonstrate its utility in practice.
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2.5.1 Background

At present, 25 drugs have been approved by US Food and Drug
Administration (FDA) for the treatment of HIV/AIDS [74]. Among
them, tenofovir disoproxil fumarate (TDF) is for the treatments
of both human immunodeficiency virus (HIV) and hepatitis B
virus (HBV). It is a nucleoside inhibitor of reverse transcriptase
(RTs) of HIV and HBV. A considerably greater proportion of
HBV+ recipients of TDF 300 mg once daily achieved a com-
plete response at week 48 than oral adefovir dipivoxil 10 mg
once daily [75]. TDF is also generally less expensive and more
convenient to administer, as it does not require dosing on an
empty stomach [76].

However, clinical feedback reveals that TDF exhibits strong
side effects, causing osteomalacia and mitochondrial toxicity on
the renal proximal tubule [77]. Justification of the side effects
shows that 1) S-Adenosyl-L-Homocysteine hydrolase (SAHH), a
highly conserved ubiquitous enzyme that catalyzes the hydrol-
ysis of S-Adenosyl-L-Homocysteine (SAH) into adenosine and
homocysteine, is affected, leading to defect in DNA methylation-
dependent gene silencing [78]. SAHH inhibitor has signs of im-
munosuppressive activity [79]. 2) Adenosine deaminase (ADA)
is inhibited, resulting in reduced breakdown of adenosine from
food and decreased turnover of nucleic acids in tissues [80]. ADA
inhibitor 2’-deoxycoformycin (dCF) shows signs of hepatic and
adrenal toxicity [81]. 3) Purine nucleoside phosphorylase is also
inhibited. Figure 2.9, reprinted from Sigma-Aldrich Co., shows
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Figure 2.9: Enzymatic assay of S-Adenosyl-L-Homocysteine hydrolase.

the enzymatic assay of the above three enzymes, which break
down SAH eventually into uric acid inside human body.

Table 2.1 shows the Tanimoto coefficients between TDF and
the inhibitors of HIV RT, SAHH, ADA, and PNP using the
Scitegic ECFP4 and Daylight fingerprints through the SEA database
[82]. The higher the Tanimoto coefficient, the higher the simi-
larity between two molecules in terms of chemical structure. It
is always in the range of 0 to 1. The high Tanimoto coefficient
values indicate that TDF is chemically similar to the inhibitors
of SAHH, ADA, and PNP, hence TDF is likely to inhibit them
in addition to HIV RT. For HIV-infected or HBV-infected pa-
tients who take TDF as the primary drug, it is unfortunate that
these three essential enzymes are simultaneously inhibited by
TDF.
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Scitegic ECFP4 fingerprint Daylight fingerprint
HIV RT inhibitor 1.00 1.00
SAHH inhibitor 0.51 0.70
ADA inhibitor 0.42 0.75
PNP inhibitor 0.51 0.76

Table 2.1: Tanimoto coefficients between TDF and the inhibitors of HIV RT,
SAHH, ADA, and PNP.

2.5.2 Problem definition

The problem is to discover promising compounds that inhibit
HIV RT only without affecting SAHH, ADA, or PNP in or-
der to minimize toxicity. From the computational perspective,
it is equivalent to shortlisting candidates from existing ligand
databases such that they are predicted to bind to HIV RT with
a higher affinity but bind to SAHH, ADA, and PNP with a lower
affinity. This was done by protein-ligand docking with idock and
Vina.

2.5.3 Materials

The crystal structures of HIV RT, SAHH, ADA, and PNP were
collected from the Protein Data Bank (PDB) [21, 22]. Protein-
ligand complexes with PDB IDs of 2ZD1, 1LI4, 3IAR, and 3BGS
were selected because they were crystallized at high resolutions
(Table 2.2). Search spaces (box sizes) were then manually de-
fined in cuboid shape to be large enough for ligands to freely
translate and rotate inside.

10,928 ligands were collected from the clean drug like subset
of the ZINC database [27, 28]. These ligands satisfy Lipinski’s
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PDB ID Protein Ligand Resolution (Å) Box size (Å3)
2ZD1 HIV RT T27 1.80 18 x 18 x 20
1LI4 SAHH NAD 2.01 26 x 24 x 18
3IAR ADA 3D1 1.52 22 x 16 x 16
3BGS PNP DIH 2.10 18 x 18 x 20

Table 2.2: Selected PDB entries for HIV RT, SAHH, ADA, and PNP.

Rule of Five [83] with the xLogP value of up to 5, the molecular
weight between 150 Da and 500 Da, the number of hydrogen
bond donors of up to 5, and the number of hydrogen bonds
acceptors of up to 10.

2.5.4 Benchmarks

The benchmarks include 1) validation of Vina and idock to en-
sure their suitability for docking ligands against the four pro-
teins, and 2) comparison of their virtual screening performance
in terms of execution time, memory usage, predicted free energy,
and predicted conformations.

Vina x86 version 1.1.2 and idock x86_64 version 1.0 were used
because they were the most recent versions of both programs at
the time when the benchmarks were carried out. Both programs
were run on desktop computers with dual Intel Xeon Quad Core
2.4GHz and 32GB RAM under Ubuntu 10.04.1 x86_64. The
two CPUs support Intel’s Hyper-Threading technology, so each
computer consists of 8 physical cores and executes up to 16
logical threads simultaneously.
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PDB ID Protein Ligand Vina (Å) idock (Å)
2ZD1 HIV RT T27 0.465 0.555
1LI4 SAHH NAD 0.537 0.593
3IAR ADA 3D1 0.605 0.569
3BGS PNP DIH 0.756 1.170

Table 2.3: RMSDs between the crystal and docked conformations of T27,
NAD, 3D1, and DIH.

2.5.5 Program validation

The four crystal ligands extracted from the four PDB com-
plexes were conformationally randomized and redocked against
their proteins by Vina and idock to see how much the predicted
conformation would deviate from the crystal one. Figure 2.10
shows the four proteins in complex with their corresponding
crystal and docked ligands. The ligands rendered in green are
the crystal conformations, the ligands rendered in red are the
ones docked by Vina, and the ligands rendered in blue are the
ones docked by idock. To quantify the differences, Table 2.3
shows the root mean square deviations (RMSDs) between the
crystal and docked conformations. The RMSDs are all below
2.0 Å, a publicly accepted positive control for correct bound
structure prediction, indicating both programs are suitable for
docking ligands against the four proteins. The RMSDs obtained
by Vina are slightly better than those obtained by idock, espe-
cially for the case of PNP. This is probably due to the coarse
estimation of eintra in idock, which does not compute covalent
bonds internally but simply relies on rotatable bonds to detect
atom pair mobility.
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(a) HIV RT in complex with crystal and
docked T27.

(b) SAHH in complex with crystal and
docked NAD.

(c) ADA in complex with crystal and docked
3D1.

(d) PNP in complex with crystal and docked
DIH.

Figure 2.10: HIV RT, SAHH, ADA, and PNP in complex with crystal and
docked conformations of T27, NAD, 3D1, and DIH predicted by Vina and
idock.
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2.5.6 Virtual screening

Virtual screening of 10,928 drug-like ligands was then carried
out. They were docked against the four proteins by Vina and
idock. Because Vina can only dock one ligand in each run,
a script containing 10,928 lines was generated and run instead,
with each line being an execution of Vina to dock one individual
ligand. Arguments to both programs were left as default. The
GNU Time utility was used as a profiler.

Table 2.4 compares the execution time and memory usage
of docking 10,928 drug-like ligands against HIV RT, SAHH,
ADA, and PNP by Vina and idock. Maximum CPU utiliza-
tion is 1600% due to Intel’s Hyper-Threading technology. Vina
required 428 to 504 CPU hours for one protein case, while idock
required merely 88 to 184 CPU hours, resulting in a speedup
of 2.5 to 4.8 and a screening performance of 1.3 drug-like lig-
ands per CPU minute on average. In terms of elapsed time, the
speedup was increased to as high as 6.3 to 10.4 because idock
better utilized the CPU cores thanks to its efficient thread pool.
idock also better utilized available memory to build grid maps at
a high resolution and retained them throughout program execu-
tion. Even though idock consumed more memory than Vina, its
maximum resident set size did not exceed 1.5 GB, hence idock
can be run on mainstream desktop computers.

Table 2.5 summarizes the root mean square errors (RMSEs)
of free energies and the root mean square deviations (RMSDs)
of conformations predicted by both programs. The RMSEs of
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Program CPU Hours Elapsed CPU Util. Max Mem Usage
HIV RT

Vina 464 69:15:13 670% 126 MB
idock 162 10:57:46 1474% 856 MB
Ratio 2.9 6.3 0.45 0.15

SAHH
Vina 460 78:53:59 582% 150 MB
idock 184 12:24:24 1484% 1,368 MB
Ratio 2.5 6.4 0.39 0.11

ADA
Vina 504 74:22:37 677% 114 MB
idock 127 8:46:12 1452% 764 MB
Ratio 4.0 8.5 0.47 0.15

PNP
Vina 428 62:19:55 687% 116 MB
idock 88 5:58:19 1479% 857 MB
Ratio 4.8 10.4 0.46 0.13

Average
Vina 464 71:12:56 654% 124 MB
idock 140 9:31:40 1472% 961 MB
Ratio 3.3 7.5 0.44 0.13

Table 2.4: Execution time and memory usage of docking 10,928 drug-like
ligands by Vina and idock.
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Protein RMSE (kcal/mol) Avg RMSD (Å) RMSD ≤ 2.0 Å
HIV RT 0.35 2.554 61%
SAHH 0.46 4.190 49%
ADA 0.33 2.620 59%
PNP 0.31 2.966 53%

Table 2.5: RMSEs of free energies and RMSDs of conformations predicted
by Vina and idock.

free energies predicted by both programs vary from 0.31 to 0.46
kcal/mol, apparently less than 2.85 kcal/mol, the standard er-
ror obtained by Vina, indicating both programs predicted very
similar free energies. For 27% to 40% of all the 10,928 ligands,
the RMSD of the conformations predicted by both programs is
equal to or less than 1.0 Å, and for 49% to 61%, the RMSD is
equal to or less than 2.0 Å, indicating both programs predicted
similar conformations for around half of the cases.

Finally in order to shortlist a few promising ligands that bind
to HIV RT with a high affinity but bind to SAHH, ADA, and
PNP with a low affinity, filtering criteria were set. Ligands
whose predicted free energies against HIV RT are below or equal
to -11.0 kcal/mol and whose predicted free energies against the
other three proteins are above or equal to -8.5 kcal/mol were
shortlisted in Table 2.6. Values are in kcal/mol unit.

The ZINC19888543 compound predicted by Vina and the
ZINC44392991 compound predicted by idock were further in-
vestigated. Table 2.7 cites their predicted xLogP, number of
hydrogen bond donors (HBD), number of hydrogen bond accep-
tors (HBA), molecular weight (MW), and number of rotatable
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Ligand HIV RT SAHH ADA PNP
Vina

ZINC04667184 -11.1 -6.6 -7.5 -7.5
ZINC06720921 -11.0 -7.4 -8.0 -8.4
ZINC14545253 -11.0 -6.5 -8.0 -7.6
ZINC19888543 -11.1 -7.9 -7.8 -7.8
ZINC26423182 -11.1 -6.4 -7.8 -7.4
ZINC49453017 -11.3 -7.1 -8.3 -7.6
ZINC60603133 -11.0 -7.9 -8.3 -7.4
idock

ZINC03012460 -11.3 -8.3 -7.8 -7.3
ZINC04667184 -11.2 -7.6 -7.7 -8.0
ZINC44392991 -11.1 -7.7 -7.3 -8.1
ZINC49453017 -11.6 -7.3 -8.3 -7.8

Table 2.6: Shortlisted ligands.

Ligand xLogP HBD HBA MW (Da) NRB
ZINC19888543 4.48 1 3 342 3
ZINC44392991 4.24 1 6 391 6

Table 2.7: Chemical properties of ZINC19888543 predicted by Vina and
ZINC44392991 predicted by idock.

bonds (NRB) from the ZINC database [27, 28]. Figures 2.11
and 2.12, rendered by PoseView 1.0.0 [34], show the interaction
charts of the docked ligands. Hydrogen bonds, salt bridges and
metal interactions are highlighted as black dashed lines. Hy-
drophobic interactions are highlighted as green solid lines. Pi-Pi
and Pi-cation interactions are highlighted as green dashed lines.
It can be seen that ZINC19888543 was predicted to interact with
HIV RT mainly through hydrophobic effects and pi interactions,
whereas ZINC44392991 was predicted to interact with HIV RT
mainly through pi interactions and hydrogen bonds.
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(a) HIV RT in complex with ZINC19888543. (b) SAHH in complex with ZINC19888543.

(c) ADA in complex with ZINC19888543. (d) PNP in complex with ZINC19888543.

Figure 2.11: Interaction charts of ZINC19888543 in complex with HIV RT,
SAHH, ADA, and PNP.
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(a) HIV RT in complex with ZINC44392991. (b) SAHH in complex with ZINC44392991.

(c) ADA in complex with ZINC44392991. (d) PNP in complex with ZINC44392991.

Figure 2.12: Interaction charts of ZINC44392991 in complex with HIV RT,
SAHH, ADA, and PNP.
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2.6 Discussion

Structure-based virtual screening has become a routine task in
pharmaceutical institutions. Faster docking algorithms and im-
plementations are highly desired. AutoDock Vina [8] is an ex-
citing development due to its high performance and open source
nature. Vina is mainly optimized for single ligand docking, how-
ever. In Vina’s official forum, there are tremendous requests for
the native support for virtual screening. Our development of
idock perfectly fills in this gap.

idock has built-in support for virtual screening. It searches
for ligands in a user-specified folder and docks them one by one.
It reuses threads and grid maps across multiple ligands. idock
inherits from Vina the accurate scoring function and the efficient
optimization algorithm, and meanwhile introduces a fruitful of
innovations in C++ implementations, data structures, numeri-
cal models, and Monte Carlo algorithms. idock implements its
own thread pool to maintain a high CPU utilization throughout
the entire screening procedure. It intensively utilizes modern
C++11 techniques, particularly Rvalue references to avoid fre-
quent reallocations of array data. It flattens Vina’s tree-like
recursive data structures into simple array structures to guar-
antee a high data cache hit rate. It automatically detects and
deactivates certain torsions and thus reduces the dimension of
variables to optimize and increases the probability of finding
local optimums. idock’s verbose output of free energy permits
subsequent analysis using some ligand efficiency indexes [71–73]
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for ranking. In terms of usability, idock has very similar input
and output arguments as Vina, so it should be quite easy for
existing AutoDock and Vina users to transit to idock.

Although the methodology of docking has advanced rapidly,
there are still some major challenges yet to be solved [56]. These
include the appropriate considerations of protein flexibility upon
ligand binding, water molecules critical to the binding [84–86],
metal ions in the binding site, etc. The protein is implicitly as-
sumed rigid in this study. Another study [87] investigates the
relationship between protein flexibility and binding free energy
and presents some useful hints for understanding when, and to
what extent, flexibility should be considered. Vina supports
flexible protein docking, which has been proven helpful in some
cases [66], by rotating flexible side-chains, i.e. technically speak-
ing, by incorporating torsional variables from the protein side-
chains for conformationally optimization. However, in idock we
have not yet implemented flexible protein docking because it is
a challenging task to adequately model the protein flexibility as
well as there is a lack of commonly-accepted benchmarks. Users
who need this kind of flexible docking should refer to Vina at
the moment.

In the application example, we have shown that the docking
scores can be used to discriminate between the proteins to which
a ligand binds and the non-binding proteins. This approach has
recently been applied to the prediction of adverse drug reactions
[88]. The TarFisDock web server [89] in conjunction with the
PDTD database [90] facilitates the identification of drug targets
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of small molecules via a similar approach of docking and ranking.

2.7 Conclusions

We have developed idock, a multithreaded flexible ligand dock-
ing tool for structure-based virtual screening. It is capable of
screening 1.3 drug-like ligands per CPU minute on average on a
modern computer, making it a very competitive tool. Compared
with state-of-the-art AutoDock Vina, idock achieved a speedup
of 3.3 in terms of CPU time and a speedup of 7.5 in terms of
elapsed time on average. But even so, it still required about
10 hours on average to dock 10,928 drug-like ligands against a
certain protein, not to mention massive docking of millions of
ligands. Virtual screening remains a time-consuming practice.

To demonstrate the utility of idock in real world drug discov-
ery projects, we have performed structure-based virtual screen-
ing of 10,928 drug-like ligands to filter candidates that bind to
HIV RT with a high affinity but bind to SAHH, ADA, and PNP
with a low affinity in order to maximize drug potency while
minimizing toxicity. Finally we have shortlisted a few promis-
ing compounds available for further clinical investigations.

2.8 Availability

idock 1.0 is free and open source under Apache License 2.0.
Precompiled executables for 32-bit and 64-bit Linux, Windows,
Mac OS X, FreeBSD and Solaris, 13 docking examples, and a
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doxygen file for generating API documentations are available at
https://github.com/HongjianLi/idock.

2.9 Future works

Porting idock to GPU (Graphics Processing Unit) using CUDA
and OpenCL is one of our future directions, in view of the fact
that the modern GPU has evolved from a fixed-function graph-
ics pipeline to a programmable parallel processor with extremely
high computational throughput and tremendous memory band-
width at an affordable price. Performance evaluation of hy-
brid programming patterns for large CPU/GPU heterogeneous
clusters has been carried out [91]. The recent six years have
seen a fruitful of algorithms for computer-aided drug discovery
being ported to the GPU and gaining orders of magnitude of
speedup over single threaded CPU counterparts. To name a
few, such GPU-accelerated applications include FTMap [92] for
binding site mapping, CUDASW++2.0 [93] for protein database
search, the leader and the spread algorithms [94] for compound
selection, PIPER [95], PLANTS [44], GPUperTrAmber [96] and
a transcription factor-DNA docking program [97, 98], a FFT-
based tool [99, 100] and MEGADOCK 4.0 [101] for protein-
protein docking, SIML [102], Tanimoto matrix calculation [103],
and an all-to-all comparison [104] for chemical similarity cal-
culation, OpenMM [105], MD-GPU [106], SPFP [107] and ls1
mardyn [108] for molecular dynamics, PAPER [109] for molec-
ular shape comparison, gWEGA [110] for molecular superposi-
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tion and shape comparison, a k-centers algorithm for clustering
conformations [111], CAMPAIGN [112] for data clustering, and
visualization [113], and GASPRNG [114] for scalable parallel
random number generation.

On a different issue, well-studied proteins often have multiple
crystallographically determined structures. How to appropri-
ately perform ensemble docking [115–117] remains a challenge.
Likewise, how to perform multiple ligand simultaneous docking
(MLSD) [118, 119] is also an interesting topic of great potential.
Heuristic modeling of torsion angle preferences [120, 121] and
ligand flexibility [122] can remarkably reduce the optimization
space.

2 End of chapter.



Chapter 3

istar: software as a service

Protein-ligand docking is a key computational method in the
design of starting points for the drug discovery process. Per-
forming large-scale docking requires tedious configurations of
necessary tools and preparations of mandatory materials. Al-
though a few online docking platforms exist, they neither sup-
port fine-grained ligand selection based on molecular properties
and previewing the number of ligands to dock, nor be able to
monitor job progress in real time. They also lack convenient
visualization of docking results and straightforward output of
compound suppliers.

We are intrigued to automate large-scale docking using our
popular docking engine idock and thus have developed a pub-
licly accessible web platform called istar. Without cumber-
some software installation, users can submit jobs using our web-
site. Our istar website supports 1) filtering ligands by desired
molecular properties and previewing the number of ligands to
dock, 2) monitoring job progress in real time, and 3) visualizing

57
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ligand conformations and outputting free energy predicted by
idock, binding affinity predicted by RF-Score, putative hydrogen
bonds, and supplier information for easy purchasing, three use-
ful features commonly lacked on other online docking platforms
like DOCK Blaster or iScreen. We have collected 23,129,083
ligands from the All Clean subset of the ZINC database, and
revamped our idock to version 2.0, further improving docking
speed and accuracy, and integrating RF-Score as an alternative
rescoring function.

To compare idock 2.0 with the state-of-the-art AutoDock
Vina 1.1.2, we carried out a rescoring benchmark and a redock-
ing benchmark on the 2,897 and 343 protein-ligand complexes of
PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010
respectively, and an execution time benchmark on 12 diverse
proteins and 3,000 ligands of different molecular weight. Results
showed that, under various scenarios, idock achieved compara-
ble success rates while outperforming AutoDock Vina in terms
of docking speed by at least 8.69 times and at most 37.51 times.
When evaluated on the PDBbind v2012 core set, our istar plat-
form in combination with RF-Score managed to reproduce Pear-
son and Spearman correlation coefficients of as high as 0.855 and
0.859, respectively, between the experimental binding affinity
and the predicted binding affinity of the docked conformation.
idock@istar is freely available at http://istar.cse.cuhk.edu.hk/idock.

This was a collaborative project with Pedro J. Ballester from
European Bioinformatics Institute, Cambridge, United King-
dom. It was published in PLoS ONE on 24 January 2014 [9].
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3.1 Background

Protein-ligand docking predicts the preferred conformation and
binding affinity of a small ligand as non-covalently bound to the
specific binding site of a protein. Docking can therefore be used
not only to determine whether a ligand binds, but also to un-
derstand how it binds. The latter is subsequently important to
improve the potency and selectivity of binding. To date, there
are hundreds of docking tools [56, 57]. The AutoDock series
[8, 32, 69] is the most cited docking software in the research com-
munity, with over 9,400 citations according to Google Scholar.
AutoDock contributed to the discovery of several drugs, in-
cluding the first clinically approved inhibitor of HIV integrase
[123]. Following its initial release, several parallel implementa-
tions were developed using either multithreading or computer
cluster [124–126].

In 2009, AutoDock Vina [8] was released. As a whole new
counterpart of AutoDock 4 [32], AutoDock Vina significantly
improves the average accuracy of the binding mode predictions
while running two orders of magnitude faster with multithread-
ing [8]. It was compared to AutoDock 4 on selecting active
compounds against HIV protease, and was recommended for
docking large molecules [58]. Its functionality of semi-flexible
protein docking by enabling flexibility of side-chain residues was
evaluated on VEGFR-2 [66]. To further facilitate the usage of
AutoDock Vina, auxiliary tools were subsequently developed, in-
cluding a PyMOL (http://www.pymol.org) plugin for program
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settings and visualization [59], a bootable operating system for
computer clusters [60], a console application for virtual screening
on Windows [61], and a GUI for virtual screening on Windows
[62].

In 2011, inspired by AutoDock Vina, we developed idock 1.0
[7], a multithreaded virtual screening tool for flexible ligand
docking. idock introduces plenty of innovations, such as caching
receptor and grid maps in memory to permit efficient large-
scale docking, revised numerical model for much faster energy
approximation, and capability of automatic detection of inac-
tive torsions for dimensionality reduction. When benchmarked
on docking 10,928 drug-like ligands against HIV reverse tran-
scriptase, idock 1.0 achieved a speedup of 3.3 in terms of CPU
time and a speedup of 7.5 in terms of elapsed time on average
compared to AutoDock Vina, making idock one of the fastest
docking software.

Having released idock, we kept receiving docking requests
from our colleagues and collaborators. They are mostly bio-
chemists and pharmacologists, outsourcing the docking research
to us after discovering pharmaceutical protein targets for cer-
tain diseases of therapeutic interest. Consequently, we had to
grab the protein structure, do format conversion, define search
space, set up docking parameters, and keep running idock in
batch for months. Tedious enough, all the above work was done
manually, resulting in very low research productivity.

A few online docking platforms already exist. DOCK Blaster
[127] investigates the feasibility of full automation of protein-
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ligand docking. It utilizes DOCK 3 [40] as the docking engine
and ZINC [27, 28] as the ligand database. It also utilizes Pock-
etPickker (CLIPPERS) [128] for binding pocket identification.
iScreen [129] is a compacted web server for TCM (Traditional
Chinese Medicine) docking and followed by customized de novo
drug design. It utilizes PLANTS [42–44] as the docking engine
and TCM@Taiwan [29] as the ligand database. It also utilizes
LEA3D [130] for de novo ligand design. SwissDock [131] is a
web server dedicated to the docking of small molecules on tar-
get proteins. It utilizes EADock DSS [132, 133] as the docking
engine. FORECASTER [134] is a web interface consisting of a
set of tools for the virtual screening of small molecules binding
to biomacromolecules (proteins, receptors, and nucleic acids). It
utilizes the flexible-target docking program FITTED [45] as the
docking engine. Other web servers for docking can be found on
the click2drug web portal http://www.click2drug.org/.

3.2 Motivation

The above docking platforms neither support fine-grained ligand
selection based on molecular properties and previewing the num-
ber of ligands to dock, nor be able to monitor job progress in real
time. They lack straightforward output of compound suppliers,
a hurdle preventing users from purchasing high-rank compounds
for further wet-lab verification. They also lack convenient and
interactive online visualization of the docking results. We aimed
to address these obstacles, and therefore developed a web plat-
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form called istar in order to automate large-scale protein-ligand
docking using our idock.

3.3 Objective

We strongly emphasized docking efficiency, which we believe is
the most crucial factor for public large-scale docking platforms,
so we tried every endeavor to optimize our docking engine idock
as well as our system design. We accelerated even a single job
execution by exploiting the computational resources of multi-
ple machines, and thus implemented slice-level parallelism. We
aimed to supply a sufficient amount of purchasable ligands for
the users to select, and provide a mechanism for monitoring
long-running job progress in real time. Furthermore, we adopted
the robust RF-Score [10] version 3 as a rescoring function for ac-
curate prediction of binding affinity. Last but not the least, we
utilized modern website and database technologies to constitute
a user-friendly web interface.

Nowadays, we intend to design istar as a versatile SaaS (Soft-
ware as a Service) web platform rather than a conventional web
server merely for docking purpose. SaaS is part of the nomencla-
ture of cloud computing. It is a software delivery model in which
software and associated data are centrally hosted on the cloud,
typically accessed by users using a thin client via a web browser.
We opt to abstract our software into easy-to-use services to pro-
mote their usage by a wide variety of users from different dis-
ciplines. In addition to idock for prospective structure-based
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virtual screening, we have also hosted on istar several other ser-
vices, for examples, USR (Ultrafast Shape Recognition) [19] and
USRCAT (USR with Credo Atom Types) [20] for prospective
ligand-based virtual screening, iview [11] for interactive WebGL
visualization of protein-ligand complex, igrep [135] for approxi-
mate nucleotide sequence matching, and icuda as an introduc-
tory seminar series on CUDA programming.

3.4 Methods and materials

In the following subsections, we introduce our fast docking en-
gine idock, our accurate rescoring function RF-Score, our mod-
ern web platform istar, and the experimental settings regarding
datasets and benchmarks.

3.4.1 Docking engine idock

The input to idock includes a rigid receptor, a set of flexible
ligands, and a cubic box, which is used to restrict the confor-
mational space to a particular binding site of the receptor. The
output from idock includes predicted conformations and their
predicted binding affinity.

idock consists of two core components, a scoring function to
predict binding affinity, and an optimization algorithm to ex-
plore the conformational space. idock inherits the same scoring
function from AutoDock Vina. The idock score is made up of a
conformation-dependent part and a conformation-independent
part. The conformation-dependent part is a weighted sum of
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five terms over all the pairs of atoms i and j that can move
relative to each other, excluding 1-4 interactions, i.e. atoms
separated by up to three consecutive covalent bonds. The sum
is calculated from equations (3.1) and (3.2) where ti and tj are
the atom types of i and j respectively, and rij is their inter-
atomic distance with a cutoff at rij = 8Å. The five terms are
calculated from equations (3.3) to (3.7) where dij is the surface
distance calculated from equation (3.8) where Rti and Rtj are
the Van der Waals radii of ti and tj respectively. All terms are
in Å units. The first three terms account for steric interactions,
the fourth term accounts for hydrophobic effect, and the fifth
term accounts for hydrogen bonding. Metal ions are treated as
hydrogen bond donors. The weighting coefficients are derived
from linear regression on the PDBbind [136–138] v2007 refined
set (N = 1,300). The optimization algorithm attempts to find
the global minimum of e and other low-scoring conformations,
which it then ranks.

e =
∑
i<j

eij (3.1)

eij = (−0.035579)×Gauss1(ti, tj, rij)

+ (−0.005156)×Gauss2(ti, tj, rij)

+ (+0.840245)×Repulsion(ti, tj, rij)

+ (−0.035069)×Hydrophobic(ti, tj, rij)

+ (−0.587439)×HBonding(ti, tj, rij) (3.2)
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Gauss1(ti, tj, rij) = e−(dij/0.5)
2 (3.3)

Gauss2(ti, tj, rij) = e−((dij−3)/2)2 (3.4)

Repulsion(ti, tj, rij) =

d2ij if dij < 0

0 if dij ≥ 0
(3.5)

Hydrophobic(ti, tj, rij) =


1 if dij ≤ 0.5

1.5− dij if 0.5 < dij < 1.5

0 if dij ≥ 1.5

(3.6)

HBonding(ti, tj, rij) =


1 if dij ≤ −0.7

dij/(−0.7) if − 0.7 < dij < 0

0 if dij ≥ 0

(3.7)

dij = rij − (Rti +Rtj) (3.8)

The conformation-dependent part can be seen as the sum of
inter-molecular and intra-molecular contributions. Hence equa-
tion (3.1) can be rewritten into equation (3.9) where einter is the
summation over all the heavy atom pairs between the receptor
and the ligand, and eintra is the summation over all the non 1-4
heavy atom pairs of the ligand.
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e = einter + eintra (3.9)

The conformation-independent part penalizes einter for lig-
and flexibility. The predicted free energy of the kth conforma-
tion for output, denoted as e′k, is calculated from equation (3.10)
where k is the subscript for conformation, ek is the conformation-
dependent score of the kth conformation calculated from equa-
tion (3.1), eintra,1 is the eintra of the first, i.e. lowest-scoring
conformation, NActiveTors is the number of active torsions and
NInactiveTors is the number of inactive torsions of the ligand. A
torsion is called inactive in this context if its arbitrary values do
not affect the overall output of the scoring function. Note that
eintra,1, rather than eintra,k, is subtracted in order to preserve the
ranking of predicted conformations.

e′k =
ek − eintra,1

1 + 0.05846× (NActiveTors + 0.5×NInactiveTors)
(3.10)

On one hand, in order to fast evaluate eij, idock precalcu-
lates some of its possible values. Note from equation (3.2) that
eij is essentially a function of three variables, namely ti, tj,
and rij, which all have known lower and upper bounds. There
are 15 heavy atom types implemented in idock, so there are
15*16/2=120 different combinations of pairs of ti and tj. Since
rij is cut off at 8Å, idock uniformly samples 65,536 rij values in
the range [0, 8] and precalculates their eij values. Subsequently
in building grid maps or calculating eintra, given a combination
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of ti, tj and rij, idock approximates the true value of eij simply
by a table lookup, rather than by a table lookup followed by a
linear interpolation in the case of AutoDock Vina.

On the other hand, in order to fast evaluate einter, idock pre-
calculates its possible values by building grid maps. A grid map
of atom type t is constructed by placing virtual probe atoms
of atom type t along the X, Y, Z dimensions of the search
box at a certain granularity. The einter value of these probe
atoms are precalculated from equation (3.2). Subsequently in
the conformational optimization stage, given a sampled confor-
mation, idock approximates the true values of einter of ligand
heavy atoms simply by a table lookup rather than by a table
lookup followed by a linear interpolation in the case of AutoDock
Vina. In fact, when we profiled AutoDock Vina, its linear in-
terpolation of the 8 nearest corner probe atoms turned out to
be a performance bottleneck because it involves 8 readings, 12
subtractions, 24 multiplications, and 7 additions. The grid gran-
ularity is hard-coded to be a coarse value of 0.375Å in AutoDock
Vina, while in idock it is exposed as a program option for users
to adjust accordingly and has a default fine value of 0.15625Å so
as to complement the possible precision loss due to the removal
of linear interpolation for the sake of performance.

Likewise in AutoDock Vina, idock also uses Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [70], a quasi-Newton algorithm, for
local optimization. In each BFGS iteration, a conformational
mutation and a line search are taken, with each sampled con-
formation being accepted according to the Metropolis criterion.
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The number of iterations correlates to the complexity of the lig-
and in terms of the number of heavy atoms and the number of
torsions. BFGS approximates the inverse Hessian matrix. In
other words, it uses not only the value of the scoring function
but also its gradient, which are the derivatives of the scoring
function with respect to the position, orientation and torsions
of the ligand. Although both programs share similar optimiza-
tion algorithms, their internal implementations differ substan-
tially. In idock, the BFGS local optimization stops if and only if
no appropriate step length can be obtained by line search, thus
increasing the probability of finding optimal local minimums.
More optimization runs with fewer number of BFGS iterations
are executed, better balancing high conformational diversity and
short execution time.

idock introduces a novel feature that can automatically detect
and deactivate certain torsions which are activated in the input
file but indeed have no impact on the overall scoring. These
are the torsions of hydroxyl groups —OH, amine groups —NH2

and methyl groups —CH3, where mere hydrogens will be ro-
tated and therefore have no contributions to the idock score.
idock is capable of re-classifying them as inactive torsions dur-
ing parsing, thus reducing the dimension of variables to optimize
in subsequent BFGS iterations.

idock encapsulates many other improvements. Please refer to
its change log for a complete list of new features and bugfixes.
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3.4.2 Scoring function RF-Score

RF-Score [10] is a member of a new class of scoring functions
that use non-parametric machine learning approach to predict
binding affinity in an entirely data-driven manner. It is the first
application of RF (Random Forests) [139] to predicting protein-
ligand binding affinity. It was rigorously shown [10] to perform
better than 16 classical scoring functions in ranking protein-
ligand complexes according to their predicted binding affinity.
It was also shown to be useful in the discovery of new molecular
scaffolds in antibacterial hit identification [140].

In RF-Score, each feature comprises the number of occur-
rences of a particular protein-ligand atom type pair interacting
within a certain distance range. Four common atom types for
the protein (C, N, O, S) and nine common atom types for the
ligand (C, N, O, F, P, S, Cl, Br, I) constitute a vector of 36
features, and the distance cutoff is chosen to be as sufficiently
large as 12Å so as to implicitly capture solvation effects.

RF grows each binary tree without pruning using the CART
algorithm [141] from a bootstrap sample of the training data. It
selects the best split at each node of the tree from a typically
small number of randomly chosen features, and terminates split-
ting a node when it contains no more than five samples. The
prediction from an individual tree is the arithmetic mean of its
sample outputs in the traversed leaf node. The final prediction
is the arithmetic mean of the individual predictions of all the
trees in the forest. The performance of RF-Score does not vary
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significantly with the number of trees beyond a certain thresh-
old. The common practice is to use 500 as a sufficiently large
number of trees.

The original version of RF-Score [10] was trained on PDB-
bind v2007 refined set less the core set (N = 1,105). We re-
trained RF-Score on PDBbind v2013 refined set (N = 2,959)
for prospective prediction purpose, and integrated it into our
istar platform to re-score predicted conformations. We also im-
plemented a consensus score as the average effect of idock score
and RF-Score. Mathematically, equations (3.11) to (3.13) re-
late equilibrium constant Keq and dissociation constant Kd with
Gibbs free energy ∆G, where R is gas constant R = 1.9858775×
10−3kcal/mol and T is absolute temperature.

∆G = −RT lnKeq (3.11)

Kd =
1

Keq
(3.12)

pKd = − log10Kd (3.13)

Assuming T = 298.15K at room temperature, plugging equa-
tions (3.12) and (3.13) into (3.11) yields

pKd = −0.73349480509×∆G (3.14)

Equation (3.14) transforms the predicted free energy output
by idock in kcal/mol into binding affinity in pKd unit. The con-
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sensus score is thus defined in equation (3.15) so that it directly
reflects the predicted potency in pKd unit.

ConsensusScore = 0.5×(−0.73349480509×idockScore+RFScore)

(3.15)

3.4.3 Web platform istar

Figure 3.1 shows the overall architecture of istar. There are five
major components: a website, a web server, a database manage-
ment system, several workstations, and a network file system.
Under typical circumstances, a user browses our website and
submits a job. The web server first validates user input and
then saves it into the database. Several workstations keep run-
ning daemons, which fetch jobs from the database and perform
protein-ligand docking. Upon completion, the daemon sends a
notification email to the user and writes the results to the net-
work file system, which are cached as static contents by the web
server. The user again browses our website to download or vi-
sualize the results, or monitor job progress. Our web server
also supports REST API for developers to program against.
Instructions on how to use the REST API can be found at
http://istar.cse.cuhk.edu.hk/idock.

In our idock@istar web page (Figure 3.2), the first section
displays summary of existing jobs and the second section allows
new job submission. A job comprises compulsory fields and
optional fields. The compulsory fields include a receptor in PDB
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Figure 3.1: istar architecture.

format, a search space defined by a cubic box, a brief description
about the job, and an email to receive completion notification.
The optional fields include nine ligand filtering conditions. The
nine ligand filtering conditions are molecular weight, partition
coefficient xlogP, apolar desolvation, polar desolvation, number
of hydrogen bond donors, number of hydrogen bond acceptors,
topological polar surface area tPSA, net charge, and number of
rotatable bonds. These nine molecular descriptors were directly
retrieved from our data source, i.e. the ZINC database [27, 28],
in which the nine descriptors were already precalculated. Note
that although molecular mass in Dalton unit might be a more
appropriate descriptor than molecular weight in g/mol unit, we
stick to the latter in order to maintain consistency with ZINC,
in which the g/mol unit is used for molecular weight.
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Figure 3.2: idock@istar web page.
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We collected 23,129,083 ligands at pH 7 in mol2 format from
versions 2012-04-26, 2013-01-10 and 2013-12-18 of the All Clean
subset the ZINC database [27, 28] with explicit permission from
its major developer and maintainer. The All Clean subset was
constituted by applying the strict filtering rules specified at
http://blaster.docking.org/filtering, e.g. aldehydes and thiols
were removed. We then converted the entire database of ligands
in batch into PDBQT format as used by idock. The huge num-
ber of 23 million ligands should be sufficient for most prospective
applications. In case users need to screen their own ligand li-
braries, at present we recommend running idock locally on their
computers.

istar supports ligand selection by desired molecular properties
in a fine-grained manner and previewing the number of ligands
to dock in real time (Figure 3.2, middle section). Users can
move the nine sliders to filter ligands in the form of closed inter-
vals. Only the ligands satisfying all the nine filtering conditions
will be docked. Because of the relationship of logical and, in
order to nullify a specific filtering condition, one may expand its
closed interval to cover the entire possible range. We set up de-
fault values of the lower and upper bounds of the nine molecular
properties for novices to get started quickly.

istar supports monitoring job progress in real time (Figure
3.2, top section). We composed a timer to regularly poll the
server and automatically fetch and report the latest job progress
every second without page refresh. Users can thus have a rough
estimation in advance of how long the jobs will take and when
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the jobs will complete. This feature is particularly handy when
the jobs are long running, which is usually the case of large-scale
docking.

istar outputs verbose information in PDBQT format (Figure
3.3). The first REMARK line describes the ZINC ID, molecular
weight (g/mol), partition coefficient xlogP, apolar desolvation
(kcal/mol), polar desolvation (kcal/mol), number of hydrogen
bond donors, number of hydrogen bond acceptors, topological
polar surface area tPSA (Å2), net charge, and number of ro-
tatable bonds of a selected ligand. The second REMARK line
describes the SMILES representation. The third REMARK line
describes the number of suppliers followed by their names, which
conform to the nomenclature as used by ZINC. The subsequent
REMARK lines describe the free energy and ligand efficiency
predicted by idock, putative hydrogen bonds, binding affinity
predicted by RF-Score, and consensus score in pKd or pKi unit.
Columns 71 to 76 of the ATOM lines describe the predicted free
energy of each atom. The individual atom contribution to the
overall score facilitates the detection of protein-ligand interac-
tion hotspots, and thus assists in de novo ligand design.

At the moment, we have deployed a machine equipped with
Intel Xeon W3520 @ 2.66 GHz and 8GB DDR3 SDRAM to run
the web server, and four identical machines each equipped with
dual Xeon E5-2670 @ 2.6GHz and 128GB ECC DDR3 SDRAM
to run the idock daemons. We have mounted a 2TB hard disk
into our network file system to store docking jobs and results.
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Figure 3.3: Verbose output in PDBQT format.

3.4.4 Datasets

We evaluated and compared idock x86_64 v2.0 and AutoDock
Vina x86 v1.1.2 from the perspectives of rescoring, redocking
and execution time on three datasets, which are PDBbind [136–
138], CSAR [142, 143] and ZINC [27, 28].

The PDBbind v2012 dataset contains a diverse collection
of experimentally determined structures carefully selected from
PDB (Protein Data Bank) [22, 144]. For each complex, the
experimental binding affinity (either dissociation constant Kd,
inhibition constant Ki, or half maximal inhibitory concentration
IC50) is manually collected from its primary literature reference,
thus resulting in the general set of 9,308 complexes, with 7,121
being protein-ligand complexes. Out of them, the complexes
with a resolution of 2.5Å or better, with known Kd or Ki val-
ues, and with ligand containing merely the common heavy atoms
(C, N, O, F, P, S, Cl, Br, I) are filtered to constitute the refined
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set of 2,897 complexes. These complexes are then clustered by
protein sequence similarity using BLAST at a cutoff of 90%, and
for each of the 67 resulting clusters with at least five complexes,
the three complexes with the highest, median and lowest binding
affinity are selected to constitute the core set of 201 complexes,
whose experimental binding affinity spans 10 pKd or pKi units.

The CSAR (Community Structure Activity Resource) NRC
HiQ Set 24Sept2010 contains 343 diverse protein-ligand com-
plexes selected from existing PDB [22, 144] entries which have
binding affinity (Kd or Ki) in Binding MOAD [145–147], aug-
mented with entries from PDBbind [136–138]. Their binding
affinity spans 12 pKd units.

The ZINC database contains over 35 million purchasable small
molecules in popular MOL2 and SDF formats.

3.4.5 Benchmarks

In the rescoring benchmark, we evaluated the capability of RF-
Score, AutoDock Vina and idock of predicting the binding affin-
ity as close to the experimental binding affinity as possible given
a crystal protein-ligand complex. We compared their rescor-
ing performance to 18 other scoring functions on the PDBbind
v2007 core set (N = 195). The test set was then extended to
two larger datasets, i.e. the PDBbind v2012 refined set (N =
2,897) [136–138] and the CSAR NRC HiQ Set 24Sept2010 (N
= 343) [142, 143], to enable a more comprehensive comparison.

In the redocking benchmark, we evaluated the capability of
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AutoDock Vina and idock of docking a randomized ligand con-
formation back to its crystal conformation as close as possible.
We used the PDBbind v2012 refined set (N = 2,897), the PDB-
bind v2011 refined set (N = 2,455), and the CSAR NRC HiQ
Set 24Sept2010 (N = 343), because they were the latest versions
and contained the largest number of high-quality and diverse
protein-ligand structures. We wrote a script to automatically
define the search box first by finding the smallest cubic box that
covers the entire ligand and then by extending the box in X,
Y, Z dimensions by 10Å. Note that the 2rio entry of PDBbind
contains two strontium ions, which are supported by idock but
not by AutoDock Vina, we manually removed them before in-
voking AutoDock Vina. Both programs were also evaluated on
the PDBbind v2012 core set (N = 201) in order to find poten-
tial impact factors on their performance. We used root mean
square deviation RMSD to measure the closeness between two
conformations. The lower the RMSD is, the closer the two
conformations are. Usually the RMSD value is calculated be-
tween the crystal and the docked conformations. Very often the
RMSD of 2.0Å is regarded as the positive control for correct
bound structure prediction.

In the execution time benchmark, we collected 12 diverse pro-
teins from the PDB (Protein Data Bank) database [22, 144], and
1000 ligands with a molecular weight of 200-300g/mol, 1000 lig-
ands with a molecular weight of 300-400g/mol, and 1000 ligands
with a molecular weight of 400-500g/mol from the All Clean
subset of the ZINC database [27, 28]. The 3,000 ligands were
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docked against the 12 proteins by AutoDock Vina and idock.
Since AutoDock Vina can dock only one ligand in a run, three
bash scripts each containing 1,000 lines were executed instead,
with each line being an execution of AutoDock Vina to dock one
single ligand. The GNU Time utility v1.7 was used as a profiler.

The three benchmarks were carried out on desktop comput-
ers with Intel Core i5-2400 CPU @ 3.10GHz and 4GB DDR3
SDRAM under Mac OS X 10.7.4 Build 11E53. Arguments to
AutoDock Vina and idock were left as default. By default, both
programs output at most 9 predicted conformations per ligand.

3.5 Results

3.5.1 Rescoring results

Table 3.1 compares 21 scoring functions on the PDBbind v2007
core set (N = 195) in terms of Pearson correlation coefficient
Rp, Spearman correlation coefficient Rs, and standard deviation
SD. The scoring functions are sorted in the descending order
of Rp. In terms of Rp and SD, RF-Score, AutoDock Vina and
idock rank 1st, 7th and 8th respectively, already outperforming
the majority of commercial scoring functions. The statistics for
AutoDock Vina and idock are reported in this study and the
statistics for the other 19 scoring functions are collected from
[10, 55, 148, 149]. RF-Score [10], ID-Score [55], SVR-Score [149]
and X-Score [150] are the only scoring functions whose training
set do not overlap with the PDBbind v2007 core set.

Figure 3.4 plots the pairwise correlations between experimen-
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Table 3.1: 21 scoring functions compared on PDBbind v2007 core set.

Scoring function Rp Rs SD
RF-Score 0.774 0.762 1.59
ID-Score 0.753 0.779 1.63
SVR-Score 0.726 0.739 1.70
X-Score::HMScore 0.644 0.705 1.83
DrugScoreCSD 0.569 0.627 1.96
SYBYL::ChemScore 0.555 0.585 1.98
AutoDock Vina 0.554 0.608 1.98
idock 0.546 0.612 1.99
DS::PLP1 0.545 0.588 2.00
GOLD::ASP 0.534 0.577 2.02
SYBYL::G-Score 0.492 0.536 2.08
DS::LUDI3 0.487 0.478 2.09
DS::LigScore2 0.464 0.507 2.12
GlideScore-XP 0.457 0.435 2.14
DS::PMF 0.445 0.448 2.14
GOLD::ChemScore 0.441 0.452 2.15
SYBYL::D-Score 0.392 0.447 2.19
DS::Jain 0.316 0.346 2.24
GOLD::GoldScore 0.295 0.322 2.29
SYBYL::PMF-Score 0.268 0.273 2.29
SYBYL::F-Score 0.216 0.243 2.35
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tal binding affinity and predicted binding affinity by RF-Score,
AutoDock Vina and idock on the PDBbind v2012 refined set (N
= 2,897). Values are in pKd or pKi unit. Since both AutoDock
Vina and idock were trained on the PDBbind v2007 refined
set (N = 1,300), in order to make a fair comparison, in this
benchmark we re-trained RF-Score on the same training set.
On one hand, the re-trained RF-Score managed to predict the
binding affinity accurately with Pearson correlation coefficient
Rp = 0.765, Spearman correlation coefficient Rs = 0.755, root
mean square error RMSE = 1.26, and standard deviation SD

= 1.26. On the other hand, although AutoDock Vina and idock
claimed to do well in conformation prediction, they could not
predict binding affinity very accurately (Rp = 0.466, Rs = 0.464,
RMSE = 1.74, SD = 1.74 for AutoDock Vina, and Rp = 0.451,
Rs = 0.453, RMSE = 1.75, SD = 1.75 for idock), a very com-
mon obstacle in the entire computational chemistry community.
As expected, the correlation between binding affinity predicted
by AutoDock Vina and idock is very close to 1 because of their
identical scoring function but different numerical approximation
methods [7]. The above observations also apply to the results on
the CSAR NRC HiQ Set 24Sept2010 (N = 343), as can be seen
in Figure 3.5, where Rp = 0.801, Rs = 0.795, RMSE = 1.34,
SD = 1.34 for RF-Score, Rp = 0.595, Rs = 0.612, RMSE =
1.79, SD = 1.79 for Vina, and Rp = 0.597, Rs = 0.613, RMSE

= 1.79, SD = 1.79 for idock.
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Figure 3.4: Correlations between experimental and predicted binding affinity
on PDBbind v2012 refined set.
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3.5.2 Redocking results

Figure 3.6 visualizes the redocking results of four protein-ligand
complexes selected from the PDBbind v2012 refined set. The
crystal ligand conformation is rendered in green. The conforma-
tion predicted by Vina is rendered in red. The conformation pre-
dicted by idock is rendered in blue. In (a), the protein target is
purine nucleoside phosphorylase. RMSD = 0.14Å for Vina, and
RMSD = 0.13Å for idock. Both methods managed to predict
a conformation sufficiently close to that of the co-crystallized
ligand. In (b), the protein target is thermolysin. RMSD =
8.40Å for Vina, and RMSD = 9.91Å for idock. Both methods
failed to predict a conformation sufficiently close to that of the
co-crystallized ligand, probably due to the presence of a zinc
ion in the binding site. In (c), the protein target is bifunctional
purine biosynthesis protein PURH. RMSD = 7.06Å for Vina,
and RMSD = 0.21Å for idock. idock managed to predict a con-
formation sufficiently close to that of the co-crystallized ligand
but AutoDock Vina failed. In (d), the protein target is FimX.
RMSD = 0.29Å for Vina, and RMSD = 10.23Å for idock.
AutoDock Vina managed to predict a conformation sufficiently
close to that of the co-crystallized ligand but idock failed.

Table 3.2 and Figure 3.7 show the redocking success rates of
idock and AutoDock Vina on the PDBbind v2012 refined set
(N = 2,897), the PDBbind v2011 refined set (N = 2,455), and
the CSAR NRC HiQ Set 24Sept2010 (N = 343) under vari-
ous conditions regarding the RMSD values between the crys-



CHAPTER 3. ISTAR: SOFTWARE AS A SERVICE 85

(a) PDB 1B8N. (b) PDB 4TMN.

(c) PDB 1PKX. (d) PDB 3HV8.

Figure 3.6: Redocking visualization of four protein-ligand complexes.

tal and docked conformations. By default, both programs out-
put 9 predicted conformations per ligand. Given a redocking
case, RMSDi(i = 1, 2, ..., 9) refers to the RMSD value between
the crystal conformation and the ith docked conformation, i.e.
the one with the ith highest predicted binding affinity, whereas
RMSDmin refers to the RMSD value between the crystal con-
formation and the closest docked conformation, i.e. the one
with the minimum RMSD value. RMSDmin = min

i∈[1,9]
RMSDi.

The condition RMSD1 = RMSDmin therefore tests for how
many percent the docked conformation with the highest pre-
dicted binding affinity actually turns out to be the closest one
among the 9 predicted conformations to the crystal conforma-
tion. It can be seen that the success rates of idock are com-
parable to, albeit slightly lower than, AutoDock Vina, and the
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Table 3.2: Redocking success rates of idock and AutoDock Vina.

PDBbind v2012 PDBbind v2011 CSAR NRC HiQ
Condition idock Vina idock Vina idock Vina
RMSD1 = RMSDmin 49% 53% 47% 54% 59% 71%
RMSD2 = RMSDmin 15% 16% 16% 14% 18% 13%
RMSD3 = RMSDmin 8% 7% 8% 8% 4% 4%
RMSD4 = RMSDmin 6% 6% 6% 5% 7% 3%
RMSD5 = RMSDmin 5% 4% 5% 5% 3% 1%
RMSD6 = RMSDmin 5% 3% 5% 4% 3% 3%
RMSD7 = RMSDmin 4% 4% 5% 4% 2% 2%
RMSD8 = RMSDmin 5% 3% 4% 3% 3% 2%
RMSD9 = RMSDmin 4% 3% 4% 3% 1% 2%
RMSD1 < 0.5 Å 10% 12% 11% 12% 20% 21%
RMSD1 < 1.0 Å 26% 31% 29% 31% 45% 47%
RMSD1 < 1.5 Å 43% 47% 45% 47% 61% 67%
RMSD1 < 2.0 Å 51% 56% 53% 56% 70% 73%
RMSD1 < 2.5 Å 56% 61% 58% 61% 73% 76%
RMSDmin < 0.5 Å 12% 14% 14% 15% 27% 26%
RMSDmin < 1.0 Å 35% 40% 39% 40% 60% 55%
RMSDmin < 1.5 Å 61% 65% 64% 65% 82% 84%
RMSDmin < 2.0 Å 72% 79% 74% 78% 88% 92%
RMSDmin < 2.5 Å 77% 85% 79% 84% 91% 94%

success rates on the CSAR NRC HiQ Set 24Sept2010 are consis-
tently higher than the PDBbind v2012 and v2011 refined sets,
probably because the scoring function performs well on carefully
refined structures. Using a RMSD value of 2.0Å, a publicly ac-
cepted positive control for correct bound structure prediction,
both programs managed to predict a conformation sufficiently
close to that of the co-crystallized ligand as the first conforma-
tion in over half of the cases, without any manual tweaking of
the protein model.

We attempted to examine two possible reasons that might
cause idock to fail in some redocking test cases. They are the
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Figure 3.7: Redocking success rates of idock and AutoDock Vina.
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number of rotatable bonds of the ligand and the number of metal
ions in the binding site. Figure 3.8 plots the impact of rotatable
bonds of the ligand on the redocking success rates of idock and
AutoDock Vina benchmarked on PDBbind v2012 core set (N
= 201). Out of the 201 cases, there are 109 and 114 successful
cases for idock and AutoDock Vina respectively. The average
number of rotatable bonds of the ligand in successful cases are
7.52 and 7.30 respectively for idock and AutoDock Vina. The
average number of rotatable bonds of the ligand in unsuccessful
cases are 10.36 and 10.82 respectively for idock and AutoDock
Vina. Both programs tended to do well when the ligand contains
fewer than 10 rotatable bonds.

Figure 3.9 plots the impact of metal ions in the binding site on
the redocking success rates of idock and AutoDock Vina bench-
marked on PDBbind v2012 core set (N = 201). Out of the 201
cases, there are 158, 31 and 12 cases in which there are 0, 1
and 2 metal ions respectively in the binding site. For idock, the
success rates are 0.58, 0.39 and 0.42 when there are 0, 1 and 2
metal ions respectively in the binding site. For AutoDock Vina,
they are 0.60, 0.42 and 0.50 respectively. Both programs tended
to do well when the binding site contains no metal ions.

Figure 3.10 shows theRMSD1 values for idock plotted against
those for AutoDock Vina. The color encodes the number of ro-
tatable bonds (NRB) of the ligand. Many points fall onto the
diagonal, suggesting that both programs tended to predict sim-
ilar conformations.

From the perspective of prospective docking, Figure 3.11 shows
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the scatter plot of the highest predicted binding affinity of the
9 docked conformations output by idock against the experimen-
tal binding affinity on PDBbind v2012 core set (N = 201) in
the redocking benchmark. Values are in pKd or pKi unit. The
weak correlation and large deviation (Rp = 0.502, Rs = 0.530,
RMSE = 1.31, SD = 1.32) reflect the limitation of using idock
alone as scoring function. After re-training RF-Score on PDB-
bind v2012 refined set (N = 2,897) and adopting the maximum
RF-Score of the 9 docked conformations as predicted binding
affinity, the correlation was improved (Figure 3.12, Rp = 0.815,
Rs = 0.817, RMSE = 0.75, SD = 0.76). Moreover, since for
over 50% probability the docked conformation with the highest
predicted binding affinity indeed turned out to be the closest
to the crystal conformation (i.e. RMSD1 = RMSDmin), using
RF-Score to re-score the conformation with RMSD1 led to even
better prediction (Figure 3.13, Rp = 0.855, Rs = 0.859, RMSE

= 0.73, SD = 0.73).

3.5.3 Execution time results

Table 3.3 compares the CPU time and elapsed time in hours of
docking 3,000 clean ligands in 3 molecular weight sets against
12 diverse receptors by AutoDock Vina and idock. As expected,
the execution time varied considerably from protein to protein
and from molecular weight set to molecular weight set. Overall,
idock outperformed AutoDock Vina by at least 8.69 times and at
most 37.51 times, making idock particularly ideal for large-scale
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Figure 3.11: Scatter plot of the lowest idock score of the 9 docked conforma-
tions against the experimental binding affinity.
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Figure 3.12: Scatter plot of the highest RF-Score of the 9 docked conforma-
tions against the experimental binding affinity.
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Figure 3.13: Scatter plot of the RF-Score of the first docked conformation
against the experimental binding affinity.
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docking, as is the case of istar.

3.6 Discussion

Docking is a computational method that investigates how a lig-
and binds to a protein, and predicts their binding affinity. Hence
docking is useful in elaborating inter-molecular interactions and
enhancing the potency and selectivity of binding in subsequent
phases of the drug discovery process.

In this study, we report a web platform called istar to auto-
mate large-scale protein-ligand docking using our popular dock-
ing engine idock. Since the initial release of idock, we have been
further improving its docking speed and robustness. Compared
to AutoDock Vina, our idock features a new numerical model
in approximation of the scoring function, replacing slow linear
interpolation by fast table lookup. It encapsulates a unique fea-
ture that can safely deactivate certain torsions to reduce the di-
mension of variables. It also implements an efficient thread pool
to parallelize multiple components of the program and main-
tain a high CPU utilization. Results show that idock managed
to predict a conformation sufficiently close to that of the co-
crystallized ligand as the first conformation in over half of the
test cases across a number of diverse datasets, and it outper-
formed AutoDock Vina by an order of magnitude in terms of
docking efficiency at no significant cost of accuracy. It is worth-
while to highlight that in order to use istar, the input protein
model requires no manual preprocessing in most cases.
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Table 3.3: Execution time of AutoDock Vina and idock.

200-300g/mol 300-400g/mol 400-500g/mol
CPU Elapsed CPU Elapsed CPU Elapsed

1HCL human cyclin-dependent kinase 2
Vina 12.57 3.33 22.55 5.91 51.62 13.41
idock 0.63 0.16 0.92 0.24 1.38 0.36
1J1B human tau protein kinase I
Vina 9.07 2.47 14.69 3.92 32.28 8.49
idock 0.78 0.21 1.25 0.33 2.35 0.62
1LI4 human S-adenosylhomocysteine hydrolase
Vina 11.82 3.30 19.08 5.22 39.41 10.64
idock 0.89 0.23 1.55 0.40 3.15 0.82
1V9U human rhinovirus 2 coat protein VP1
Vina 9.80 2.95 15.55 4.62 29.75 8.49
idock 0.97 0.25 1.64 0.42 3.42 0.89
2IQH influenza A virus nucleoprotein NP
Vina 9.51 2.66 15.03 4.08 29.64 7.83
idock 0.92 0.24 1.59 0.41 3.41 0.88
2XSK Escherichia coli curli protein CsgC - SeCys
Vina 10.44 2.71 17.89 4.61 40.58 10.41
idock 0.71 0.19 1.16 0.30 2.16 0.56
2ZD1 HIV-1 reverse transcriptase
Vina 9.78 2.70 17.67 4.76 42.03 11.33
idock 0.97 0.25 1.52 0.39 2.60 0.69
2ZNL influenza virus RNA polymerase subunit PA
Vina 9.49 2.60 15.04 4.01 29.97 7.82
idock 0.89 0.23 1.56 0.40 3.41 0.87
3BGS human purine nucleoside phosphorylase
Vina 9.59 2.57 16.50 4.37 38.42 10.14
idock 0.95 0.25 1.55 0.40 2.81 0.74
3H0W human S-adenosylmethionine decarboxylase
Vina 9.85 2.64 17.67 4.70 41.69 11.04
idock 0.88 0.23 1.35 0.35 2.20 0.58
3IAR human adenosine deaminase
Vina 11.25 3.03 20.21 5.39 46.93 12.53
idock 0.80 0.21 1.21 0.32 2.01 0.53
3KFN HIV protease
Vina 10.53 2.80 18.37 4.83 42.43 11.03
idock 0.77 0.20 1.20 0.32 2.09 0.55
Average across the above 12 receptors
Vina 10.31 2.81 17.52 4.70 38.73 10.26
idock 0.85 0.22 1.38 0.36 2.58 0.67
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We examined two possible reasons that might cause idock
to fail in some test cases. They are the number of rotatable
bonds of the ligand and the number of metal ions in the binding
site. On one hand, a large number of rotatable bonds implies
a high dimension of variables to optimize. idock has a higher
chance to succeed when the ligand consists of fewer than 10
rotatable bonds. On the other hand, all kinds of metal ions are
treated as hydrogen bond donors in the idock scoring function,
which might not thoroughly account for their solvation effects
and other possible interactions. idock has a higher chance to
succeed when the binding site consists of no metal ions.

Although idock performs well in conformation prediction, it
displays weakness in binding affinity prediction. In contrast,
RF-Score, a new scoring function that circumvents the need for
problematic modelling assumptions via non-parametric machine
learning, has been recently shown to obtain the best scoring
performance among 16 classical scoring functions on PDBbind
v2007 core set (N = 195) [10]. We have therefore integrated
a revised version of RF-Score as an alternative re-scoring func-
tion. We have re-trained RF-Score on the entire PDBbind v2012
refined set (N = 2,897) for prospective prediction purpose. Re-
sults show that using RF-Score to re-score the predicted confor-
mations led to a much better prediction with Rp = 0.855, Rs

= 0.859, RMSE = 0.73, and SD = 0.73. We have successfully
demonstrated that RF-Score is a particularly effective re-scoring
function for docking purposes.

To compile a more complete list of scoring functions bench-
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marked on the PDBbind v2007 core set (N = 195) into Table
3.1, we have extracted the performance results for 19 scoring
functions from [10, 55, 148, 149], and reported the results for
AutoDock Vina and idock on the same test set in this study.
This procedure has a number of advantages. Evaluating all the
scoring functions on the same test set under the same conditions
guarantees a fair and objective comparison. Using a common
existing benchmark can also ensure the optimal application of
such functions by their authors and avoid the danger of con-
structing an in-house benchmark on which unrealistically high
performance might be produced. Moreover, future scoring func-
tions can be unambiguously incorporated into this comparative
assessment. Notably, the top four scoring functions, namely
RF-Score [10], ID-Score [55], SVR-Score [149] and X-Score [150],
are the only scoring functions whose training set do not overlap
with the PDBbind v2007 core set. The prediction power of RF-
Score is already superior to many scoring functions employed in
commercial docking software. In terms of implementation com-
plexity, a descriptor in RF-Score is just the occurrence count
of a particular protein-ligand atom type pair interacting within
a certain distance range, while a descriptor in ID-Score can be
as mathematically demanding as, for instance, calculating the
cosine value of the bond angle between a hydrogen bond donor
and a hydrogen bond acceptor. This again demonstrates the
adaptiveness of RF-Score to various applications.

One may argue that although the scoring functions are eval-
uated on the same test set, their training sets are not identi-
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cal. Besides, the PDBbind v2007 core set consists of merely
195 complexes, which might not cover sufficient protein-ligand
diversity from the perspective nowadays. To address this issue,
we re-trained RF-Score on the PDBbind v2007 refined set (N
= 1,300), on which AutoDock Vina and idock were also trained,
and we expanded the test set to the much larger PDBbind v2012
refined set (N = 2,897). Figure 3.4 clearly shows that all the
performance gain (Rp = 0.765, Rs = 0.755, RMSE = 1.26, SD
= 1.26 for RF-Score versus Rp = 0.451, Rs = 0.453, RMSE

= 1.75, SD = 1.75 for idock) is guaranteed to come from the
scoring function characteristics, ruling out any influence of using
different training sets on performance.

In computational biology, ten simple rules have been summa-
rized for providing a scientific web resource [151]. Software and
web sites do count for getting ahead as a computational biolo-
gist [152]. To design the istar platform in a user-friendly way, we
have utilized state-of-the-art web and database technologies. On
istar, there are over 23 million ready-to-dock ligands collected
from ZINC [27, 28]. These ligands come with supplier infor-
mation for easy purchasing, and they can be filtered by nine
molecular properties in a fine-grained manner. The number of
ligands to dock can be previewed in real time. The jobs are
transparently split into slices for parallel docking across multi-
ple workstations, and the job progress can be monitored in real
time in a browser so that users can have a rough estimation
of how long the job will take and when the job will complete.
Additionally, our web server supports REST API, by program-
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ming against which users can submit multiple jobs in batch.
Automation is the major reason of submitting jobs to istar in-
stead of running idock locally on one’s computer. With istar
at hand, users need not to write special scripts to fetch ligands
from some sources, to implement parallelism, or to invoke RF-
Score externally by themselves. Users can therefore concentrate
on the docking results and subsequent analysis rather than the
docking process itself.

We compare our istar to DOCK Blaster [127], an expert sys-
tem created to investigate the feasibility of full automation of
large-scale protein-ligand docking. It uses DOCK 3 [40] as the
docking engine and ZINC [27, 28] as the ligand repository. Al-
though DOCK is open source, DOCK Blaster itself is closed
source. istar is indeed much easier to use than DOCK Blaster.
Given the structure of a target protein, both istar and DOCK
Blaster can dock and score a large set of ligands against the tar-
get protein and provide a ranked list which users may review and
prioritize for purchasing and wet-lab testing. From the perspec-
tive of binding site indication, istar automatically detects a site
from the co-crystallized ligand, while DOCK Blaster uses Pock-
etPickker (CLIPPERS) [128]. From the perspective of ligand
selection, istar features ligand filtering by nine desired molec-
ular properties in a fine-grained fashion, while DOCK Blaster
predefines several subsets either by property, by vendor, or by
user. From the perspective of documentation and user manual,
the istar website presents a series of graphical tutorials on how to
submit a new job and other related issues, while DOCK Blaster



CHAPTER 3. ISTAR: SOFTWARE AS A SERVICE 102

deploys a wiki with very rich contents covering all the relevant
procedures. As extra features, DOCK Blaster allows the input
of known active and inactive binders as heuristic information for
docking. In summary, although istar and DOCK Blaster share
the identical motivation of automating large-scale protein-ligand
docking, their internal implementations and methodologies dif-
fer greatly. Users are encouraged to utilize both istar and DOCK
Blaster as well as other docking servers to reach a consensus of
promising candidate ligands.

According to Google Analytics, throughout 2014, istar had
served 460 sessions, 271 users, and 631 pageviews from 33 coun-
tries on 6 continents, except Antarctica merely. According to
our internal statistics, from October 2013 to October 2014, there
had been 635 job submissions with 46,581,105 ligands docked.
These jobs came from 126 email addresses, 64 of which were
associated with multiple jobs while the other 62 were associ-
ated with one single job. In the future, we may ask users to fill
in some forms of questionaire in order to systematically collect
comments and feedback, as well as their successful drug discov-
ery endeavors using istar.

Due to limited budget, we cannot offer as much hardware re-
source as DOCK Blaster (i.e. 700 CPU cores plus 20TB RAID-6
storage). However, we emphasize full reproducibility [6] and we
have released istar under a permissive open source license so
that anyone who possesses sufficient hardware resource is wel-
come to deploy a copy of istar to his/her own infrastructure with
no charge. On a related issue, we can draw on the experience of
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QMachine [153], an open-sourced, publicly available web service
that acts as a messaging system for posting tasks and retrieving
results over HTTP in a PaaS (Platform as a Service) manner.
It aggregates commodity hardware and volunteer compute cy-
cles to enable commodity supercomputing in web browsers. Few
server resources are required because all analytical and data re-
trieval tasks are executed by volunteer machines.

3.7 Conclusions

In this study we have reported istar [9], our SaaS platform for
bioinformatics and chemoinformatics applications, with idock [7]
being a particular instance of large-scale online protein-ligand
docking. We believe the huge body of existing AutoDock users
can easily transit to the idock service on istar, which we believe
constitutes a step toward generalizing the use of docking tools
beyond the traditional molecular modeling community.

As a versatile web platform, istar also aggregates our other
software and provides them as services. These include a prag-
matic implementation of USR (Ultrafast Shape Recognition)
[19] and USRCAT (USR with Credo Atom Types) [20] for prospec-
tive ligand-based virtual screening, iview [11] for interactive We-
bGL visualization of protein-ligand complex, igrep [135] for ap-
proximate DNA/RNA sequence matching, and icuda as an in-
troductory seminar series about CUDA programming. We en-
courage our colleagues to host their software as services on istar
so that more users can benefit.
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3.8 Availability

istar is free and open source under Apache License 2.0. Its source
code is available at https://github.com/HongjianLi/istar. Our
deployment of istar is running at http://istar.cse.cuhk.edu.hk/.

3.9 Acknowledgements

We thank Professor John J. Irwin for granting us permission to
use ZINC [27, 28] with three conditions:

1. We shall provide links to http://zinc.docking.org/substance/zincid
for top hits so that users can seek for the most current pur-
chasing information at ZINC’s official website.

2. We shall limit the number of top hits for download to 1000
ligands from a single job.

3. We shall update our ligands when ZINC data is updated so
that users can benefit from the most current ligand data.

3.10 Future works

idock has been evaluated from the perspectives of rescoring, re-
docking, and execution time, but it has not been evaluated from
the perspective of enrichment, which requires the active ligands
be ranked high in a set of decoys. In this case BEDROC [37]
and SLR [38] could be used as performance measures for the
“early recognition” problem.
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2 End of chapter.



Chapter 4

iview: molecular visualization

Visualization of protein-ligand complex plays an important role
in elaborating protein-ligand interactions and aiding novel drug
design. Most existing web visualizers either rely on slow soft-
ware rendering, or lack the support of macromolecular surface
construction. The useful feature of virtual reality is also un-
available.

We have developed iview, an easy-to-use interactive WebGL
visualizer for protein-ligand complex. It exploits hardware accel-
eration rather than software rendering, and supports four sur-
face representations including Van der Waals surface, solvent
excluded surface, solvent accessible surface and molecular sur-
face. It features four special effects in virtual reality settings,
namely anaglyph, parallax barrier, oculus rift and stereo, lead-
ing to visually appealing identification of intermolecular interac-
tions. Moreover, based on the feature-complete version of iview,
we have also developed a concise and tailor-made version specif-
ically for our idock@istar to aid online protein-ligand docking

106
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service. This demonstrates the excellent portability of iview.
Using innovative 3D techniques, we provide a user friendly

visualizer that is not intended to compete with professional vi-
sualizers, but to permit easy accessibility and platform inde-
pendence. To the best of our knowledge, iview is the only web
visualizer that utilizes GPU hardware acceleration and supports
three unique features: protein surface construction, virtual re-
ality effects, and PDBQT format input. iview is freely available
at http://istar.cse.cuhk.edu.hk/iview.

This was a collaborative project with Takanori Nakane from
Graduate School of Medicine, Kyoto University, Japan. It was
published in BMC Bioinformatics on 25 February 2014 [11]. No-
tably, this article has been tagged “Highly accessed” by the
journal, indicating that it may be of broad interest in the com-
munity.

4.1 Background

Protein-ligand visualization serves an important role in elabo-
rating intermolecular interactions and aiding novel drug design.
To date, dozens of visualization tools already exist. VMD [31],
PyMOL (http://www.pymol.org) and Chimera [30] are quite
well-known and highly cited. They can interpret multiple file
formats, generate multiple representations, and provide precise
control. BINANA [154] characterizes ligand-binding and out-
puts a state file compatible for display in VMD [31]. AutoDock-
Tools4 [32] provides native support for the PDBQT file format,
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which is widely used in various protein-ligand docking software
such as AutoDock [32], AutoDock Vina [8], QuickVina [41] and
our idock [7]. We also developed our own tool [155] to visualize
structures in virtual reality settings and employ fragment-based
de novo ligand design strategy for use in interactive drug de-
sign. PoseView [34] and LigPlot+ [35], on the other hand, plot
2D diagrams of protein-ligand interactions from 3D coordinates.

In addition to the above standalone visualizers, there are
web-based visualizers using either Java applet, Adobe Flash, or
HTML5 canvas. Jmol (http://www.jmol.org), an open source
Java viewer for chemical structures in 3D, has been deployed
worldwide and recognized as the de facto molecular viewer on
the web. GIANT [156], a Jmol derivative, supports analyzing
protein-ligand interactions on the basis of patterns of atomic
contacts obtained from the statistical analyses of 3D structures.
Unfortunately, Java is being disabled on more and more sys-
tems due to security concerns. Hence Java-free visualizers are
highly desired. JSmol [157], a JavaScript-only version of Jmol,
includes the full implementation of the entire set of Jmol func-
tionalities. Although Jmol and JSmol support a large set of
advanced features such as scripting, they rely on software ren-
dering which is slow on large display areas and thus prevents
detailed inspection of the structure. In contrast, WebGL visu-
alizers benefit from GPU hardware acceleration. For instance,
ChemDoodle Web Components (http://web.chemdoodle.com),
a pure JavaScript chemical graphics and cheminformatics li-
brary, presents 2D and 3D graphics and animations for chem-
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ical structures, reactions and spectra, but it lacks protein sur-
face construction. GLmol (http://webglmol.sourceforge.jp), a
molecular viewer on WebGL/JavaScript using the three.js li-
brary, supports multiple file formats and representations, and
features an experimental version of surface construction based
on the EDTSurf algorithm [158, 159], an experimental version
of atomic labeling and click-to-identifying, and an experimen-
tal version of electron density map visualization by isomesh or
volume rendering. Another WebGL technology [160] also sup-
ports rendering molecular surface using the SpiderGL library
[161]. However, none of these WebGL visualizers except JSmol
support virtual reality effects.

4.2 Motivation

Surface representation is a convenient way to visualize protein-
ligand interactions. Nevertheless, macromolecular surface calcu-
lation is computationally and memory intensive. Furthermore,
the calculated mesh is fairly complex, often exceeding 500,000
polygons. Therefore its implementation in JavaScript/WebGL
has been considered very difficult. Most existing web visualiz-
ers either rely on slow software rendering, or lack virtual real-
ity support. Moreover, the important feature of protein surface
construction is usually unavailable, and the support for PDBQT
format is not implemented. To address the above obstacles, we
developed iview, an interactive WebGL visualizer of protein-
ligand complex.
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4.3 Objective

We aimed at designing iview as a convenient approach to visu-
alize protein-ligand complex directly on the web. In iview, in
addition to conventional visualization functionalities, we imple-
mented macromolecular surface representations as well as spe-
cial effects in virtual reality settings. Furthermore, we designed
iview to be flexible enough so that it could be easily modified to
adapt to different applications. As an application example, we
refactored the feature-rich version of iview and derived a tailor-
made version specifically for visualizing idock@istar input data
and output results of user-submitted jobs.

4.4 Methods

iview is refactored from GLmol 0.47 and uses three.js as its pri-
mary 3D engine with anti-aliasing support. It is based on We-
bGL canvas and can be easily integrated into existing HTML5
web pages to display molecular models without requiring Java
or browser plugins. It loads a protein-ligand structure from the
PDB (Protein Data Bank) [162] as its data source via a REST-
ful interface. It renders four standard representations of primary
structure, namely line, stick, ball & stick and sphere, and five
standard representations of secondary structure, namely ribbon,
strand, cylinder & plate, C alpha trace and B factor tube. It col-
ors the structure by either atom spectrum, protein chain, protein
secondary structure, B factor, residue name, residue polarity, or
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atom type, by setting the vertex colors of the geometry object of
the corresponding representation. It supports user interactions
including rotation, translation, zooming and slab with mouse or
hand touch manipulation. It provides both perspective and or-
thographic cameras, and anaglyph, parallax barrier, oculus rift
and stereo effects from three.js examples for use in a virtual re-
ality environment. It supports exporting the WebGL canvas to
PNG (Portable Network Graphic) which can be subsequently
embedded in a document.

We ported EDTSurf [158, 159], a fast algorithm to generat-
ing triangulated macromolecular surfaces by Euclidean distance
transform, to JavaScript and integrated it into iview to construct
and render in real time four representations of protein surface,
namely Van der Waals surface, solvent excluded surface, solvent
accessible surface and molecular surface, with opacity and wire-
frame adjustable by users. Note that molecular surface is in
fact solvent excluded surface, but EDTSurf uses different ways
to derive them. So we provide them both as two different surface
representations in iview. Although the JavaScript implementa-
tion of the EDTSurf algorithm typically consumes a few seconds
and 500MB to 700MB memory for computation, it is sufficiently
efficient for practical applications. To limit CPU and memory
usage, the calculation grid size is restricted to 180 x 180 x 180.

4.5 Results

Table 4.1 lists the full features of iview.
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Table 4.1: iview features.

Category Features
File format input PDB

PDBQT
Camera perspective

orthographic
Background black

grey
white

Structure coloring atom spectrum
protein chain
protein secondary structure
B factor
residue name
residue polarity
atom type

Primary structure line
stick
ball & stick
sphere
dot

Secondary structure ribbon
strand
cylinder & plate
C alpha trace
B factor tube

Protein surface Van der Waals surface
solvent excluded surface
solvent accessible surface
molecular surface

Proteins surface opacity 1.0, 0.9, 0.8, 0.7, 0.6, 0.5
Protein surface wireframe yes, no
Atom and residue labeling yes, no
Virtual reality effect anaglyph

parallax barrier
oculus rift
stereo

Canvas manipulation mouse
hand touch

Manipulation mode rotation
translation
zooming
slab

Canvas export png
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We use as an example CCR5 chemokine receptor-HIV entry
inhibitor maraviroc complex (PDB: 4MBS) [163]. Figures in this
section are reproducable at http://istar.cse.cuhk.edu.hk/iview/?4MBS.

Figure 4.1 shows the complex in six common coloring schemes,
with the protein secondary structure shown in ribbon represen-
tation. When the protein is colored by chain, users can clearly
see that the protein is a dimer consisting of two polypeptides.
When the protein is colored by secondary structure, users can
clearly see which segments are alpha helices and which segments
are beta sheets. When the protein is colored by B factor, which
is also known as temperature facto used to describe the displace-
ment of the atomic positions from an average value, users can
clearly see the amino acids in warm colors are flexible.

Figure 4.2 shows the protein secondary structure in four other
representations besides ribbon, under the coloring scheme by
secondary structure. In the representation of cylinder and plate,
alpha helices are rendered as cylinders and beta sheets are ren-
dered as plates. In the representation of C alpha trace, the
alpha carbon atoms of consecutive amino acids are connected
by lines. In the representation of B factor tube, the B factor
value is reflected by the thickness of the tube.

Figure 4.3 shows the protein surface in four common rep-
resentations colored by atom types, with opacity set to 1.0,
i.e. zero transparency. These surfaces were constructed by our
JavaScript implementation of the EDTSurf algorithm [158, 159].
Note that molecular surface is equivalently the solvent excluded
surface, but EDTSurf uses different ways to derive them. It can
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(a) By spectrum. (b) By chain.

(c) By secondary structure. (d) By B factor.

(e) By residue. (f) By atom.

Figure 4.1: Coloring schemes.
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(a) Strand. (b) Cylinder & plate.

(c) C alpha trace. (d) B factor tube.

Figure 4.2: Secondary structure representations.

be clearly seen that the asymmetric unit is composed of two
complexes, and the protein forms a deep allosteric cavity where
the ligand is buried.

Figure 4.4 shows the protein in molecular surface represen-
tation in different degrees of opacity, with protein atoms also
shown in line representation. When the surface is rendered with
transparency to some extent, users can simultaneously inspect
the surface and the surrounding amino acids at atomic level.

Figure 4.5 illustrates the four effects in a virtual reality en-
vironment. The anaglyph effect encodes each eye’s image using
filters of chromatically opposite colors to achieve stereoscopic 3D
effect. When users wear a spectacle with special filters on both
sides, each of the two differently filtered colored images reaches
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(a) Van der Waals surface. (b) Solvent excluded surface.

(c) Solvent accessible surface. (d) Molecular surface.

Figure 4.3: Protein surface representations.

(a) 0.9 (b) 0.8

(c) 0.7 (d) 0.6

Figure 4.4: Protein surface opacity.
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one eye, revealing an integrated stereoscopic image. The dispar-
ity between two superimposed molecules creates a perception of
depth, leading to visually more appealing identification of inter-
molecular interactions.

A parallax barrier is a device placed in front of a LCD (Liquid
Crystal Display) to permit a stereoscopic or multiscopic image
without 3D glasses. The device is composed of a layer of material
with precision slits, enabling each eye to see a different set of
pixels and thus creating a sense of depth through parallax.

The cculus rift is a virtual reality head-mounted device, which
features a high-speed inertial measurement unit and a LCD dis-
play, visible via dual lenses positioned over the eyes to provide
a 90 degrees horizontal and 110 degrees vertical stereoscopic 3D
perspective.

4.6 Application

We emphasize portability and usability, and illustrate that iview
can be easily modified to suit one’s particular application, given
that iview is free and open source under a permissive license.
We take protein-ligand docking as an example. Based on the
feature-rich version of iview, our tailor-made version specifi-
cally for idock@istar cleans up many dispensable functions, en-
abling a very neat interface. It only retains the rendering of
primary structure of protein and ligand, and the construction
of protein surface. Most importantly, it implements new fea-
tures especially for protein-ligand docking purpose. Figure 4.6
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(a) Anaglyph (b) Parallax barrier

(c) Oculus Rift (d) Stereo

Figure 4.5: Virtual reality effects.

shows this application-specific version and can be reproduced at
http://istar.cse.cuhk.edu.hk/idock/iview/?525a0abab0717fe31a000001.

In the input phase of a docking job, it merely requires a
PDB file, which can be obtained either from the PDB database
[162] or via homology modeling, and then constructs the protein
surface asynchronously in a separate web worker to keep the web
page responsive. It automatically detects a binding site from the
largest co-crystallized ligand first by finding the smallest cubic
box that covers the entire ligand and then by extending the box
by 50% in all the three dimensions in order to reserve space
for conformational sampling. In case of non-existence of co-
crystallized ligand, the binding site is defaulted to the geometric
center of the protein. The binding site is visually depicted in
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the form of a cubic box whose center and size can be manually
adjusted by users in real time.

In the output phase of a docking job, it displays the user-
supplied cubic box for users to confirm that the predicted lig-
and conformations do fall inside the desired binding site. Other
than PDB format, its parsers are capable of parsing a protein
and multiple top hit ligands in PDBQT format used by idock.
It displays the top hit ligand IDs in a horizontally scrollable
row and provides a straightforward way to switch ligands easily
through a button group. It has built-in support for putative
intermolecular hydrogen bond detection by finding hydrogen
bond donors and acceptors from protein and ligand and set-
ting the distance threshold to 3.5Å. It automatically annotates
important atoms, like those involving in intermolecular hydro-
gen bonds, by placing labels next to the corresponding atoms in
the canvas. It lists the docking result files, predicted free energy
and binding affinity values, molecular properties, SMILES rep-
resentation, compound suppliers and annotations, and putative
hydrogen bond positions and their lengths, in order to give users
a quick overview of the top hit ligands and assist them in mak-
ing decisions of which compounds to purchase for subsequent
wet-lab experiments.

4.7 Discussion

We developed iview with the purpose to simplify and promote
the use of idock@istar. At first we tried ChemDoodle Web Com-
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Figure 4.6: Tailor-made version of iview specifically for visualizing
idock@istar results of user-submitted jobs.



CHAPTER 4. IVIEW: MOLECULAR VISUALIZATION 121

ponents, but it had strong dependency on its server side compo-
nents, whose source code we had no access to. Later we turned
to GLmol, although which has been discontinued since 29 Au-
gust 2012, was quite an exciting project because it gracefully
built its geometric modeling and relevant functions on top of
the three.js foundation, and thus greatly reduced the program-
ming difficulty.

Based on GLmol, iview has fixed many bugs and meanwhile
introduced new features. Their differences are as follows. iview
supports four virtual reality effects, which GLmol lacks. iview
allows users to choose a surface opacity between 1.0 and 0.5 so
that users can inspect both protein surface and internal struc-
tures at the same time. iview can parse alternate atoms and re-
construct their covalent bonds, but GLmol simply ignores them.
iview can identify metal ions and highlight their bonds by dashed
lines. GLmol does not distinguish metal ions and displays their
bonds by ordinary lines. iview supports as many as 100 atom
types, from H to Fm, i.e. the first 100 atoms in the periodic
table. GLmol can only recognize about 16 common atoms.

Furthermore, the tailor-made version specifically for protein-
ligand docking also supports the following features: parsing of
the PDBQT file format, which is widely used in the most cited
AutoDock series and our idock software; automatic protein bind-
ing site detection using the position and molecular size of the
co-crystallized ligand; automatic detection and display of in-
termolecular hydrogen bonds; automatic annotation of impor-
tant atoms, such as those involving in intermolecular hydro-
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gen bonds; asynchronous generation of protein surface by a web
worker, making the web page responsive; result file gzip decom-
pression by the zlib.js library; and fast toggling among different
representations via in-memory caching.

It is worthwhile to highlight that iview performs all parsing
and rendering in the client browser, with no dependency on the
server side at all, thus ensuring the data privacy is maintained.
This is unlike ChemDoodle Web Components, some of whose
functions send data to a dedicated server for processing and
wait for retrieval of results.

4.8 Conclusions

We have designed and developed iview to be a simple and straight-
forward way to visualize protein-ligand complex. It enables non-
experts to quickly elucidate protein-ligand interactions in a 3D
manner. Furthermore, iview is free and open source, and can
be easily integrated into any bioinformatics application that re-
quires interactive protein-ligand visualization. As far as we are
aware, iview is the unique web visualizer that simultaneously uti-
lizes GPU hardware acceleration and supports three pragmatic
features: macromolecular surface construction, virtual reality
effects, and PDBQT format parsing.
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4.9 Availability

iview is free and open source under Apache License 2.0. It
is written in JavaScript, HTML5 and CSS3, and available at
http://istar.cse.cuhk.edu.hk/iview. It is independent of oper-
ating systems but requires a browser and a graphics card with
WebGL capability. It has been successfully tested in Chrome
30, Firefox 25, Safari 6.1 and Opera 17. Support for IE 11 is
experimental because gl_FrontFacing is unsupported in IE 11.
Refer to http://caniuse.com/webgl for compatibility of WebGL
support in desktop and mobile browsers.

4.10 Future works

Both BINANA [154] and GIANT [156] can characterize protein-
ligand interaction patterns. BINANA, for instance, identifies
key binding characteristics like hydrophobic contacts, hydrogen
bonds, salt bridges, and pi interactions. Integrating these algo-
rithms will make iview even more pragmatic.

2 End of chapter.



Chapter 5

iSyn: fragment-based drug
design

Generating de novo ligands from molecular fragments can elimi-
nate the diversity limit of compound repositories and lead to the
discovery of novel drugs. State-of-the-art fragment-based drug
design (FBDD) tools tend to produce oversized compounds with
only moderate potency. Worse, these tools require a long exe-
cution time in days.

We present iSyn, a WebGL-based tool for interactive FBDD.
It features an evolutionary algorithm that automatically designs
novel ligands with drug-like properties and synthetic feasibility
using click chemistry. iSyn interfaces with our popular and fast
molecular docking engine idock, substantially reducing the eval-
uation and ranking time of drug candidates. Inspired by our
user friendly and high-performance WebGL visualizer iview, our
iSyn also implements a tailor-made interactive visualizer to aid
novel drug design. To illustrate the utility of iSyn in generating
novel ligands ex nihilo, we designed predicted inhibitors of two

124
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important drug targets, which are RNA editing ligase 1 (REL1)
from Trypanosoma brucei, the etiological agent of African sleep-
ing sickness, and cyclin-dependent kinase 2 (CDK2), a positive
regulator of eukaryotic cell cycle progression. Results show that
iSyn managed to significantly enhance the predicted binding
affinity of the best generated ligand by more than 3 orders of
magnitude in potency.

iSyn can effectively generate promising compounds with de-
sired potency and molecular mass, and hopefully supplement
the efforts of medicinal chemists. iSyn is freely available at
http://istar.cse.cuhk.edu.hk/iSyn.tgz.

This was a collaborative project with Chun Ho Chan and Hei
Lun Cheung from Department of Computer Science and Engi-
neering, Chinese University of Hong Kong. It was published in
Proceedings of the 2014 Conference Companion on Genetic and
Evolutionary Computation Companion (GECCO) on 12 July
2014 [12] and in Proceedings of the 18th International Confer-
ence on Information Visualisation (IV) on 15 July 2014 [13].

5.1 Background

Given a pharmacological protein of therapeutic interest, protein-
ligand docking tries to discover promising ligands out of existing
compound databases. The diversity of its outcome is apparently
limited by the diversity of the database. In other words, docking
is likely to fail if the selected database contains no promising
ligands for that particular protein. Hence constructing de novo
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ligands from molecular fragments has now become a hot research
topic.

FBDD, though displaying a high chance of discovering novel
drugs, is indeed rather challenging because the number of chem-
ically feasible, drug-like molecules has been estimated to be in
the order of 1060 to 10100 [164], from which the most promising
candidates have to be selected and synthesized. Hence, rather
than systematic construction and evaluation of each individual
compound, in silico FBDD methods rely on the principle of lo-
cal optimization, which guarantees fast convergence but does
not necessarily lead to globally optimal solutions. As a result,
most FBDD algorithms are non-deterministic, and feature some
extent of stochastic structural optimization.

Recent years have seen a prosperity of FBDD tools, such
as LEA3D [130], MORPH [165], GARLig [166], LigBuilder 2
[167], AutoT&T [168], LiGen [48, 169], AutoGrow [170, 171],
AutoClickChem [172], CrystalDock [173], LigMerge [174], and
the works by Foscato et al. [175, 176], by Shang et al. [177],
and by Kawai et al. [178]. More can be found in recent re-
views [179, 180]. Meanwhile, FBDD databases have been estab-
lished, such as e-Drug3D [181]. Retrospectively, a number of
compounds that evolved from fragments have entered the clinic,
and the approach is increasingly accepted as an additional route
to identifying new ligands in inhibitor design [182–186]. No-
tably, FBDD applications have contributed to the development
of a number of FDA-approved drugs [182], demonstrating their
usefulness in real life.
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In 2009, the AutoGrow algorithm [170] was developed to aid
the identification and optimization of predicted ligands in an
automatic manner. Although it lacks the insight and intuition
which medicinal chemists have, its high degree of automation
requires no user interactions beyond the initial setup of fragment
libraries and docking parameters. AutoGrow utilizes a genetic
algorithm in conjunction with the AutoDock series software [8,
32] to add or exchange moieties of known inhibitors so as to
improve their predicted binding affinities. AutoGrow 1.0 and
2.0 use AutoDock4 [32] and AutoDock Vina [8], respectively, for
protein-ligand docking and scoring.

In 2011, we were motivated by the desire to design drug can-
didates in an interactive way under a virtual reality setting,
and thus developed a GUI application [155] that enables certain
human interactions by translating and rotating the generated
ligand amid the evolutionary process in a semi-automatic man-
ner. Particularly, in a virtual reality environment when users
wear a spectacle with special filters on both sides, the dispar-
ity between two superimposed molecules creates a perception
of depth, leading to visually more appealing identification of
intermolecular interactions.

In 2013, AutoGrow 3.0 [171] was developed to mainly tackle
the synthetic feasibility problem since AutoGrow 1.0 and 2.0
often produce compounds that are neither drug-like nor easily
synthesizable. To guide ligand optimization, AutoGrow 3.0 uses
the rules of click chemistry, which describes chemistry tailored to
generate substances quickly and reliably by joining small units
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together. A click chemistry reaction would typically be modular
and give high chemical yields, and its process would preferably
have simple reaction conditions and use readily available start-
ing materials and reagents. To achieve this goal, AutoGrow 3.0
interfaces with AutoClickChem [172] and LigMerge [174], with
the former performing virtual modification and joining reactions
and the latter performing crossover reactions. AutoClickChem
[172] is capable of performing in silico click chemistry reactions,
ensuring that chemical synthesis is fast, cheap, and compara-
tively easy for subsequent testing in biochemical assays. Lig-
Merge [174] is an automated, ligand-based algorithm for sys-
tematically swapping the chemical moieties of known ligands
to generate novel ligands with potentially improved potency.
It has been shown to identify compounds predicted to inhibit
peroxisome proliferator-activated receptor gamma, HIV reverse
transcriptase, and dihydrofolate reductase with affinities higher
than those of known ligands.

5.2 Motivation

Although AutoGrow 3.0 represents the state of the art of FBDD,
there are some weak points. AutoGrow 3.0 supports few cutting
reactions, which could probably lead to the synthesis of com-
pounds that are too large to absorb by human body. Despite
Lipinski’s Rule of Fives [83] implemented therein to maintain
drug-like properties, generated ligands that violate the rules are
simply discarded without further decomposition into small moi-
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eties. Moreover, it produces a bunch of new ligands in each gen-
eration, and relies on AutoDock Vina [8] to evaluate their pre-
dicted binding affinity. The docking efficiency starts to become
unacceptable when too many ligands are sampled, prohibiting
any more exhaustive approaches. Furthermore, the execution
of AutoGrow 3.0 depends on a large set of third-party software
including MGLTools [32], Open Babel [187], AutoDock Vina [8]
and NumPy/SciPy. This highly coupled dependency and the
lack of an easy-to-use user interface hinder its pragmatic appli-
cations for novices.

5.3 Objective

We present iSyn, our WebGL-based solution for computation-
ally synthesizing de novo drug compounds with click chemistry
support plus additional cutting reactions. iSyn interfaces with
our popular and fast protein-ligand docking engine idock [7],
greatly reducing the time required for computational evalua-
tions of generated ligands by an order of magnitude [9] as com-
pared to AutoDock Vina [8], and thus permitting large-scale
executions and exhaustive searching. Most importantly, based
on our hardware accelerated WebGL visualizer iview [11] for
protein-ligand complex, our iSyn also features a specific vari-
ant of iview in order to compose a user friendly interface as
well as to inspect intermolecular interactions and aid novel drug
design. As for other enhancements, iSyn utilizes the ultrafast
shape recognition (USR) algorithm [19] to deduplicate ligands,
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and RF-Score-v3 [16, 17] to predict accurate binding affinity of
generated ligands.

5.4 Methods

Figure 5.1 shows the overall user interface of iSyn. The UI is
refactored from Twitter’s sleek, intuitive and powerful HTML5
template Bootstrap, and hosted by the lightweight event-driven
and non-blocking I/O model node.js. The UI comprises, from
top to bottom, a logo, a protein input field, a WebGL canvas,
some parameter input fields, a summary panel, some usage in-
structions, and an export button.

In a typical workflow, the user loads a protein target of phar-
maceutical interest. The WebGL canvas then automatically ren-
ders in real time the protein structure in the representation of
lines. Meanwhile, the protein atom coordinates and types are
sent to a separate web worker to generate ad hoc molecular sur-
face using the EDTSurf algorithm [158, 159] in background in
order to keep the web UI responsive in all time. The protein sur-
face, having been constructed, is automatically applied on top
of the line representation. Hence, the user can clearly see the
cavities, most likely ligand binding sites, on the protein surface.

The user can then supply the necessary parameters to run
iSyn, such as the center and size of the search space, the number
of generations of the evolutionary algorithm, a boolean value
indicating whether to use the fragment library that accompanies
AutoGrow 3.0, and a brief description of the job. The search
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Figure 5.1: iSyn user interface.
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space is rendered as a dashed cubic box in green. When the user
adjusts the values in the input fields, the box is automatically
updates accordingly in real time to reflect the actual position.
For those optional parameters, we have set up default values so
that even novices can get started easily.

Upon clicking the submit button by the user, both the protein
structure and the parameters are passed to the backend iSyn ex-
ecutable, immediately commencing the computational synthesis
of novel ligands from some initial ligands and the fragments from
the fragment library in an exhaustive manner in order to ex-
plore as much structural diversity as possible. The fragment li-
brary contains acid anhydride, acyl halide, alcohol, thiol, alkene,
alkyne, amine, azide, carbonochloridate, carboxylate, epoxide,
ester, halide, isocyanate, isothiocyanate, sulfonylazide, and thio
acid moieties, and is collected by performing substructure search
of the compounds in the ZINC database [27, 28].

Whenever a population of ligands are generated according
to click chemistry reactions, docked against the protein within
the binding site, and written to files, the best ligand with the
lowest predicted free energy is automatically fetched by the UI
in an AJAX fashion using jQuery, a fast, small, yet feature-rich
JavaScript library, and visualized in the representation of sticks.
Intermolecular putative hydrogen bonds are detected using a
cutoff of 3.5Å and rendered as cyan dotted lines.

In the panel beneath the submit button, a number of buttons
are dynamically created. Each button represents one conforma-
tion of the best ligands in the current generation. In addition,
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the ligand properties and docking statistics are shown in the
summary panel, which is also dynamically updated when a new
generation is completed or when the user switches among differ-
ent ligands by clicking the corresponding button. Having all the
relevant information inside one web page, the user can better
examine the results in a neat and intact way.

The UI also supports exporting the canvas view to a production-
quality image in PNG format via a button. In this way the user
can easily capture the canvas without any auxiliary third-party
tools.

5.4.1 Evolutionary algorithm

In the first generation, multiple types of click chemistry reac-
tions and structural modifications are applied to the initial lig-
ands selected from the fragment library to synthesize new lig-
ands, where possible duplicates are detected and removed us-
ing the USR (Ultrafast Shape Recognition) algorithm [19]. The
generated ligands are then all fed to our popular and fast dock-
ing engine idock [7] to predict their preferred conformations as
bound to the protein target, and to prioritize them in the as-
cending order of their predicted free energy, which reflects the
binding affinity. The lower the free energy, the higher the bind-
ing affinity. Their conversion factor is derived in [9]. An ex-
tensive benchmark on 12 diverse proteins [9] has shown that our
idock [7] runs 8.69 to 37.51 times faster than the state-of-the-art
AutoDock Vina [8] docking software. The utilization of idock by
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iSyn promotes the feasibility of large-scale de novo drug design
and evaluation in silico.

The free energy values predicted and sorted by idock are
piped to a spreadsheet file in CSV format, which is subsequently
parsed by iSyn to retrieve those best ligands with the lowest pre-
dicted free energy, i.e. those ligands with the highest predicted
binding affinity. To increase the binding affinity prediction accu-
racy, iSyn provides an alternative option to rescore the docked
conformations using our RF-Score-v3 [16, 17]. Then the best
ligands in the current generation directly survive into the next
generation, and constitute part of the founding ligands. Another
part comes from a random selection of the remaining ligands,
with the selection probability being proportional to the fitness
of a ligand, i.e. its predicted free energy in the case of docking.
Our hybrid method, which is essentially a smart combination of
the greedy algorithm and the fitness proportionate algorithm,
realizes elitism on one hand, while circumvents the risk of over
fitting on the other hand.

The evolutionary algorithm either iterates for a number of
generations specified by the user, or gets terminated in case of
no significant improvement over previous generations.

5.4.2 Click chemistry reaction rules

In iSyn there are four types of operators: addition, mutation,
crossover and cutting. They all conform to the requirements
of click chemistry. Therefore, the ligands output from iSyn are
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guaranteed to be chemically synthesizable, making iSyn really
pragmatic for medicinal chemistry and computer-aided drug dis-
covery.

The crossover operators are invoked before the addition and
mutation operators, while the cutting operators are called at
last in order to prevent the generated ligands from becoming
oversized.

Crossover reactions

iSyn uses the LigMerge algorithm [174] to perform crossover
reactions. Crossover is done by finding the largest common sub-
structure of two parent ligands and matching the different parts
of their fragments attached to that common substructure at each
common atom, thereby generating multiple child compounds.

Addition and mutation reactions

iSyn uses the AutoClickChem algorithm [172] to perform addi-
tion and mutation reactions. The algorithm consists of 30 click
chemistry reactions for different functional groups in the reac-
tants, e.g. azide-alkyne and 1,3-dipolar cycloaddition. In order
to enumerate the feasibility of performing a particular reaction,
ligands are first classified according to their functional groups
such as amine, alcohol, azide, etc.

Cutting reactions

Through the addition and mutation operators, ligands could
possibly “grow”too large in terms of molecular size, and might
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Figure 5.2: Ozonolysis of alkene.

therefore lose drug-like properties. For example, if a generated
ligand has a molecular mass of over 500 Daltons, it is unlikely
to be absorbed inside the human body and thus unlikely to
be optimized into a potential drug. In light of this issue, we
have implemented four novel cutting operators to break down
oversized ligands.

Ozonolysis is the cleavage of an alkene with ozone to form
organic compounds where the carbon-carbon double bond is re-
placed by a double bond to oxygen (Figure 5.2). The alkene
functional group is oxidized with ozone to form aldehydes or ke-
tones, depending on the structure of the ligand under a certain
chemical environment. Through this reaction, a ligand contain-
ing a carbon-carbon double bond can be broken down into two
child ligands.

Vigorous oxidation on alkene can form carbolic acid (Figure
5.3). While oxidation of alkene gives out aldehydes or ketone,
further oxidation gives out carboxylic acid and alcohol as prod-
ucts. Aldehyde can be easily oxidized by all sorts of oxidiz-
ing agents. As for ketone, although it has certain resistance to
oxidation, it can also be oxidized to carboxylic acid by using
strong oxidizing agents such as potassium manganite VII solu-
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Figure 5.3: Oxidation of alkene to carboxylic acid.

Figure 5.4: Acid anhydride to carboxylic acid.

tion. Through this reaction, a ligand containing carbon-carbon
double bonds can be broken down into four child ligands.

Acid anhydrides can react with water to form carboxylic acid
(Figure 5.4). An acid anhydride has two acyl groups bound to
the same oxygen atom. The two acyl groups are derived from
the same carboxylic acid. In reverse, the acid anhydride can
be broken down into two original carboxylic acids by reacting
with water. Through this reaction, a ligand containing two acyl
groups bound to the same oxygen atom can be broken down into
two child ligands.

Hydrolysis of ester is the reverse of esterification (Figure 5.5),
which is a reversible reaction. The reaction is catalyzed by di-
luted acid, such as diluted hydrochloric acid, and is heated under
reflux. As the reaction is reversible, excessive water has to be
used. Under such condition, carboxylic acid and alcohol are pro-
duced. Through this reaction, a ligand containing ester groups
can be broken down into two child ligands.
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Figure 5.5: Hydrolysis of ester.

5.4.3 WebGL visualizer

Perhaps the most vital difference that distinguishes iSyn apart
from many other FBDD tools is the availability of a WebGL
visualizer, which is not only user friendly, but also of high per-
formance. Unlike Java applet-based visualizers that require Java
installation and depend on software rendering which is slow on
large display areas and prevents detailed inspection of the struc-
ture, iSyn’s WebGL visualizer is refactored from our iview [11]
using three.js as its primary 3D engine with anti-aliasing sup-
port, and benefits from GPU hardware acceleration. Because of
no dependency on any third-party browser plugins, our visual-
izer demonstrates excellent portability and usability.

The visualizer uses EDTSurf [158, 159], a fast algorithm to
generating triangulated macromolecular surfaces by Euclidean
distance transform, to construct and render in real time four rep-
resentations of protein surface, namely Van der Waals surface,
solvent excluded surface, solvent accessible surface and molec-
ular surface. Note that molecular surface is indeed solvent ex-
cluded surface, but EDTSurf uses different ways to derive them.

The visualizer supports certain kinds of user interactions in-
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cluding rotation, translation, zooming and changing slab with
mouse or hand touch manipulation. It is functional not only on
desktop computers, but also on mobile devices such as Android
phones and tablets that support WebGL.

It is noteworthy to point out that iSyn performs all sorts of
parsing and rendering in the client browser, ensuring the data
privacy and confidentiality are retained.

5.5 Results and discussion

Thus far there are no well-established systematic evaluation
metrics and benchmarks for FBDD tools, therefore selected ex-
amples are often used for testing purpose, as was the case in
AutoGrow [170, 171]. To demonstrate the utility of our iSyn
in generating novel ligands ex nihilo, we designed predicted in-
hibitors of two important drug targets, which are RNA edit-
ing ligase 1 (REL1) from Trypanosoma brucei, the etiological
agent of African sleeping sickness, and cyclin-dependent kinase
2 (CDK2), a positive regulator of eukaryotic cell cycle progres-
sion.

We evaluated and compared our iSyn and the state-of-the-art
AutoGrow 3.0 from the perspectives of the lowest predicted free
energy obtained and the program execution time on a Linux
server equipped with 2 Xeon E5-2670 @ 2.6GHz and 128GB
ECC DDR3.
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5.5.1 Inhibitors of Trypanosoma brucei RNA editing
ligase 1

As TbREL1 is crucial for the survival of the Trypanosoma brucei
parasite, it has been the target of several drug discovery projects
over recent years.

PDB entry 1XDN was used. 75 initial ligands were chosen
as input from the MW250 subset of the AutoGrow 3.0 fragment
library by randomly picking 5 fragments from each of the 15
categories.

AutoGrow 3.0 was run for 2 days and 10 hours for 17 gen-
erations, and the best resultant compound had predicted free
energy of -12.7 kcal/mol.

iSyn was run for 6 hours and 40 minutes for 2 generations,
and the best resultant compound, 2_1314_1, had predicted free
energy of -14.176 kcal/mol, with as many as 17 putative hydro-
gen bonds (Figure 5.6).

iSyn is capable of tracking the synthetic path of child lig-
ands from their ancestors. Figure 5.7 shows the evolutionary
steps taken to produce 2_1314_1, whose starting ligand had
predicted free energy of -9.671 kcal/mol. After 2 generations,
the best ligand 2_1314_1 had 4.505 kcal/mol lower predicted
free energy. Since the value is in logarithmic scale, it effectively
translates to 2016 fold increase in drug potency. In other words,
a small concentration of the 2_1314_1 molecule would be suffi-
cient to modulate the biological function of the TbREL1 target.

It can also be seen that its parent ligand, 2_1314, had a
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Figure 5.6: TbREL1 in complex of 2_1314_1.

molecular mass of as large as 624.211 Daltons, which is unlikely
to be optimized into potent drugs. Thanks to our four novel
cutting operators, it got broken down and resulted in the ever
best ligand. This demonstrates the helpfulness of our newly-
implemented cutting operators with click chemistry support.

In another run of iSyn with the same target, 20,392 initial lig-
ands from the MW250 subset were used as input. iSyn was run
for 2 days and 4 hours for 3 generations, and the best resultant
compound, Gen2_m24517, had predicted free energy of -15.393
kcal/mol. This indicates that iSyn was able to generate even
better ligands when more generations were achieved. Figure 5.8
shows the evolutionary steps taken to generate Gen2_m24517.
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Figure 5.7: The evolutionary steps taken to generate 2_1314_1.
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Figure 5.8: The evolutionary steps taken to generate Gen2_m24517.
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Figure 5.9: CDK2 (PDB: 1JSV) in complex of the best ligand.

5.5.2 Inhibitors of cyclin-dependent kinase 2

CDK2 is a member of the cyclin-dependent kinase family that
are potential therapeutic targets for oncology. Inhibition of
CDK2 may represent a therapeutic strategy for prevention of
many cell cycle related diseases.

PDB entry 1JSV was used. Likewise, a number of ligands
were chosen randomly from the fragment library to act as initial
ligands.

iSyn was run for 11 hours and 20 minutes for 4 generations,
and the best resultant compound had predicted free energy of
-11.345 kcal/mol, with 9 putative hydrogen bonds (Figure 5.9).
For comparison, its starting ligand had predicted free energy of
only -5.607 kcal/mol.

In another run of iSyn with the same target, PDB entry
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Figure 5.10: CDK2 (PDB: 1PXM) in complex of the best ligand.

1PXM was used. We would like to test whether iSyn could pro-
duce consistent results given different PDB entries of the same
protein.

iSyn was run for 14 hours and 30 minutes for 5 generations,
and the best resultant compound had predicted binding affinity
of -14.071 kcal/mol, with 12 putative hydrogen bonds (Figure
5.10).

Obviously, the best ligand obtained in this example is bet-
ter than the one obtained in the previous example. This could
be due to several reasons. The major reason is most likely the
stochastic nature of the evolutionary algorithm. Different opti-
mization runs typically lead to different results. Another reason
is the possible conformational differences in the two protein-
ligand complex entries, which could affect intermolecular bind-
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ing. A third reason is the difference in the center and size of
the binding site. Nevertheless, in both examples the best ligand
still had predicted free energy lower than -11 kcal/mol, indicat-
ing that iSyn managed to produce very potent ligands in both
cases.

In another run of iSyn with the same target, PDB entry
1PF8 was used. Its experimentally measured binding affinity
is Ki=31nM. Within just 4 hours and 10 minutes, iSyn gener-
ated the best ligand with predicted free energy of -14.4 kcal/mol,
which translates to 27pM in potency. This is over one thousand
times more potent than the crystal ligand.

5.6 Conclusions

Although in silico fragment-based drug design (FBDD) repre-
sents a promising approach to complement structure-based vir-
tual screening, few FBDD tools show satisfactory performance
in terms of achieved potency and computational resources.

In this study we have presented iSyn, our WebGL-based solu-
tion for computationally synthesizing de novo drug compounds
with click chemistry support plus additional cutting reactions.
iSyn is a methodological mixture of ligand duplication by USR
[19], four new cutting reactions, efficient docking by idock [7],
accurate rescoring by RF-Score-v3, fitness proportionate selec-
tion and intelligent termination in genetic algorithm, and We-
bGL visualization with molecular surface. Various test cases on
TbREL1 and CDK2 have proved its strength in finding candi-
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date drug compounds within a reasonable time. We hope that
the iSyn can pragmatically assist medicinal chemists in optimiz-
ing candidate compounds and designing novel drugs.

5.7 Availability

iSyn is written in C++, Python, HTML5 and JavaScript. It is
free and open source, available at http://istar.cse.cuhk.edu.hk/iSyn.tgz.
It has been tested successfully on both Linux and Windows.

5.8 Future works

There are some major weak points about iSyn, though. iSyn re-
quires ligands in PDB format to perform the genetic operators,
but it requires PDBQT format to perform docking and scoring.
So every generated ligand must undergo PDB-to-PDBQT con-
version, which incurs substantial overhead. Moreover, one user
recently found a bug in iSyn that after a cutting reaction, iSyn
discarded the large fragment and retained the small one, which
was subsequently discarded again.

We are developing a new project called igrow to directly ma-
nipulate ligands in PDBQT format. A further attempt would
be to incorporate igrow into idock to better speed up the dock-
ing process. It is also inspiring to design multitarget ligands
[177, 188].

2 End of chapter.



Chapter 6

RF::Cyscore: binding affinity
prediction

State-of-the-art protein-ligand docking methods are generally
constrained by the traditionally low accuracy of their scoring
functions, which are for binding affinity prediction and thus vi-
tal for discriminating between active and inactive compounds.
Despite intensive research over the years, classical scoring func-
tions have reached a plateau in their predictive performance.
They assume a predetermined additive functional form for some
sophisticated numerical features, and use standard multivariate
linear regression (MLR) on experimental data to derive the co-
efficients.

In this study we show that such a simple functional form is
detrimental for the predictive performance of a scoring function,
and replacing linear regression by machine learning techniques
like random forest (RF) can improve predictive performance.
We investigated the conditions of applying RF under various
contexts and found that given sufficient training samples RF

148



CHAPTER 6. RF::CYSCORE: BINDING AFFINITY PREDICTION 149

managed to comprehensively capture the non-linearity between
structural features and measured binding affinities. Incorpo-
rating more structural features and training with more samples
could both boost RF performance. In addition, we analyzed the
importance of structural features to binding affinity prediction
using the RF variable importance tool. Lastly, we used Cyscore,
a top performing empirical scoring function, as a baseline for
comparison study.

In conclusion, machine-learning scoring functions are fun-
damentally different from classical scoring functions because
the former circumvents the fixed functional form relating struc-
tural features with binding affinities. RF, but not MLR, can
effectively exploit more structural features and more training
samples, leading to higher predictive performance. The future
availability of more X-ray crystal structures will further widen
the performance gap between RF-based and MLR-based scoring
functions. This further stresses the importance of substituting
RF for MLR in scoring function development.

This was a collaborative project with Pedro J. Ballester from
Cancer Research Center of Marseille, Marseille, France. It was
published in BMC Bioinformatics on 27 August 2014 [15]. No-
tably, this article has been tagged “Highly accessed” by the
journal, indicating that it may be of broad interest in the com-
munity.
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6.1 Background

Protein-ligand docking is a computational tool that predicts how
a ligand binds to a target protein and their binding affinity.
Therefore docking is useful in elucidating intermolecular inter-
actions and enhancing the potency and selectivity of binding in
subsequent phases of the modern drug design process. Docking
has a wide variety of pragmatic and successful applications in
structure-based virtual screening [189], drug repurposing [190],
lead compound optimization [191], protein cavity identification
[192], and protein function prediction [193].

Docking performs two main operations: predicting the posi-
tion, orientation and conformation of a ligand when docked to
the protein’s binding site, and predicting the binding strength.
The former operation is known as pose generation and the latter
is known as scoring. State-of-the-art docking tools, AutoDock
Vina [8] and idock [7] for instance, work reasonably well at pose
generation with a redocking success rate of over 50% [9] on the
benchmarks of both PDBbind v2012 and v2011 [136–138] and
the CSAR NRC HiQ Set 24Sept2010 [142, 143]. Nonetheless,
the single most critical limitation of docking is the traditionally
low accuracy of the scoring functions.

Classical scoring functions are defined by using an assumed,
fixed functional form for the relationship between the numeri-
cal features that characterize the protein-ligand complex and its
predicted binding affinity. This functional form consists of the
energetic contributions of various intermolecular interactions,
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and is often additive. The overall binding affinity is calculated
as a weighted sum of some physically meaningful terms, whereas
their coefficients are typically derived from standard multivari-
ate linear regression (MLR) on experimental data.

Cyscore [14], a recently published empirical scoring func-
tion, assumed that the overall protein-ligand binding free en-
ergy can be divided into four terms: hydrophobic free energy,
van der Waals interaction energy, hydrogen bond interaction en-
ergy and ligand’s conformational entropy. Cyscore improved the
prediction of hydrophobic free energy using a novel curvature-
dependent surface-area model, which was claimed to be able to
distinguish convex, planar and concave surface in the calculation
of hydrophobic free energy.

A recent study on a congeneric series of thrombin inhibitors
concluded that free energy contributions to ligand binding at the
molecular level are non-additive [194], therefore the modelling
assumption of additivity models is error prone. Recent years
have seen a growing number of new developments of machine-
learning scoring functions, with RF-Score [10] being the first
that introduced a large improvement over classical approaches.
RF-Score, as its name suggests, uses Random Forest (RF) [139]
to implicitly learn the functional form in an completely data-
driven manner, and thus circumvents the modelling assumption
imposed by previous scoring functions. RF-Score was shown
to significantly outperform 16 classical scoring functions when
evaluated on the commonly-used PDBbind v2007 benchmark
[10]. Despite being a recent development, RF-Score has already
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been successfully used to discover a large number of innovative
binders against antibacterial DHQase2 targets [140]. For the
purpose of prospective virtual screening, RF-Score-v3 has now
been incorporated into istar [9], our large-scale online docking
service available at http://istar.cse.cuhk.edu.hk/idock. A num-
ber of subsequent machine-learning scoring functions have also
shown large improvements over classical approaches. These in-
clude, but are not limited to, NNScore 2.0 [54], SVR-KB and
SVR-EP [195], CScore [196], SVR-Score [149], B2Bscore [197],
SFCscoreRF [52], and ID-Score [55].

6.2 Motivation

Despite the superior performance of RF-Score, its generaliza-
tion power has not yet been evaluated under standard cross
validation and leave-cluster-out cross validation [198]. It would
be interesting to see if substituting RF for MLR can improve
the predictive performance of a classical scoring function with a
fixed functional form.

6.3 Objective

In this study we compare the predictive performance of two re-
gression models MLR and RF when trained with varying num-
bers of structural features and training samples, and investigate
their application conditions and interpretability in various con-
texts. We use Cyscore as a baseline.
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6.4 Methods

The following subsections introduce MLR and RF, three sets of
features, three benchmarks, two types of cross validations, and
four performance metrics.

6.4.1 Multiple Linear Regression (MLR) with Cyscore
features

Cyscore is an empirical scoring function in an additive func-
tional form of four energetic terms: hydrophobic free energy
∆Ghydrophobic, van der Waals interaction energy∆Gvdw, hydrogen
bond interaction energy ∆Ghbond and ligand’s conformational
entropy ∆Gentropy (equation (6.1)). Their coefficients kh, kv,
kb and ke and the intercept C were obtained by MLR on 247
high-quality complexes carefully selected from PDBbind v2012
refined set. The intercept value was not reported in the orig-
inal publication, but was included in this study as usual [148]
in order to quickly estimate the absolute binding affinity value,
which is the ultimate goal in some real-life applications.

∆Gbind = kh∆Ghydrophobic+kv∆Gvdw+kb∆Ghbond+ke∆Gentropy+C

(6.1)
We use MLR::Cyscore to denote the scoring function built

with MLR and the 4 features from Cyscore. It is noteworthy
that Cyscore is a sheer MLR model, unlike AutoDock Vina [8]
which is a quasi MLR model because the number of rotatable
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bonds Nrot is in the denominator in order to penalize ligand flex-
ibility (see [9] for the exact equation) and therefore MLR::Vina
would require an additional grid search for the weight of the Nrot

parameter. Hence this study allows a more direct comparison
between MLR and RF.

6.4.2 Random Forest (RF) with Cyscore, AutoDock
Vina and RF-Score features

A RF [139] is a consensus of a large number of different de-
cision trees generated from random bootstrap sampling of the
same training data. During tree construction, at each inner node
RF chooses the best splitting feature that results in the highest
purity gain from a normally small number (mtry) of randomly
selected features instead of utilizing all input features. In the
case of regression, the final output is computed as the arithmetic
mean of all individual tree predictions in the RF. More details
on RF construction can be found in [9, 10].

In this study, multiple RFs of the default number of 500 trees
were built using values of the mtry control parameter from one
to the total number of input features. The selected RF was the
one that resulted in the lowest root mean square error (RMSE)
on the Out-of-Bag (OOB) samples of the training set. We used
just one single random seed for training because seed is not a
significant impact factor of the predictive performance. Using
fewer seeds also has the advantage of computationally faster
training process.
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Table 6.1: The three combinations of three different sets of features used to
train RF models.

model features
RF::Cyscore 4 in Cyscore
RF::CyscoreVina 4 in Cyscore, 6 in AutoDock Vina
RF::CyscoreVinaElem 4 in Cyscore, 6 in AutoDock Vina, 36 in RF-Score

In our experiments we aimed at analyzing how RF responds
to varying numbers of features. So we selected three sets of
features: Cyscore [14], AutoDock Vina [8] and RF-Score [10].
Cyscore comprises four numerical features: ∆Ghydrophobic,∆Gvdw,
∆Ghbond and ∆Gentropy. AutoDock Vina comprises six numerical
features: Gauss1, Gauss2, Repulsion, Hydrophobic, HBonding

andNrot. RF-Score comprises 36 features, defined as the number
of intermolecular contacts between two elemental atom types.
Four atom types for proteins (C, N, O, S) and nine for ligands
(C, N, O, S, P, F, Cl, Br, I) were selected so as to produce a
dense set of features while considering all the heavy atom types
commonly observed in protein-ligand complexes. Table 6.1 sum-
marizes the three combinations of these feature sets used to train
RF models. Totally four models, MLR::Cyscore, RF::Cyscore,
RF::CyscoreVina and RF::CyscoreVinaElem, were evaluated in
this study.

6.4.3 PDBbind v2007 and v2012 benchmarks

The PDBbind [136–138] benchmark is arguably the most widely
used for binding affinity prediction. It is a diverse collection
of experimentally resolved protein-ligand complexes, assembled
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through a systematic mining of the yearly releases of the en-
tire PDB (Protein Data Bank) [22, 144]. For each complex, the
experimentally measured binding affinity, in terms of either dis-
sociation constant Kd or inhibition constant Ki, was manually
collected from its primary literature reference. The complexes
with a resolution of ≤2.5Å and with the ligand comprising only
nine common heavy atom types (C, N, O, F, P, S, Cl, Br, I) were
filtered to constitute the refined set. These complexes were then
clustered by protein sequence identity with a cutoff of 90%, and
for each of the resulting clusters with at least five complexes,
the three complexes with the highest, median and lowest bind-
ing affinity were selected to constitute the core set. Due to the
structural diversity of the core set, it is a common practice to
use the core set as a test set and the remaining complexes in the
refined set as a training set.

Cyscore was tested on two independent sets: PDBbind v2007
core set (N=195) and PDBbind v2012 core set (N=201), whose
experimental binding affinities span 12.56 and 9.85 pKd units,
respectively. Cyscore was trained on a special set of 247 com-
plexes carefully selected from the PDBbind v2012 refined set
using certain criteria [14] (e.g. structural resolution < 1.8Å,
binding affinity spans 1 to 11 kcal/mol, protein sequence sim-
ilarity and ligand chemical composition are different from the
test set), ensuring that the training complexes are of high qual-
ity and do not overlap with any of the two test sets. In this
study in order to make a fair comparison to Cyscore we used
exactly the same training and test sets.
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Moreover, in view of the fact that 16 classical scoring func-
tions have already been evaluated [148] on PDBbind v2007 core
set and the top performing of them (e.g. X-Score [150]) were
trained on the remaining 1105 complexes in PDBbind v2007
refined set, we also used these 1105 complexes to constitute an-
other training set to permit a direct comparison. Using prede-
fined training and test sets, where other scoring functions had
previously been trained and tested, has the advantage of re-
ducing the risk of using a benchmark complementary to one
particular scoring function.

Similarly for the PDBbind v2012 benchmark, we used an ex-
tra training set comprising the complexes in PDBbind v2012
refined set excluding those in PDBbind v2012 core set. This led
to a total of 2696 complexes. By construction, this training set
does not overlap with the test set.

6.4.4 PDBbind v2013 round-robin benchmark

We propose a new benchmark with the purpose to investigate
how predictive performance of the four models changes in cross
validation and with different numbers of training samples. We
used PDBbind v2013 refined set (N=2959), which was the latest
version at the time of writing and constituted the most com-
prehensive and publicly available structural dataset suitable for
training scoring functions.

We used 5-fold cross validation, as was used by the recently
published empirical scoring function ID-Score [55], to estimate
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Table 6.2: Statistics of the five partitions of PDBbind v2013 refined set.

# complexes lowest pKd highest pKd
1 592 2.00 11.74
2 592 2.00 11.80
3 592 2.00 11.85
4 592 2.00 11.92
5 591 2.05 11.72

overfitting and thus generalization errors. The entire PDBbind
v2013 refined set (N=2959) was decomposed into five equal par-
titions using uniform sampling on a round-robin basis: the entire
2959 complexes were first sorted in the ascending order of their
measured binding affinity, and the complexes with the 1st, 6th,
11th, etc. lowest binding affinity belonged to the first parti-
tion, the complexes with the 2nd, 7th, 12th, etc. lowest bind-
ing affinity belonged to the second partition, and so on. This
round-robin partitioning method, though not entirely random,
has two advantages. On one hand, each partition is guaranteed
to span the largest range of binding affinities and incorporates
the largest structural diversity of different protein families. On
the other hand, each partition is composed of a deterministic list
of complexes, permitting reproducibility and comparisons in fu-
ture studies. Table 6.2 summarizes the statistics of the five par-
titions. Figure 6.1 plots the binding affinity distribution of pKd
values of the five partitions. Due to the round-robin sampling
mechanism, the five histograms are quite balanced compared to
one another.

We then used the partition on which the optimal performance
was obtained (It turned out to be partition 2 (N=592). See the
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Figure 6.1: Histograms of pKd values of the five partitions of PDBbind v2013
refined set.
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Table 6.3: The numbers of test samples and training samples for the PDBbind
v2007, v2012 and v2013 benchmarks.

benchmark test samples training samples
v2007 195 247, 1105
v2012 201 247, 2696
v2013 592 592, 1184, 1776, 2367

Results section below.) as the test set in PDBbind v2013 round-
robin benchmark, and used the remaining four partitions (1, 3,
4, 5) to construct four training sets of incremental sizes: the first
training set comprises partition 1 (N=592), the second training
set comprises partitions 1 and 3 (N=1184), the third training
set comprises partitions 1, 3 and 4 (N=1776), and the fourth
training set comprises partitions 1, 3, 4 and 5 (N=2367). By
construction, this new benchmark helps to study how predictive
performance varies with training set size. Moreover, its test set
has a substantially larger number of complexes (N=592) com-
pared to PDBbind v2007 (N=195) and v2012 (N=201) bench-
marks, making this new benchmark not being a redundant du-
plication of the previous two benchmarks. Table 6.3 summarizes
the numbers of test and training samples for the three bench-
marks.

6.4.5 Leave-cluster-out cross validation (LCOCV)

Leave-cluster-out cross validation (LCOCV) [198], in contrast to
standard cross validation, divides the whole set of complexes into
protein families instead of random subsets. Each protein family,
or each cluster, is typically determined by 90% protein sequence
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identity. A total of 23 selected protein families with at least
ten complexes are treated as individual clusters, labeled as A to
W. Protein families with four to nine complexes are combined
into cluster X. Protein families with two to three complexes are
combined into cluster Y. Singletons are combined into cluster Z.
Each cluster is iteratively left out of the training set and used
to evaluate the predictive performance of the scoring function.
The performance on each cluster can be inspected individually,
and the overall performance can be estimated by averaging over
all clusters.

So far LCOCV has been applied to the assessment of six scor-
ing functions, which are RF-Score [196–198], ddPLAT+MOE
[199], CScore [196], B2Bscore [197], SFCscoreRF [52] and the
work by Ross et al. [200]. The first four scoring functions were
evaluated on PDBbind v2009 refined set, while SFCscoreRF was
on PDBbind v2010 refined set and the work by Ross et al. was
on PDBbind v2011 refined set. For the purpose of compari-
son to these scoring functions, we used PDBbind v2009 refined
set (N=1741) to perform LCOCV. We discarded the 1xr8 en-
try in cluster X because its ligand is far away from its protein,
thereby leaving 1740 complexes. Figure 6.2 plots the binding
affinity distribution of pKd values of the 26 clusters. Unlike
Figure 6.1, here the histograms have discrepant shapes and mag-
nitudes, suggesting that each cluster has its unique properties
in the binding affinity range.
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Figure 6.2: Histograms of pKd values of the 26 clusters of PDBbind v2009
refined set.
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6.4.6 Performance metrics

Predictive performance was quantified through standard devia-
tion SD in linear correlation, Pearson correlation coefficient Rp
and Spearman correlation coefficient Rs between the measured
and predicted binding affinities of the test set. These metrics
are commonly used in the community [148]. The SD metric
is essentially the residual standard error (RSE) metric used in
some other studies [195]. The above three metrics are invariant
under linear transformations. Changing the intercept or coeffi-
cient values in equation (6.1) affects none of these metrics. So
they are mainly for comparative purpose. In some applications,
however, the ultimate goal of scoring functions is to predict an
absolute binding affinity value as close to the measured value
as possible. Therefore we use a more realistic metric, the root
mean square error RMSE between measured and predicted bind-
ing affinities without coupling a linear correlation. Lower values
in RMSE and SD and higher values in Rp and Rs indicate better
predictive performance.

Mathematically, equations (6.2), (6.3), (6.4) and (6.5) show
the expressions of the four metrics. Given a scoring function
f and the features xi characterizing the ith complex out of n
complexes in the test set, pi = f(xi) is the predicted binding
affinity, {p̂i}ni=1 are the fitted values from the linear model be-
tween {yi}ni=1 and {pi}ni=1 on the test set, whereas {yri }ni=1 and
{pri}ni=1 are the rankings of {yi}ni=1 and {pi}ni=1, respectively.
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6.5 Results and discussion

6.5.1 MLR::Cyscore performance does not increase with
more training samples

Figure 6.3 plots the predictive performance of MLR::Cyscore,
RF::Cyscore, RF::CyscoreVina and RF::CyscoreVinaElem using
different numbers of training samples. The first row is for root
mean square error RMSE, the second row is for standard de-
viation SD in linear correlation, the third row is for Pearson
correlation coefficient Rp, and the fourth row is for Spearman
correlation coefficient Rs. The left column is for PDBbind v2007
benchmark (N=195), the center column is for PDBbind v2012
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benchmark (N=201), and the right column is for PDBbind v2013
round-robin benchmark (N=592).

On both PDBbind v2007 and v2012 benchmarks, MLR::Cyscore
performed best when it was trained on the 247 carefully selected
complexes used by Cyscore [14]. Its performance dropped when
more complexes were used for training. On PDBbind v2013
round-robin benchmark, MLR::Cyscore performance stayed nearly
flat regardless of training set sizes.

These results show that MLR::Cyscore cannot exploit large
sets of structural data given only a small set of sophisticated
features. Feeding more training samples to MLR::Cyscore ac-
tually increases the difficulty in regressing the coefficients well.
Generally it would be a good idea to select the training com-
plexes that provide the best performance on a test set, as was
the case of Cyscore. But in real applications the binding affini-
ties of the test set are not known and unfortunately selection of
training complexes is not performed blindly without measuring
performance on test set.

6.5.2 RF performance increases with more structural
features and training samples

As seen from Figure 6.3, on all the three benchmarks, given the
same set of features, the RF models trained with more samples
resulted in higher predictive accuracy. Likewise, given the same
training samples, the RF models trained with more features re-
sulted in higher predictive accuracy.
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Figure 6.3: Predictive performance of MLR::Cyscore, RF::Cyscore,
RF::CyscoreVina and RF::CyscoreVinaElem trained with varying numbers
of samples.
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These results suggest that RF is able to effectively exploiting
a comprehensive set of structural features and training samples.
Generally the more training samples, the more knowledge for RF
to learn so as to capture the non-linearity of the structural data.
Likewise, the more appropriate features, the higher probability
of choosing the best splitting feature that can result in a high
purity gain at non-leaf nodes during RF construction, and thus
the higher chance of improved RF performance.

6.5.3 RF models perform consistently well in cross val-
idation

Table 6.4 shows the results of 5-fold cross validation for all the
four models on the five partitions of PDBbind v2013 refined set
(N=2959). Interestingly, the four models all exhibited the best
performance on partition 2. In terms of average performance,
the relative ranking is consistent, where RF::CyscoreVinaElem
(RMSE=1.35, SD=1.35, Rp=0.738, Rs=0.738) is better than
RF::CyscoreVina (RMSE=1.44, SD=1.44, Rp=0.693, Rs=0.690),
which is better than RF::Cyscore (RMSE=1.59, SD=1.59, Rp=0.603,
Rs=0.587), which is better than MLR::Cyscore (RMSE=1.66,
SD=1.66, Rp=0.556, Rs=0.559). Indeed the consistency of rel-
ative ranking holds for each individual partition. Although only
partition 2 was used as the test set, we believe consistent con-
clusions can be drawn if any other partition is selected as the
test set.
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Table 6.4: Cross validation results of the four models on the five partitions
of PDBbind v2013 refined set.

# N RMSE SD Rp Rs
MLR::Cyscore

1 592 1.66 1.66 0.560 0.555
2 592 1.62 1.62 0.589 0.600
3 592 1.69 1.70 0.531 0.529
4 592 1.68 1.68 0.542 0.557
5 591 1.65 1.65 0.559 0.553

avg 1.66 1.66 0.556 0.559
RF::Cyscore

1 592 1.60 1.60 0.601 0.588
2 592 1.51 1.51 0.657 0.641
3 592 1.66 1.66 0.561 0.545
4 592 1.63 1.63 0.580 0.576
5 591 1.57 1.57 0.615 0.586

avg 1.59 1.59 0.603 0.587
RF::CyscoreVina

1 592 1.41 1.41 0.708 0.709
2 592 1.38 1.37 0.730 0.725
3 592 1.49 1.49 0.668 0.665
4 592 1.51 1.51 0.657 0.661
5 591 1.42 1.42 0.701 0.692

avg 1.44 1.44 0.693 0.690
RF::CyscoreVinaElem

1 592 1.33 1.33 0.748 0.746
2 592 1.30 1.29 0.764 0.766
3 592 1.41 1.41 0.711 0.709
4 592 1.41 1.41 0.711 0.722
5 591 1.30 1.30 0.758 0.749

avg 1.35 1.35 0.738 0.738
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6.5.4 Leave-cluster-out cross validation leads to unre-
alistically low performance

Tables 6.5, 6.6, 6.7 and 6.8 show the results of leave-cluster-
out cross validation (LCOCV) for all the four models on the 23
protein families (A to W) and 3 multi-family clusters (X to Z)
of PDBbind v2009 refined set. Not unexpectedly, the observed
performance is considerably heterogeneous across the different
protein families. These results indeed agree with the LCOCV
results of six other scoring functions from previous studies [52,
196–200]. Having analyzed the LCOCV statistics of all these
ten scoring functions, we found that they all performed well in
certain clusters (e.g. trypsin and β-secretase I) and poorly in
some other clusters (e.g. HIV protease and factor Xa). The
reasons for the large spread of performance across the different
clusters are manifold, and a comprehensive analysis for each
protein family is beyond the scope of this study. As pointed
out in [52], eliminating all the HIV protease complexes leads to
an imbalance between the training and test sets because HIV
protease inhibitors are on average much larger than the ligands
of the other targets. This illustrates that the LCOCV results
should not be directly interpreted as performance measures on
particular protein families. Moreover, the small size of many
clusters and the limited range of measured binding affinity values
therein render a satisfactory prediction of the ranking rather
challenging.

While results on standard cross validation might be too op-
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Table 6.5: Leave-cluster-out cross validation results of MLR::Cyscore.

cluster name cluster N RMSE SD Rp Rs
HIV protease A 188 1.65 1.53 0.259 0.216
trypsin B 74 1.24 1.11 0.612 0.695
carbonic anhydrase C 57 2.47 1.35 0.473 0.343
thrombin D 53 1.52 1.40 0.702 0.676
protein tyrosine phosphatase E 32 1.23 1.06 0.411 0.313
factor Xa F 32 1.18 0.96 0.604 0.634
urokinase G 29 1.15 1.14 0.643 0.602
different similar transporters H 29 0.96 0.96 0.285 0.122
c-AMP dependent kinase I 17 1.32 1.15 0.537 0.537
β-glucosidase J 17 1.03 0.78 0.383 0.316
antibodies K 16 1.41 1.43 0.693 0.706
casein kinase II L 16 0.75 0.58 0.538 0.358
ribonuclease M 15 1.12 1.20 0.230 0.340
thermolysin N 14 1.15 1.14 0.680 0.635
CDK2 kinase O 13 1.06 0.80 0.841 0.812
glutamate receptor 2 P 13 1.08 0.85 0.070 0.096
P38 kinase Q 13 0.55 0.57 0.834 0.896
β-secretase I R 12 1.44 1.33 0.892 0.725
tRNA-guanine transglycosylase S 12 0.90 0.95 0.463 0.544
endothiapepsin T 11 1.18 1.30 0.435 0.215
α-mannosidase 2 U 10 1.67 1.63 -0.004 0.248
carboxypeptidase A V 10 2.13 1.99 0.479 0.523
penicillopepsin W 10 1.71 1.87 0.339 0.188
families with 4-9 complexes X 386 1.73 1.71 0.500 0.577
families with 2-3 complexes Y 340 1.64 1.64 0.510 0.495
singletons Z 321 1.76 1.74 0.407 0.417
average 1.35 1.24 0.493 0.470
standard deviation 0.41 0.38 0.216 0.217
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Table 6.6: Leave-cluster-out cross validation results of RF::Cyscore.

cluster name cluster N RMSE SD Rp Rs
HIV protease A 188 1.70 1.51 0.310 0.201
trypsin B 74 1.10 1.11 0.610 0.636
carbonic anhydrase C 57 2.44 1.43 0.368 0.264
thrombin D 53 1.50 1.44 0.680 0.611
protein tyrosine phosphatase E 32 1.30 1.10 0.338 0.268
factor Xa F 32 1.54 1.13 0.367 0.356
urokinase G 29 1.10 1.14 0.642 0.645
different similar transporters H 29 1.27 0.99 0.056 -0.040
c-AMP dependent kinase I 17 1.16 1.11 0.582 0.602
β-glucosidase J 17 1.04 0.76 0.444 0.365
antibodies K 16 1.67 1.76 0.455 0.466
casein kinase II L 16 0.76 0.58 0.535 0.330
ribonuclease M 15 1.07 1.06 0.505 0.281
thermolysin N 14 0.98 1.03 0.748 0.648
CDK2 kinase O 13 1.14 1.01 0.733 0.817
glutamate receptor 2 P 13 1.09 0.85 0.120 0.097
P38 kinase Q 13 0.76 0.66 0.762 0.757
β-secretase I R 12 1.57 1.51 0.858 0.620
tRNA-guanine transglycosylase S 12 1.06 1.04 0.212 0.375
endothiapepsin T 11 1.28 1.35 0.358 0.210
α-mannosidase 2 U 10 1.65 1.62 0.116 0.188
carboxypeptidase A V 10 1.90 1.89 0.556 0.370
penicillopepsin W 10 1.78 1.94 0.236 0.188
families with 4-9 complexes X 386 1.61 1.60 0.587 0.598
families with 2-3 complexes Y 340 1.64 1.63 0.522 0.505
singletons Z 321 1.81 1.75 0.397 0.395
average 1.38 1.27 0.465 0.414
standard deviation 0.38 0.37 0.209 0.212
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Table 6.7: Leave-cluster-out cross validation results of RF::CyscoreVina.

cluster name cluster N RMSE SD Rp Rs
HIV protease A 188 1.76 1.56 0.182 0.105
trypsin B 74 0.96 0.97 0.723 0.700
carbonic anhydrase C 57 2.60 1.37 0.448 0.372
thrombin D 53 1.47 1.45 0.675 0.675
protein tyrosine phosphatase E 32 1.36 0.98 0.538 0.542
factor Xa F 32 1.53 1.02 0.533 0.498
urokinase G 29 1.25 1.27 0.516 0.436
different similar transporters H 29 1.10 0.98 0.188 0.077
c-AMP dependent kinase I 17 0.94 0.91 0.748 0.664
β-glucosidase J 17 0.92 0.72 0.518 0.443
antibodies K 16 1.47 1.51 0.645 0.643
casein kinase II L 16 0.90 0.60 0.493 0.322
ribonuclease M 15 1.11 0.99 0.595 0.481
thermolysin N 14 1.04 1.12 0.696 0.565
CDK2 kinase O 13 1.14 1.02 0.729 0.661
glutamate receptor 2 P 13 1.08 0.85 0.116 0.121
P38 kinase Q 13 0.95 0.62 0.799 0.764
β-secretase I R 12 1.54 1.51 0.860 0.687
tRNA-guanine transglycosylase S 12 0.87 0.95 0.457 0.403
endothiapepsin T 11 1.35 1.36 0.345 0.215
α-mannosidase 2 U 10 1.73 1.62 0.089 0.176
carboxypeptidase A V 10 1.82 1.76 0.632 0.467
penicillopepsin W 10 1.81 1.96 0.183 0.030
families with 4-9 complexes X 386 1.58 1.56 0.610 0.612
families with 2-3 complexes Y 340 1.55 1.55 0.583 0.580
singletons Z 321 1.70 1.68 0.476 0.467
average 1.37 1.23 0.515 0.450
standard deviation 0.39 0.36 0.211 0.211
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Table 6.8: Leave-cluster-out cross validation results of RF::CyscoreVinaElem.

cluster name cluster N RMSE SD Rp Rs
HIV protease A 188 1.77 1.56 0.166 0.129
trypsin B 74 0.93 0.93 0.751 0.715
carbonic anhydrase C 57 2.33 1.35 0.481 0.234
thrombin D 53 1.46 1.40 0.699 0.680
protein tyrosine phosphatase E 32 1.23 0.89 0.643 0.615
factor Xa F 32 1.61 1.07 0.470 0.470
urokinase G 29 1.05 1.06 0.699 0.624
different similar transporters H 29 1.01 0.93 0.354 0.123
c-AMP dependent kinase I 17 1.06 0.91 0.747 0.644
β-glucosidase J 17 1.05 0.68 0.597 0.649
antibodies K 16 1.36 1.33 0.739 0.777
casein kinase II L 16 0.97 0.61 0.454 0.309
ribonuclease M 15 1.23 1.03 0.551 0.493
thermolysin N 14 0.97 1.05 0.738 0.636
CDK2 kinase O 13 1.12 1.14 0.640 0.525
glutamate receptor 2 P 13 1.00 0.84 0.123 0.016
P38 kinase Q 13 0.59 0.51 0.870 0.896
β-secretase I R 12 1.43 1.31 0.895 0.687
tRNA-guanine transglycosylase S 12 0.87 0.95 0.457 0.522
endothiapepsin T 11 1.36 1.27 0.480 0.210
α-mannosidase 2 U 10 1.83 1.63 0.053 0.103
carboxypeptidase A V 10 1.77 1.54 0.734 0.685
penicillopepsin W 10 1.91 1.99 0.078 -0.030
families with 4-9 complexes X 386 1.54 1.53 0.630 0.632
families with 2-3 complexes Y 340 1.51 1.52 0.608 0.595
singletons Z 321 1.67 1.65 0.503 0.507
average 1.33 1.18 0.545 0.479
standard deviation 0.39 0.35 0.228 0.251
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timistic, results on leave-cluster-out cross validation might be
too pessimistic. Here we want to emphasize that LCOCV is
only suitable for estimating the performance of a generic scor-
ing function on a truly new target protein that does not belong
to a cluster represented by any of the proteins in the training
set, but this constitutes a very rare scenario in real applications
because it is uncommon for a target protein not to have high
sequence similarity to any other protein in a large and diverse
training set. In fact, such type of complexes should never be
eliminated from a training set. Instead, the training set compo-
sition should reflect as closely as possible the actual complexes
on which the scoring function is to be applied in order for the
machine-learning models to learn the patterns from the experi-
mental data. LCOCV is consequently inappropriate to evaluate
generic scoring functions, as previously argued [201].

6.5.5 Machine-learning scoring functions are significantly
more accurate than classical scoring functions

Table 6.9 compares Cyscore, RF::Cyscore, RF::CyscoreVina and
RF::CyscoreVinaElem against 21 other scoring functions on PDB-
bind v2007 core set (N=195). The scoring functions are sorted
in the descending order of Rp. RF::CyscoreVinaElem ranks the
highest in terms of Rp, Rs and SD. The statistics for the other
21 scoring functions are collected from [9, 50, 52]. It is worth
noting that the top four scoring functions are all trained with
RF.
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Table 6.9: Predictive performance of 25 scoring functions evaluated on PDB-
bind v2007 core set.

Scoring function Rp Rs SD
RF::CyscoreVinaElem 0.803 0.798 1.42
RF-Score::Elem-v2 0.803 0.797 1.54
SFCscoreRF 0.779 0.788 1.56
RF-Score 0.774 0.762 1.59
ID-Score 0.753 0.779 1.63
RF::CyscoreVina 0.749 0.759 1.58
SVR-Score 0.726 0.739 1.70
RF::Cyscore 0.687 0.694 1.73
Cyscore 0.660 0.687 1.79
X-Score::HMScore 0.644 0.705 1.83
DrugScoreCSD 0.569 0.627 1.96
SYBYL::ChemScore 0.555 0.585 1.98
DS::PLP1 0.545 0.588 2.00
GOLD::ASP 0.534 0.577 2.02
SYBYL::G-Score 0.492 0.536 2.08
DS::LUDI3 0.487 0.478 2.09
DS::LigScore2 0.464 0.507 2.12
GlideScore-XP 0.457 0.435 2.14
DS::PMF 0.445 0.448 2.14
GOLD::ChemScore 0.441 0.452 2.15
SYBYL::D-Score 0.392 0.447 2.19
DS::Jain 0.316 0.346 2.24
GOLD::GoldScore 0.295 0.322 2.29
SYBYL::PMF-Score 0.268 0.273 2.29
SYBYL::F-Score 0.216 0.243 2.35
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6.5.6 Substituting RF for MLR and incorporating more
features and training samples strongly improves
Cyscore

Figure 6.4 compares the predictive performance of Cyscore and
RF::CyscoreVinaElem. The top row is for Cyscore and the bot-
tom row is for RF::CyscoreVinaElem. The left column is for
PDBbind v2007 benchmark (N=195), with RF::CyscoreVinaElem
trained on 1105 complexes. The center column is for PDBbind
v2012 benchmark (N=201), with RF::CyscoreVinaElem trained
on 2696 complexes. The right column is for PDBbind v2013
round-robin benchmark (N=592), with RF::CyscoreVinaElem
trained on 2367 complexes. As seen, RF::CyscoreVinaElem im-
proved Cyscore by -0.28 in RMSE, -0.37 in SD, +0.143 in Rp
and +0.111 in Rs on the PDBbind v2007 benchmark, by -0.14
in RMSE, -0.25 in SD, +0.106 in Rp and +0.093 in Rs on the
PDBbind v2012 benchmark, and by -0.40 in RMSE, -0.29 in
SD, +0.187 in Rp and +0.184 in Rs on the PDBbind v2013
round-robin benchmark.

These results show that RF::CyscoreVinaElem performed con-
sistently better than Cyscore on all the three benchmarks. It
is important to note that, in each benchmark, both scoring
functions used the same non-overlapping training and test sets.
Taken together, these results suggest that one can develop a
much more accurate scoring function out of an existing one sim-
ply by changing the regression model from MLR to RF and
incorporating more structural features and training samples.
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Figure 6.4: Correlation plots of predicted binding affinities against measured
ones.
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6.5.7 Sensitivity analysis of the RF model can estimate
feature importance

RF-based scoring functions, unlike classical scoring functions,
can barely be explicitly expressed as a mathematical equation
like equation (6.1). Therefore it is useful to employ the variable
importance tool of RF to estimate the importance of each fea-
ture by randomly permuting its training values, and the feature
leading to the largest variation in the predicted binding affin-
ity on the OOB data can be regarded as the most important
for a particular training set. Figure 6.5 plots the percentage of
increase in mean square error (%IncMSE) observed when each
of the 4 Cyscore features used to train RF was noised up. The
four features are hydrophobic free energy (Hydrophobic), van
der Waals interaction energy (Vdw), hydrogen bond interaction
energy (HBond) and ligand’s conformational entropy (Ent). The
%IncMSE value of a particular feature was computed as the
percentage of increase in mean square error observed in OOB
prediction when that features was randomly permuted. All the
4 features turned out to be important (%IncMSE>20), with van
der Waals interaction energy (Vdw) and hydrophobic free energy
(Hydrophobic) being relatively more important (%IncMSE>40).
Correctly estimating variable importance can assist in feature
selection and in understanding ligand binding.
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Figure 6.5: RF::Cyscore feature importance estimated on internal OOB data
of the 1105 complexes from PDBbind v2007 refined set.

6.6 Conclusions

We have demonstrated that the multiple linear regression (MLR)
model used in many scoring functions like Cyscore does not
improve its performance in the presence of abundant training
samples. This is a especially significant drawback for MLR-
based scoring functions because they cannot benefit from the
increasing availability of future experimental data. On the other
hand, RF-based scoring functions can comprehensively capture
the non-linear nature in the data and thus assimilate data sig-
nificantly better than MLR-based scoring functions. Most im-
portantly, feeding more training samples to RF can increase its
predictive performance. Under this circumstance, improvements
with dataset size can only be gained with the appropriate re-
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gression model. Changing the regression model of Cyscore from
MLR to RF and expanding the feature set and the sample set
can significantly increase the predictive accuracy. The perfor-
mance gap between MLR-based and RF-based scoring functions
will be further widened by the future availability of more and
more X-ray crystal structures.

Classical empirical scoring functions typically rely on com-
plicated energetic contributions that must be carefully devised
from intermolecular interactions, whereas RF-based scoring func-
tions can also effectively exploit features as simple as occurrence
count of intermolecular contacts. It has also been shown in a
previous study that functional group contributions in protein-
ligand binding are non-additive. This means novel features can
be difficult to be incorporated into an existing MLR model.
In this study we have shown that using more structural fea-
tures appropriately can also substantially boost the predictive
accuracy of RF, as can be seen in the comparison between
RF::CyscoreVinaElem and RF::Cyscore. This further stresses
the importance of substituting RF for MLR in scoring function
development.

6.7 Future works

The PHOENIX [202] scoring function uses calorimetry data to
decompose the change of binding free energy into change of en-
thalpy and change of entropy. It is an empirical scoring function
that uses shape and volume descriptors to independently model
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enthalpic and entropic contributions. It is interesting to see how
the predictive performance changes if RF is utilized for regres-
sion.

2 End of chapter.



Chapter 7

RF-Score-v3: binding affinity
prediction

There is a growing body of evidence showing that machine learn-
ing regression results in much more accurate structure-based
prediction of protein-ligand binding affinity. Such prediction is
a requirement for docking methods in that it is the basis for dis-
criminating between active and inactive molecules or optimising
the potency of a ligand against a target. However, despite their
proven advantages, machine-learning scoring functions are still
not widely applied. This seems to be due to insufficient under-
standing of their properties and the lack of user-friendly software
implementing them.

Here we present a study where the accuracy of AutoDock
Vina, arguably the most commonly-used docking software, is
strongly improved by following a machine learning approach.
We also analyse the factors that are responsible for this im-
provement and their generality. Most importantly, with the
help of a proposed benchmark, we demonstrate that this im-
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provement will be larger as more data becomes available for
training Random Forest models, as regression models imply-
ing additive functional forms do not improve with more train-
ing data. We discuss how the latter opens the door to new
opportunities in scoring function development. In order to fa-
cilitate the translation of this advance to enhance structure-
based molecular design, we provide software to directly re-score
Vina-generated poses and thus strongly improve their predicted
binding affinity. The rescoring software is freely available at
http://istar.cse.cuhk.edu.hk/rf-score-3.tgz.

This was a collaborative project with Pedro J. Ballester from
Cancer Research Center of Marseille, Marseille, France. It was
published in Proceedings of the 11th International Meeting on
Computational Intelligence Methods for Bioinformatics and Bio-
statistics (CIBB) on 26 June 2014 [17], and in Molecular Infor-
matics on 12 February 2015 [16].

7.1 Background

Molecular docking is a key computational technique in structural
bioinformatics and structure-based molecular design. Docking
predicts the preferred conformations and binding strength of a
ligand molecule, typically a small organic molecule, as bound
to a protein pocket. Such prediction is necessary to discrimi-
nate between molecules that bind and those that do not bind
to a target of interest (i.e. those molecules with high affinity
for the target and those with an affinity so low that does not
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permit stable binding). Docking is not only useful to anticipate
whether a ligand binds tightly to a target, but also to under-
stand how it binds. The latter can be helpful to improve the
potency and selectivity of binding. Docking is often utilized to
identify a molecule that binds tightly to the target, so that a
small concentration of the molecule is sufficient to modulate its
biochemical function.

Docking applications include, but are not limited to, structure-
based virtual screening [189, 203, 204], drug lead optimisation
[191], polypharmacology prediction [205, 206], drug reposition-
ing [190], binding pocket prediction [192, 207], human variation
prediction [208], protein function prediction [193] and target
druggability assessment [209].

Operationally, docking has two stages: predicting the posi-
tion, orientation and conformation of a molecule when docked to
the target’s binding site (pose generation), and predicting how
strongly the docked pose of such putative ligand binds to the
target (scoring). The single most important limitation of dock-
ing is the traditionally low accuracy of the scoring functions that
predict the strength of binding.

Classical scoring functions assume a predetermined theory-
inspired functional form for the relationship between the numer-
ical features that describe the complex and its predicted bind-
ing affinity. There are three types of classical scoring functions:
force-field [210–212], empirical [213–216] and knowledge-based
[217–220]. Each type follows a different philosophical approach
to scoring function development, as explained elsewhere, e.g.
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[221]. However, it is important to note that these three types
are mathematically equivalent in that a predetermined func-
tional form is imposed to vertebrate the scoring function. In
almost all classical scoring functions, the assumed functional
form is additive. Furthermore, like empirical scoring functions,
most modern force-field and knowledge-based scoring functions
weight their constituent terms by fitting experimental binding
data [221]. Figure 7.1 illustrates the mathematical equivalence
of these three popular classical scoring functions as sums of data-
weighted energetic contributions to binding. Kj is the total
number of protein atoms of type j and Li is the total num-
ber of ligand atoms of type i in the considered complex. An
atom type is defined according to atomic number and in some
cases also using the calculated protonation state (e.g. hydrogen
bond donors). The additive terms may additionally impose in-
teratomic distance and angle constraints between neighbouring
atoms of the considered types (e.g. hydrogen bonding terms).

Recently, machine-learning scoring functions have been shown
[10] to be much more accurate than classical scoring functions
at binding affinity prediction. This improvement is due to two
factors. The first is the circumvention of the assumed func-
tional form of classical scoring functions, which is learnt instead
in an entirely data-driven manner in machine-learning scoring
functions. This was to be expected as it is well known that
individual free energy terms may not be additive [194, 222].
Second, research on classical scoring functions has focused on
increasingly detailed modelling of contributions to binding, but
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Figure 7.1: Mathematical equivalence of classical scoring functions as sums
of data-weighted energetic contributions to binding.

it has now been established that a more precise description of
protein-ligand complexes does not generally lead to more accu-
rate prediction of binding affinity [50]. This study has resulted
in an expected set of structural descriptors leading to improved
performance when allied with a sufficiently flexible regression
model.

Machine-learning scoring functions have been misclassified as
knowledge-based scoring functions [14, 223] or empirical scoring
functions [55], but these are fundamentally different from either
type because of not imposing a fixed functional form on the
relationship between structural and binding data. This distinc-
tion between machine-learning and classical scoring functions
has important consequences in practice, as it will be analysed.

Despite being a recent development, there are already suc-
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cessful prospective applications of machine-learning scoring func-
tions. RF-Score [10] has recently been used [140] to discover a
large number of innovative binders of antibacterial DHQase2
targets. To facilitate its use, RF-Score has been incorporated
into a large-scale docking web server for prospective virtual
screening, available at http://istar.cse.cuhk.edu.hk/idock [9]. On
the other hand, a machine-learning scoring function called MD-
SVR has been generated and applied [224] to guiding the opti-
misation of known Akt1 kinase inhibitors. The derivatives high-
lighted by MD-SVR were synthesised and all of them exhibited
moderate to good inhibitory activities.

7.2 Motivation

The innovative development of RF-Score has however raised a
few concerns. For example, the use of oversimplified features in
the original version of RF-Score has been pointed out as prob-
lematic [225], although no empirical evidence was provided in
support of this claim and this version actually achieved high
hit rates in prospective virtual screening [140]. The superior
performance of RF-Score was highlighted by [198], which nev-
ertheless attributed it to the characteristics of the most widely-
used benchmark. This was subsequently demonstrated not to
be the case [201]. Still, there seem to be some concerns that
the applicability domain of machine-learning scoring functions
would be somehow more restrictive than that of classical scoring
functions. Lastly, [14] claimed that the application of machine-
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learning scoring functions is limited by their tendency to overfit
training data and their alleged difficulty in providing an imme-
diate physical interpretation of the results. We were motivated
by the above concerns and thus aimed to provide responses sup-
ported by solid numerical experiments.

7.3 Objective

In this chapter, we show that one can construct a machine-
learning scoring function from a classical scoring function to
have the same applicability domain and interpretability capabil-
ities while greatly improving its ability to predict binding affin-
ity. This will be shown with AutoDock Vina [8] as the classical
scoring function because it is arguably very popular. Further-
more, we will also address the remaining criticisms supported
by numerical experiments. Besides, the growing importance of
machine-learning scoring functions will be demonstrated in the
context of a purposely-built new benchmark by analysing how
their performances improve with the increase of structural and
binding data used for training. Finally, we will provide free
software to rescore protein-ligand complexes, either crystal or
docked.

7.4 Methods and materials

This section introduces four scoring functions building upon
AutoDock Vina, two benchmarks to evaluate performance of
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these scoring functions and the performance metrics that will
be used to this end.

7.4.1 Model 1 - AutoDock Vina

The AutoDock series [8, 32, 69] is the most cited docking soft-
ware by the research community, with over 8,000 citations to
date between these three publications, according to Google Scholar.
As a completely new counterpart of AutoDock 4 [32], AutoDock
Vina [8] substantially improved the average accuracy of the
binding mode predictions, while running two orders of magni-
tude faster with multithreading. Vina was an exciting develop-
ment, not only because of its remarkable pose generation per-
formance in terms of both effectiveness and efficiency, but also
because it is an open source tool and is among the most accurate
classical scoring functions for binding affinity prediction.

Like all classical scoring functions, Vina assumes a predeter-
mined functional form. In this case, Vina’s score for the kth
conformer, ek, is calculated as:

ek =
ek,inter + ek,intra − e1,intra

1 + w6Nrot
(7.1)

Now because studies on binding affinity prediction are bench-
marked on co-crystallised ligands to avoid confounding factors,
there is only one conformer per molecule (k = 1) and thus the
intramolecular contribution cancels out giving:

e1 =
e1,inter

1 + w6Nrot
(7.2)
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where

e1,inter = w1 ·Gauss11

+ w2 ·Gauss21

+ w3 ·Repulsion1

+ w4 ·Hydrophobic1

+ w5 ·HBonding1 (7.3)

w = (−0.035579,−0.005156, 0.840245,−0.035069,−0.587439, 0.05846)

(7.4)
e1 is the predicted free energy of binding reported by the Vina

software when scoring the structure of a protein-ligand complex.
The values for the six weights were found by Ordinary Least
Squares (OLS) using a nonlinear optimisation algorithm as it
has been the case in related force-field scoring functions [226],
although this process was not detailed in the original publication
[8]. The training data was PDBbind v2007 refined set (N=1300).
Nrot is the number of rotatable bonds. Unlike other classical
scoring functions, Vina is not exactly a sum of energy terms
because w6 ̸= 0, although it is quasi-linear since 1+w6Nrot takes
values close to 1 for most protein-ligand complexes. As usual,
e.g. [9], the predicted free energy of binding in kcal/mol units
is converted into pKd with pKd = −0.73349480509e1 in order
to compare to binding affinities (pKd or pKi). Expressions and
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further details for the five ek,inter terms can be found in [8, 9].

7.4.2 Model 2 - MLR::Vina

This is a multiple linear regression (MLR) model using the six
unweighted Vina terms as features. The use of MLR as the re-
gression model implies an additive functional form and hence
MLR::Vina is a classical scoring function. It adopts the philos-
ophy of empirical scoring functions.

In order to make the problem amenable to MLR, we made
a grid search on the w6 weight and thereafter ran MLR on the
remaining five weights. Specifically, we sampled 101 values for
w6 from 0 to 1 with a step size of 0.01. Interesting we found that
the w6 values of the best models were always between 0.005 and
0.020. Then we again sampled 16 values for w6 in this range
with step size 0.001, and used the best of them in terms of the
lowest RMSE (Root Mean Square Error) on the training set.

7.4.3 Model 3 - RF::Vina

While Vina’s ability to predict binding affinity is among the best
provided by classical scoring functions, it is still limited by the
assumption of a functional form. To investigate the impact of
this modelling assumption, we used Random Forest (RF) [139]
to implicitly learn the functional form from the data. Other
machine learning techniques can of course be applied to this
problem, e.g. SVR (Support Vector Regression) [149], although
this is out of the scope of the study.
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A RF is an ensemble of many different decision trees ran-
domly generated from the same training data [139]. RF trains
its constituent trees using the CART algorithm [141]. Instead
of using all features, RF selects the best data split at each node
of the tree from a typically small number (mtry) of randomly
chosen features. In regression problems, the RF prediction is
given by arithmetic mean of all the individual tree predictions
in the forest.

Here we built a RF model with the six Vina features using
the default number of trees (500) and values of the mtry con-
trol parameter from 1 to all 6 features. The selected model
was that with the mtry value providing the lowest RMSE on a
subset of training data known as the OOB (Out of Bag) data.
This process was repeated ten times with ten different random
seeds because RF is stochastic. The predictive performance was
reported for the RF with the best seed that led to the lowest
RMSE on the test set. Further details on RF model building in
this context can be found in [10].

7.4.4 Model 4 - RF::VinaElem

This is the model described in the previous subsection with an
expanded set of 42 features once the 36 RF-Score features are
added to the six Vina features. For a given random seed, a RF
for each mtry value from 1 to 42 was built and that with the
lowest RMSE on OOB data was selected as the scoring function.
Like in the training process of model 3, the same ten seeds were
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used, and the predictive performance was reported for the RF
with the best seed that resulted in the lowest RMSE on the test
set.

To calculate RF-Score features, atom types were selected so
as to generate features that are as dense as possible, while con-
sidering all the heavy atoms commonly observed in PDB com-
plexes (C, N, O, F, P, S, Cl, Br, I). As the number of protein-
ligand contacts is constant for a particular complex, the more
atom types are considered, the sparser the resulting features
will be. Therefore, we selected a minimal set of atom types by
considering atomic number only. Furthermore, a smaller set of
interaction features has the additional advantage of leading to
computationally faster scoring functions.

RF-Score features are defined as the occurrence count of in-
termolecular contacts between elemental atom types i and j, as
shown in equations (7.5) and (7.6), where dkl is the Euclidean
distance between the kth protein atom of type j and the lth lig-
and atom of type i calculated from a structure; Kj is the total
number of protein atoms of type j (#{j} = 9) and Li is the total
number of ligand atoms of type i (#{i} = 4) in the considered
complex; H is the Heaviside step function that counts contacts
within a dcutoff neighbourhood. For example, x7,8 is the number
of occurrences of protein oxygen atoms hypothetically interact-
ing with ligand nitrogen atoms within a chosen neighbourhood.
Full details on RF-Score features are available at [10, 149].
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xij =

Kj∑
k=1

Li∑
l=1

H(dcutoff − dkl) (7.5)

x = {xij} ∈ N 36 (7.6)

7.4.5 The PDBbind benchmark

Using predefined training and test sets, where other scoring
functions had previously been tested, has the advantage of min-
imising the risk of using a benchmark complementary to the
presented scoring function. There are many examples of bench-
marks to validate generic scoring functions [227–230].

Here we use the PDBbind benchmark [148], arguably the
most widely used for binding affinity prediction of diverse com-
plexes. This benchmark is based on the 2007 version of the
PDBbind database, which contains a particularly diverse collec-
tion of 1300 protein-ligand complexes with their corresponding
binding affinities, assembled through a systematic mining of the
entire PDB (Protein Data Bank) [22, 144].

The PDBbind benchmark essentially consists of testing the
predictions of scoring functions on the 2007 core set, which com-
prises 195 diverse complexes with measured binding affinities
spanning more than 12 orders of magnitude, while training in
the remaining 1105 complexes in the refined set. In this way, a
set of protein-ligand complexes with measured binding affinity
can be processed to give two non-overlapping data sets, where
each complex is represented by its feature vector xi and its bind-
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ing affinity yi, which includes both pKd and pKi measurements,
henceforth referred to as just pKd for simplicity:

Dtrain = {yi,xi}1105i=1 (7.7)

Dtest = {yi,xi}1300i=1106 (7.8)

y = pKd = − log10Kd (7.9)

This benchmark has the advantage of permitting a direct
comparison against the performance of 16 classical scoring func-
tions that had previously been benchmarked on the same test
set [148]. These 16 classical scoring functions include five scoring
functions in the Discovery Studio software version 2.0 from Ac-
celrys: LigScore [216], PLP [217], PMF [218], Jain [231] and
LUDI [213], five scoring functions (D-Score, PMF-Score, G-
Score, Chem-Score, and F-Score) in the SYBYL software ver-
sion 7.2 from Tripos, GlideScore [215] in the Schrödinger soft-
ware version 8.0 from Schrödinger, three scoring functions in the
GOLD software version 3.2 from the CCDC: GoldScore [232],
ChemScore [214] and ASP [219], and two standalone scoring
functions released by academic groups: DrugScore [220, 233]
and X-Score version 1.2 [150]. Several of these scoring functions
had different versions or multiple options, including LigScore
(LigScore1 and LigScore2), PLP (PLP1 and PLP2), and LUDI
(LUDI1, LUDI2, and LUDI3) in Discovery Studio; GlideScore
(GlideScore-SP and GlideScore-XP) in the Schrödinger software;
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DrugScore (Drug-ScorePDB and DrugScoreCSD); and X-Score
(HPScore, HMScore, and HSScore). For simplicity, the au-
thors who tested all these scoring functions on the PDBbind
benchmark [148] only reported the best performance of the ver-
sion/options of each scoring function. Furthermore, we added to
the comparison other classical scoring functions that have sub-
sequently been tested on this benchmark: IMP::RankScore [234]
in [50], HYDE2.0::HbondsHydrophobic [235], PHOENIX [202],
Cyscore [14], HotLig [236] and DSXCSD [237]. Many machine-
learning scoring functions have also been tested on this bench-
mark, which are however not relevant for the goals of this study
and hence not included.

7.4.6 The 2013 blind benchmark

We propose a new benchmark mimicking a blind test to provide
a more realistic validation than the PDBbind benchmark, where
higher performance is to be expected due to the protocol that
generates this partition [201]. The new test set comprises all
the structures in the 2013 release of the PDBbind refined set
that were not already in the 2012 release, i.e. the new protein-
ligand complexes added in 2013, whereas the 2012 refined set
is used for training. This is hence conducted as a blind test
in that only data available until a certain year is used to build
the scoring function that predicts the binding affinities of 2013
complexes as if these had not been measured yet. The PDBbind
v2013 refined set (N=2959) and the PDBbind v2012 refined set
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(N=2897) have 2576 complexes in common. In the 2013 refined
set, the 3rv4 protein consists of two Cs atoms which Vina does
not support, so this complex was discarded. Eventually the test
set has 2959-2576-1=382 complexes.

In addition, we define three more training sets to account for
the structural and binding data available in the public domain
at three previous times. These three previous PDBbind releases
were selected so that there is approximately the same number of
complexes between consecutive releases. In this way, one can use
these four partitions sharing the same test set to study how scor-
ing function performance varies with training data set size. We
selected PDBbind v2002 (N=800), v2007 (N=1300) and v2010
(N=2061) refined sets. In the v2002 refined set, the 1tha pro-
tein failed PDB-to-PDBQT conversion, and the 1lkk, 1mfi, 7std,
1cet, 2std, 1els, 1c3x ligands failed PDB-to-PDBQT conversion.
Eventually this training set has 800-8=792 complexes. In the
v2010 refined set, the 2bo4 protein failed PDB-to-PDBQT con-
version, and the 1xr8 ligand is far away from its protein. Even-
tually this training set has 2061-2=2059 complexes.

Table 7.1 shows the data partitions. Partition 1 is the PDB-
bind benchmark. Refined02 means the 2002 release of the PDB-
bind refined set, whereas refined07\core07 means the complexes
left in refined07 after removing those in core07. By construction
of each partition, there are no complexes in common between
any training set and test set pair. In other words, there is no
overlap between both sets and hence each test set complex is
new data not seen in model training. Note that only models 2,
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Table 7.1: Data set partitions of the PDBbind and the 2013 blind bench-
marks.

Partition Training set N Test set N
1 refined07\core07 1105 core07 195
2 refined02 792 refined13\refined12 382
3 refined07 1300 refined13\refined12 382
4 refined10 2059 refined13\refined12 382
5 refined12 2897 refined13\refined12 382

3 and 4 were re-trained on each of the five training sets, whereas
model 1, AutoDock Vina, was used out of the box without re-
training.

One may argue that an additional partition is necessary,
where all training complexes similar to any of the test complexes
in some way are removed. Nevertheless, in practice, a test set
will contain really few complexes of this type. Therefore, we
would be depriving the scoring functions of the most relevant
training data, which would actually be available, without good
reason, leading to unrealistically low performance for all scor-
ing functions. This point has already been discussed elsewhere
[15, 201].

7.4.7 Performance measures

As usual [148], performance will be measured by the Standard
Deviation (SD), Root Mean Square Error (RMSE), Pearson cor-
relation (Rp) and Spearman rank-correlation (Rs) between pre-
dicted and measured binding affinity. SD is included to permit
comparison to previously-tested scoring functions on this bench-
mark. RMSE, on the other hand, reflects the ability of the scor-



CHAPTER 7. RF-SCORE-V3: BINDING AFFINITY PREDICTION 199

ing function to report an accurate binding affinity value. Rs
shows how well it can rank bound ligands according to binding
strength. Rp simply shows how linear the correlation is and thus
it is a less relevant indicator of the quality of the prediction. The
mathematical expressions of these four metrics can be found in
[15].

7.5 Results and discussion

Figures 7.2 and 7.3 show the predictive performance of the four
models on the PDBbind benchmark (partition 1 in Table 7.1)
and the 2013 blind benchmark (partition 5 in Table 7.1), respec-
tively.

7.5.1 MLR is better at calibrating the additive func-
tional form of Vina’s scoring function

Figures 7.2 and 7.3 show that MLR::Vina provided a test set
performance with significantly lower error and higher correlation
than Vina on both benchmarks. This means that MLR is more
suitable to calibrate Vina’s scoring function than the originally
used nonlinear optimisation algorithm.

7.5.2 Vina’s assumed functional form is detrimental for
its performance

Both the linear (model 2) and nonlinear (model 1) optimisa-
tion approaches to training Vina assume a quasi-additive func-
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(a) AutoDock Vina.
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(b) MLR::Vina.
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Figure 7.2: Performance on the 195 test set complexes in the PDBbind bench-
mark.
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(b) MLR::Vina.
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(c) RF::Vina.

●● ●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

● ●●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

● ●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●●●
●●●

● ●

●
●

●

●
● ●

●●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●●

● ●
●

●
●

●

●
●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●●

● ●
● ●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●●
●
●

●●

●

●

●

●

●●

● ●

●
●

●

●
●

●

●
● ●

●
●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●●●

●
●

●

●

●

●

●●

●

●●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●●
●

●

●

●

●
●

●

●●

● ●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●●
●

●●

●
●

●
●●

●

●

●

●

●

●●●

● ●

●

●

●

●

0 2 4 6 8 10 12

0
2

4
6

8
10

12

N=382, RMSE=1.44, SD=1.44, Rp=0.686, Rs=0.659

Measured binding affinity (pKd)

P
re

di
ct

ed
 b

in
di

ng
 a

ffi
ni

ty
 (

pK
d)

(d) RF::VinaElem.

Figure 7.3: Performance on the 382 test set complexes in the 2013 blind
benchmark.
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tional form. By looking at Figures 7.2 and 7.3, it is clear that
model 3 performed much better than models 1 and 2. Note
that model 3 uses exactly the same features as the other two
models, and it uses exactly the same training data as model 2.
The only difference between these models is that model 3 im-
plicitly constructs the functional form from the data using RF
for regression, whereas the other two Vina models assume a pri-
ori form for how the features are combined to form the scoring
function. Therefore, these results demonstrate that this per-
formance improvement is entirely due to the avoidance of this
commonly-used modelling assumption.

7.5.3 Incorporating ligand properties increases perfor-
mance further

The Nrot feature, unlike the remaining five fixed Vina features,
which encode properties of the protein-ligand complex, is exclu-
sively a property of the ligand. It is the number of rotatable
bonds, effectively an estimation of the flexibility of the ligand.
When model 3 was run with five features (all but Nrot), test set
error increased from a best RMSE of 1.67 to 1.74, and Rs corre-
lation dropped from 0.741 to 0.706 on the PDBbind benchmark,
as shown in Figure 7.4. Similar performance degradation was
also observed on the PDBbind v2013 blind benchmark. This
result shows that it is advantageous to add Nrot as a model
feature. More broadly, this suggests that incorporating ligand
properties into the model, such as those that are routinely used
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in ligand-based QSAR models, may enhance performance fur-
ther. Likewise, features encoding protein properties could also
extend the capabilities of generic scoring functions.

7.5.4 The impact of overfitting on RF performance

It has been recently claimed [14] that the tendency of machine-
learning scoring functions to overfit training data is a weak point
limiting their application. This is a surprisingly common mis-
conception, whereby a less overfitted model is regarded as neces-
sarily better than a more overfitted model. The latter implicitly
assumes that the impact of overfitting will be the same for dif-
ferent classes of regression models. Nevertheless, some models,
e.g. RF, are robust to overfitting in the sense that this has a
low impact on its generalization ability.

To quantify the impact of overfitting, we trained MLR::Vina
and RF::Vina on the same 1105 complexes and use them to pre-
dict the binding affinity of the 195 test set complexes in partition
1 in Table 7.1. MLR::Vina performed better on the training set
than on the test set (SD=1.73 vs SD=1.87, respectively), which
suggests that classical scoring functions only have a small de-
gree of overfitting. In contrast, RF::Vina’s performance was
much better on the training set than on the test set (SD=0.60
vs SD=1.61, respectively), which evidences that RF significantly
overfits training data. However, the large performance gain of
RF::Vina over MLR::Vina on the test set (SD=1.61 vs SD=1.87,
respectively) makes clear that RF::Vina is substantially more
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(a) RF::Vina with Nrot on v2007.
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(b) RF::Vina without Nrot on v2007.
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(c) RF::Vina with Nrot on v2013.
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(d) RF::Vina without Nrot on v2013.

Figure 7.4: Performance of RF::Vina including and excluding the Nrot feature
on the PDBbind v2007 and v2013 blind benchmarks.
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accurate than MLR::Vina regardless of overfitting. Therefore,
overfitting cannot be used to anticipate the relative performance
of two different models on a test set and hence it is necessary to
measure the true impact of overfitting on the compared models.

Next, we used partition 5 from Table 7.1 to provide further
evidence that overfitting is not a weak point limiting the applica-
tion of RF-based scoring functions. The training set is composed
of 2897 complexes and test set is composed of 382 complexes,
which as that from partition 1 also contains complexes that are
very different among themselves. The test set was subdivided
into five equally-sized new sets and the operation was repeated
ten times to provide 50 different smaller test sets with 76 or
77 complexes each. Thereafter, we evaluated MLR::Vina and
RF::VinaElem on each test set and plotted the resulting SD er-
rors in Figure 7.5. If overfitting was a problem with RF, a highly
variable difference in performance between both models would
have been observed, with the less overfitted model being often
better than the more overfitted model. By contrast, not once
MLR::Vina outperformed RF::VinaElem.

7.5.5 Improvement of AutoDock Vina using RF

RF::VinaElem is the product of two improvements over Vina:
using RF on the six Vina features to circumvent the need of a
functional form (model 3) and combining the latter with an ex-
panded set of 42 features incorporating the 36 RF-Score features
(model 4). Figure 7.2 clearly shows that RF::VinaElem greatly
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Figure 7.5: MLR::Vina and RF::VinaElem, both trained on the same 2897
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improved Vina by -0.90 in RMSE, -0.57 in SD, +0.249 in Rp
and +0.190 in Rs. In comparison, the NHA baseline obtained
RMSE=2.15, SD=2.15, Rp=0.431, Rs=0.510, and the MWT
baseline obtained RMSE=2.16, SD=2.17, Rp=0.418, Rs=0.496.

Figure 7.3 also shows the same conclusion, with RF::VinaElem
also achieving a substantial improvement over Vina of -0.86 in
RMSE, -0.37 in SD, +0.280 in Rp and +0.245 in Rs. While
there is a significant decrease in Rp and Rs for both scoring
functions with respect to the PDBbind benchmark (compare
Figures 7.2 and 7.3), the relative performance of both scoring
functions is similar on both benchmarks as it was anticipated
[201]. In comparison, the NHA baseline obtained RMSE=1.90,
SD=1.89, Rp=0.295, Rs=0.363, and the MWT baseline ob-
tained RMSE=1.90, SD=1.90, Rp=0.269, Rs=0.330.

On the other hand, it is well known that there is a consider-
able correlation between ligand size and binding affinity. Thus,
simple models such as the MWT baseline have been used to
put in perspective the performance of scoring functions. Table
7.2 shows that many classical scoring functions are close to or
even below this simple baseline. By contrast, RF::VinaElem
obtained an Rp of 0.803 on the PDBbind benchmark, which
almost doubles that of MWT (0.418). On the 2013 blind bench-
mark, RF::VinaElem obtained a Rp of 0.686 whereas MWT’s
was just 0.269. This is not surprising as RF::VinaElem has
been designed to learn the relationship between intermolecular
interactions and binding affinity from structural data, not lig-
and properties, which were solely used in the NHA and MWT
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baselines.
Overall, it is remarkable that RF::VinaElem achieved an er-

ror of just 1.44 pKd units, or 1.96 kcal/mol equivalently, in a
blind benchmark comprising such a diverse independent test set
(Figure 7.3). In comparison, Vina’s RMSE=2.30 translates to
3.14 kcal/mol. It would be interesting to see how well other
classical scoring functions perform on this benchmark, such as
those in Table 7.2 and even theoretically more accurate tech-
niques such as free energy calculations [238].

7.5.6 Machine-learning scoring functions are remark-
ably more accurate than empirical scoring func-
tions

Table 7.2 compares the performance of RF::VinaElem against
that of 21 classical scoring functions and two naive baselines,
NHA and MWT. NHA is simply a linear regression model with
the number of heavy atoms of the ligand as only variable. MWT
uses the molecular weight of the ligand as the variable instead.
Some other classical scoring functions only reported some of
the performance measures, and hence cannot be included in the
full comparison in Table 7.2. These are DSXCSD::All [237] with
Rp=0.609, and HotLig [236] with Rs=0.609.

While it has been claimed [14] that empirical scoring func-
tions have similar accuracy than machine-learning scoring func-
tions, the results in Table 7.2 clearly demonstrate that this is not
the case. Indeed, the improvement introduced by RF::VinaElem
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Table 7.2: Performance of 22 scoring functions and 2 naive baselines on the
PDBbind benchmark.

Scoring function Rp Rs SD
RF::VinaElem 0.803 0.798 1.42
Cyscore 0.660 0.687 1.79
X-Score::HMScore 0.644 0.705 1.83
HYDE2.0::HbondsHydrophobic 0.620 0.669 1.89
DrugScoreCSD 0.569 0.627 1.96
SYBYL::ChemScore 0.555 0.585 1.98
AutoDock Vina 0.554 0.608 1.99
DS::PLP1 0.545 0.588 2.00
GOLD::ASP 0.534 0.577 2.02
SYBYL::G-Score 0.492 0.536 2.08
DS::LUDI3 0.487 0.478 2.09
DS::LigScore2 0.464 0.507 2.12
GlideScore-XP 0.457 0.435 2.14
DS::PMF 0.445 0.448 2.14
GOLD::ChemScore 0.441 0.452 2.15
NHA baseline 0.431 0.517 2.15
PHOENIX 0.616 0.644 2.16
MWT baseline 0.418 0.496 2.17
SYBYL::D-Score 0.392 0.447 2.19
DS::Jain 0.316 0.346 2.24
IMP::RankScore 0.322 0.348 2.25
GOLD::GoldScore 0.295 0.322 2.29
SYBYL::PMF-Score 0.268 0.273 2.29
SYBYL::F-Score 0.216 0.243 2.35
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over the best classical scoring functions is much larger than
what has recently been considered acceptable for publication.
For instance, Cyscore was shown to outperform the best clas-
sical scoring function, X-Score::HMScore, by only 0.04 in SD
error [14]. By contrast, RF::VinaElem improves Cyscore and
X-Score::HMScore by 0.37 and 0.41 in this study, respectively.
These are 9 and 10 times larger SD error reduction.

7.5.7 Machine-learning scoring functions assimilate data
better than empirical scoring functions

This subsection analyses the reasons why machine-learning scor-
ing functions perform so well in predicting the binding affinities
of diverse protein-ligand complexes. It also investigates how
this performance improvement over classical scoring functions
is expected to widen with the future availability of more train-
ing data. As explained, the 382 complexes appeared in 2013
were predicted with models trained on data up to 2002 (792
complexes in partition 2), 2007 (1300 complexes in partition 3),
2010 (2059 complexes in partition 4) and 2012 (2897 complexes
in partition 5).

Figure 7.6 shows how the performance in predicting binding
affinity varies with training data size. RF-based scoring func-
tions, i.e. models 3 and 4, are represented by boxplots to show
how their performance varies using 10 different random seeds for
training on the same data. Model 1 is off-the-shelf software and
model 2’s MLR is deterministic, so they are not stochastic and
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only a single performance value was obtained from a particular
training data set. The comparison between models 2 and 3 is
particularly striking. The performance of model 2, effectively a
classical scoring function, does not improve with training data
set size. By contrast, model 3, whose only difference with model
2 is in using RF instead MLR as the regression model, greatly
improves with more data. This demonstrates that the circum-
vention of an additive functional form is one of the reasons.

The second reason why machine-learning scoring functions
perform so well is that RF is capable of effectively exploiting
a more comprehensive set of structural features. This can be
seen by comparing the performance of models 3 and 4, which
only differ in that model 4 uses 36 features in addition to the 6
features used by model 3. Not only the difference in performance
is substantial but grows as more data is available for training.
This observation increases again the importance of using RF in
the future.

The same conclusions are reached from this complementary
view of performance: a non-parametric regression model per-
forms better because it circumvents modelling assumptions and
is capable of exploiting richer structural descriptions of the com-
plex. For the training set with the lowest number of complexes,
model 2 outperforms model 3, indicating that the additivity as-
sumption of classical scoring functions was the best approach
back in the days when few structures were available to calibrate
the scoring function. It is also noteworthy that model 1 performs
worse than model 2, which suggests that the nonlinear OLS used
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Figure 7.6: Performance in predicting binding affinity on the 382 new com-
plexes in 2013 using training sets formed by the complexes known in 2002,
2007, 2010 and 2012.
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in Vina is not as suitable as MLR, at least for this crucial aspect
of docking, i.e. scoring complexes. Note that model 1 represents
the situation where the Vina’s scoring function was used out of
the box without retraining for each set, although here we have
seen that improvements with data set size can only be gained
by using the appropriate regression model.

7.5.8 Machine-learning scoring functions can also be
used to interpret docking results

In addition to predicting binding affinity, the magnitude of the
terms or features of a scoring function for a docking pose can
be used to find out which the most important contributions to
binding are. There are a number of approaches for this sensitiv-
ity analysis. In a chemical series, one can look at how the value
of each feature correlates with measured binding affinity, the
more important for binding being those obtaining a higher cor-
relation. For a particular docking pose, one can multiply each
feature with its weight to obtain the energetic contribution to
binding of each feature. Because knowledge-based scoring func-
tions typically have no weights, it has been claimed [14] that
these can barely provide immediate physical interpretation of
the results. In reality, one could also evaluate the scoring func-
tion for that pose with each feature set to zero in turn, with the
features resulting in the largest variation in the predicted pKd
value being the most important. This can also be easily im-
plemented in machine-learning scoring functions to understand
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ligand binding.
Another potential issue is that the set of features may not be

directly related to intermolecular interactions. This is not the
case of model 3, which has the same six directly interpretable
features as model 2 representing an empirical scoring function.
Nevertheless, model 4 incorporates 36 additional features which
are not directly interpretable. Before assessing whether this is
a drawback, we should remember what interpretability is ulti-
mately useful for. Often, the optimisation of ligand potency is
carried out by synthesising derivatives that preserve important
favourable interactions and reduce unfavourable interactions ac-
cording to such interpretation. However, extracting knowledge
from a docking pose using a less accurate scoring function to use
the derived knowledge to optimise ligand potency is apparently
less accurate than simply using the most accurate scoring func-
tion to score all possible derivatives in order to synthesise those
that are predicted to be more potent. Therefore, rather than
a drawback, we believe that circumventing the interpretability
stage can be an advantage in structure-based optimisation.

7.5.9 The applicability domain of the developed scor-
ing functions

The applicability domain of a regression model is given by the
set of training data points and how they are represented. In
consequence, models 2 and 3 have the same applicability do-
main and thus are expected to work well on the same types of
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small molecules and proteins. Model 4 is trained and tested on
the same data sets and thus should have a similar applicability
domain than models 2 and 3. However, because model 4 incor-
porates an additional set of features, so the data representation
is different and thus the applicability domain is not exactly the
same. It is important to note that these features encode neither
the chemical structure of the ligand nor the sequence informa-
tion of the protein. Therefore, there is no reason to think that its
applicability domain is more restricted to the chemotypes and
protein families in the training set any more than other scoring
functions trained on the same data are.

7.6 Conclusions

We have seen that one can greatly improve Vina by circum-
venting its assumed functional form using RF as the regression
model and expanding the set of features describing the com-
plexes. The resulting machine-learning scoring functions have
either the same or very similar applicability domain by con-
struction. Furthermore, we have explained how these scoring
functions could be also used to understand binding. However,
we have also argued that extracting knowledge from the de-
scription that a scoring function provides of a docking pose is a
suboptimal way to improve ligand binding, as the direct appli-
cation of a more accurate scoring function on ligand derivatives
should perform better. We have demonstrated that the ten-
dency of RF-based scoring functions to overfit training data is
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not a limitation but instead a trait of these regression models
which are robust to overfitting. Finally, we have also suggested
that incorporating ligand- and protein-only properties into the
scoring function is a promising path to future improvements.

Another big contribution of this study is the release of free
software implementing RF::VinaElem so that it can be directly
used by the large number of Vina users, and literally by all users
after converting the file format to PDBQT using OpenBabel
[187] or AutoDock Tools [32]. Given the large number of Vina
users and the large increase in scoring accuracy achieved, we
have trained the best of our models on the most comprehensive
set of high-quality complexes and implemented it as easy-to-
use free software that directly re-scores Vina-generated poses.
Specifically, we refer to RF::VinaElem as RF-Score-v3, and we
have trained two RF models respectively on the 2959 complexes
from PDBbind v2013 refined set and on the 3444 complexes from
PDBbind v2014 refined set. RF-Score-v3, given its accuracy at
ranking complexes, should generally perform well on structure-
based drug lead optimization.

Because classical scoring functions generally use MLR as the
regression model and we have shown its inability to improve
with larger sizes of structural data, we expect that the perfor-
mance of any of these will be boosted by following the same
procedure we have applied here to Vina. We therefore sug-
gest developers modify their scoring functions accordingly so
that users can enjoy a much higher predictive accuracy. Using
non-parametric machine learning remains a largely unexplored
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approach to developing scoring functions. For example, the in-
corporation of ligand-only, protein-only and alternative inter-
molecular features, e.g. [239], is still to be fully investigated.

The proposed PDBbind 2013 benchmark, effectively a blind
test using four time-stamped training sets, has revealed that the
performance difference between classical and machine-learning
scoring functions will be larger as more structural data becomes
publicly available in the future. These machine-learning scoring
functions could include the very large number of experimentally
determined structures that are continuously generated by the
pharmaceutical industry and the academic institutes. Confi-
dentiality is not be a problem because only the inter-molecular
features and binding affinities of these structures are required
to train scoring functions, from which it is impossible to decode
the identity of either the targets or the bound molecules. It is
important to note that this is a new opportunity because, as
we have shown here, the regression model adopted by classical
scoring functions would not be able to exploit new flood of data.

As usual, e.g. [148], the performance of generic scoring func-
tions has been assessed by measuring their ability to predict
the binding affinities of diverse protein-ligand complexes. Given
its accuracy at this task, RF-Score-v3 should generally perform
well on structure-based drug lead optimization applications. We
have however not yet investigated its ability to discriminate be-
tween binders and non-binders in virtual screening (VS) settings,
as it is important to first study binding affinity prediction in iso-
lation so as to avoid additional confounding factors such as true
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binders that might not bind to the assumed binding conforma-
tion or pocket as well as assumed non-binders that might be
actually binding. This problem, known as enrichment, belongs
to another dedicated study, as it has previously been the case
[54, 240], mainly because additional research is required to find
an optimal configuration of the scoring function, which might
involve different features and training strategies. Since these
issues are hence out the scope of this study, we are not mak-
ing any claim about how RF-Score-v3 will compare to classical
scoring functions on VS benchmarks. However, we expect that
it will excel at VS because: 1) excellent prospective results have
already been achieved with the less accurate RF-Score-v1 [140],
2) pose generation error has typically a low impact on binding
affinity prediction [9], 3) accurate ranking by the affinity of true
binders is a necessary condition for top VS performance, and
4) non-binders are nothing but extremely weak binders whose
low affinity should be best predicted by RF-Score-v3. In fact,
machine-learning scoring functions have already demonstrated
substantial improvements over classical scoring functions on VS
benchmarks [241].

7.7 Availability

RF-Score-v3 is free and open source under Apache License 2.0.
The source code is available at https://github.com/HongjianLi/RF-
Score. The precompiled 64-bit executables for Linux and Win-
dows, a README file for operating instructions, a prebuilt RF



CHAPTER 7. RF-SCORE-V3: BINDING AFFINITY PREDICTION 219

file, a sample protein file and a sample ligand file in PDBQT for-
mat are available at http://istar.cse.cuhk.edu.hk/rf-score-3.tgz.

7.8 Future works

The current study can be extended in multiple aspects. From
the perspective of training data compositions, leave-cluster-out
cross validation (LCOCV) [198] is becoming a popular validation
method in evaluating scoring function performance of predict-
ing binding affinity of truly new protein targets. [242] compares
confirmed inactive and randomly selected compounds as nega-
tive training examples in support vector machine-based virtual
screening. [243] analyzes the influence of negative training set
size on machine learning-based virtual screening.

From the perspective of new benchmarks, the well known
PDBbind benchmark has recently been updated to CASF-2013
[244], and 20 scoring functions, most of which are implemented
in mainstream commercial software, have been evaluated in terms
of “scoring power” (binding affinity prediction), “ranking power”
(relative ranking prediction), “docking power” (binding pose
prediction), and “screening power” (discrimination of true binders
from random molecules) [245].

From the perspective of features, the DRAGON 6 software
[246], available at http://www.talete.mi.it/, can calculate 4885
molecular descriptors. PaDEL-descriptor [247] and QuBiLS-
MIDAS [248] are free software for molecular descriptors com-
putation. It is also possible to borrow the ideas of UFSRAT
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[249] and USRCAT [20] and generate features from subsets of
atoms.

From the perspective of regression models, the random gener-
alized linear model (RGLM) has recently been proposed [250] as
a highly accurate and interpretable ensemble predictor, and sub-
sequently evaluated in predicting the status of COPD (chronic
obstructive pulmonary disease) [251].

From the perspective of applications, it is interesting to see an
analogous scoring function tailored to the enrichment problem
of discriminating between binders and non-binders, as well as
scoring functions specific to protein families [252]. Moreover,
like T-PioDock [253], machine-learning scoring functions can be
applied to protein-protein docking.

2 End of chapter.



Chapter 8

RF-Score-v4: pose generation
error

In prospective virtual screening, accurate prediction of binding
affinity of docked poses is crucial for ranking compounds. How-
ever, many existing studies focus on scoring crystal complexes
only, without considering the impact of pose generation error.
Therefore the high accuracy claimed in those studies would po-
tentially lead to degradation of predictive performance when
their methods are applied to scoring docked poses.

In this study we investigate the impact of pose generation er-
ror on the predictive performance of both classical and machine-
learning scoring functions. We also study their capability of
predicting the near-native pose that is most conformationally
closest to the crystal pose. Our results show that pose genera-
tion error affects the accuracy of scoring functions, which is well
anticipated. To minimize this negative impact, re-training the
scoring functions on docked poses instead of crystal poses can
be a straightforward solution. On the other hand, we find that

221
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although machine-learning scoring functions are generally good
at binding affinity prediction, they do not perform as well as
classical scoring functions on native pose prediction. This indi-
cates that predictions of binding affinity and native pose are two
different tasks and no single scoring function performs optimally
for both tasks.

This was a collaborative project with Pedro J. Ballester from
Cancer Research Center of Marseille, Marseille, France. It was
published in Proceedings of the 11th International Meeting on
Computational Intelligence Methods for Bioinformatics and Bio-
statistics (CIBB) on 26 June 2014 [18].

8.1 Background

Protein-ligand docking predicts the binding conformation (pose)
of a ligand when bound to a target protein to form a stable
complex, as well as their binding affinity. The former process
is known as pose generation and the latter is known as scoring.
The current limitation is in accurate scoring. In the previous
chapter, we have already seen that RF-Score-v3 accurately pre-
dicted the binding affinities of crystal protein-ligand complexes.

8.2 Motivation

Although there have been quite some studies [15–17] on scoring,
they only concentrate on crystal complexes in order to avoid con-
founding factors introduced by pose generation, therefore their
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methods and conclusions are only applicable to scoring crystal
complexes. However, scoring of the docked poses of a molecule is
required when the experimentally determined pose is not avail-
able. This is the common case in prospective virtual screen-
ing, such as our istar web service. Hence accurate prediction
of binding affinity of a docked pose can be practically mean-
ingful in sorting candidate compounds in a database. Although
RF-Score-v3 has been vigorously validated on crystal poses, its
predictive power on docked poses is yet to be investigated.

8.3 Objective

Here we study the impact of pose generation error on classical
and machine-learning scoring functions. Furthermore, we inves-
tigate which of these scoring functions is the most suitable for
predicting the near-native pose, i.e. the docked pose most simi-
lar to the crystal pose. This kind of capability is referred to as
“docking power” in some other studies [245].

This study can be regarded as an extension to the previous
chapter [16, 17]. The same models, materials and metrics were
reused, with some slight adjustments specifically for the pur-
pose of this study. Likewise, the numerical experiments were
performed with AutoDock Vina [8] as the classical scoring func-
tion because it is one of the most popular docking software, and
RF-Score [10] as the machine-learning scoring function because
it has been vigorously studied in multiple aspects [9, 50, 140].
Note that although this chapter and the previous chapter share
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some similarities in terms of methods and materials, their ap-
plications are fundamentally different.

8.4 Methods

We reused the four models, the two benchmarks, and the four
performance measures described in the previous chapter. Here
we only highlight the differences that were made particularly for
investigating the impact of pose generation error. For this pur-
pose, new experiments were designed to generate and measure
docked poses.

8.4.1 Model 1 - AutoDock Vina

Vina’s score for the kth pose of a molecule is given by the pre-
dicted free energy of binding to the target protein and computed
in Vina as:

ek =
ek,inter + ek,intra − e1,intra

1 + w6Nrot
(8.1)

Unlike the previous chapter, where k = 1 because only the
crystal pose was considered, in this study we aim at docked poses
and thus k can be an arbitrary value. Therefore ek,intra and
e1,intra cannot be cancelled out. As a result, five more features
from ek,intra were incorporated in models 2, 3 and 4, constituting
a feature vector of 11 elements.
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8.4.2 Model 2 - MLR::Vina

This is a multiple linear regression (MLR) model using the 11
unweighted Vina terms as features. Similarly, in order to make
the problem amenable to MLR, we made a grid search on the w6

weight and thereafter ran MLR on the remaining ten weights.
The sampling range for w6 was extended to [0.000 to 0.030] with
a step size of 0.001 because of more variability when multiple
docked poses were considered.

8.4.3 Model 3 - RF::Vina

This is a random forest (RF) model with the 11 Vina features
using the default 500 trees and mtry values from 1 to 11. The se-
lected model was the one that provided the lowest RMSE (Root
Mean Square Error) on the OOB (Out of Bag) data. This pro-
cess was repeated ten times with ten different random seeds
because RF is stochastic.

8.4.4 Model 4 - RF::VinaElem

This is an extension to RF::Vina and incorporates the 36 RF-
Score features. Hence, it was built with 47 features. This process
was also repeated ten times with ten different random seeds.

8.4.5 The PDBbind benchmark

We reused the PDBbind v2007 benchmark because the four
models have been evaluated on it in the previous chapter, per-
mitting a direct comparison. Briefly, the test set comprises
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195 diverse complexes with measured binding affinities span-
ning more than 12 orders of magnitude, whereas the training
set comprises 1105 non-overlapping complexes.

8.4.6 The 2013 blind benchmark

We reused the PDBbind v2013 blind benchmark because the
four models have been evaluated on it in the previous chapter,
allowing a direct comparison. Briefly, the test set comprises 382
complexes newly added in the 2013 release, whereas the training
set comprises 2897 complexes from PDBbind v2012 refined set.

8.4.7 Performance measures

We reused the four performance measures: root mean square
error RMSE, standard deviation SD, Pearson correlation coeffi-
cient Rp and Spearman correlation coefficient Rs between pre-
dicted and measured binding affinity. Note that RMSE was not
calculated in a linear correlation, while SD was.

8.4.8 Experimental design

To generate docked poses, each ligand in the two benchmarks
was docked into the binding site of its target protein using Vina.
This process is known as redocking. As usual [9], the search
space was defined first by finding the smallest cubic box that
covers the entire ligand and then by extending the box in X, Y,
Z dimensions by 10Å. Redocking a ligand resulted in up to nine
docked poses output by Vina.
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Here we define two schemes to refer to different poses from
which the features are extracted. In scheme 1, the chosen pose is
the crystal pose. In scheme 2, the chosen pose is the docked pose
with the best Vina score, i.e. the one with the lowest Vina score
in terms of estimated free energy. We trained the four models
on both crystal and docked poses (in both schemes), and tested
them also on both crystal and docked poses (in both schemes).
Hereafter whenever we mention the docked pose, we implicitly
refer to the one with the best Vina score, if not specified explic-
itly.

8.5 Results

After redocking by Vina, we used root mean square deviation
(RMSD) to quantify the pose generation error, i.e. how differ-
ent the 3D geometry of the redocked pose is from the corre-
sponding crystal pose of the same ligand molecule. A RMSD
value of 2Å was used as a publicly accepted positive control for
correct bound structure prediction. 101 out of the 195 ligands
(52%) in the PDBbind v2007 benchmark and 219 out of the
382 ligands (57%) in the PDBbind v2013 blind benchmark had
their best-scoring docked pose with RMSD < 2Å. When all the
docked poses (up to nine) were considered, these redocking suc-
cess rates increased to 76% and 81%, respectively. These results
are consistent with those obtained in [9], where Vina managed
to predict a conformation sufficiently close to that of the co-
crystallized ligand as the first conformation in over half of the
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Table 8.1: Performance of the four models trained on crystal and docked
poses and tested also on crystal and docked poses on the PDBbind v2007
benchmark.

Model Training Test RMSE SD Rp Rs
1 Crystal Crystal 2.41 1.99 0.554 0.608
2 Crystal Crystal 1.88 1.85 0.630 0.680
3 Crystal Crystal 1.66 1.59 0.744 0.752
4 Crystal Crystal 1.52 1.42 0.803 0.799
1 Crystal Docked 2.02 1.98 0.557 0.597
2 Crystal Docked 1.90 1.87 0.622 0.670
3 Crystal Docked 1.76 1.72 0.693 0.710
4 Crystal Docked 1.60 1.52 0.772 0.771
2 Docked Crystal 1.91 1.88 0.618 0.648
3 Docked Crystal 1.74 1.69 0.705 0.716
4 Docked Crystal 1.58 1.45 0.794 0.790
2 Docked Docked 1.86 1.83 0.640 0.667
3 Docked Docked 1.69 1.63 0.730 0.730
4 Docked Docked 1.55 1.45 0.795 0.789

cases.
Tables 8.1 and 8.2 enumerate the predictive performance of

the four models trained on crystal and docked poses and tested
also on crystal and docked poses on the PDBbind v2007 bench-
mark and the PDBbind v2013 blind benchmark, respectively.
Figures 8.1 and 8.2 plot the same results graphically, where
trn-1 means the model was trained in scheme 1, i.e. on crys-
tal poses, and trn-2 means the model was trained in scheme 2,
i.e. on docked poses. Likewise, tst-1 and tst-2 mean the model
was tested on crystal and docked poses, respectively. Note that
model 1 was trained on crystal poses and used out of the box
without re-training, so its results of trn-1 are simply repeated
for trn-2.

From these results on both benchmarks, several interesting
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Figure 8.1: Performance of the four models trained on crystal and docked
poses and tested also on crystal and docked poses on the PDBbind v2007
benchmark.
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Figure 8.2: Performance of the four models trained on crystal and docked
poses and tested also on crystal and docked poses on the PDBbind v2013
blind benchmark.
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Table 8.2: Performance of the four models trained on crystal and docked
poses and tested also on crystal and docked poses on the PDBbind v2013
blind benchmark.

Model Training Test RMSE SD Rp Rs
1 Crystal Crystal 2.30 1.81 0.406 0.414
2 Crystal Crystal 1.67 1.67 0.535 0.521
3 Crystal Crystal 1.54 1.54 0.629 0.593
4 Crystal Crystal 1.43 1.43 0.689 0.662
1 Crystal Docked 1.87 1.78 0.437 0.432
2 Crystal Docked 1.70 1.69 0.520 0.505
3 Crystal Docked 1.61 1.60 0.585 0.549
4 Crystal Docked 1.49 1.49 0.656 0.633
2 Docked Crystal 1.69 1.69 0.521 0.509
3 Docked Crystal 1.62 1.61 0.580 0.560
4 Docked Crystal 1.48 1.47 0.669 0.650
2 Docked Docked 1.68 1.68 0.524 0.509
3 Docked Docked 1.59 1.59 0.594 0.553
4 Docked Docked 1.47 1.48 0.665 0.643

phenomena are observed. First, for model 1, its performance
tested on docked poses was always better than its performance
tested on crystal poses, except for the Rs performance on the
PDBbind v2007 benchmark. Vina performing better on docked
poses is likely to be due to the fact that docked poses are by
construction optima of the objective function spanned by the
Vina score, which may favor prediction of docked poses over
unoptimized crystal poses.

Second, for models 2, 3 and 4 trained on crystal poses, their
performance tested on docked poses was always worse than their
performance tested on crystal poses. This is well anticipated
because of the impact of pose generation error.

Third, for models 2, 3 and 4 tested on docked poses, their
performance was better when they were trained on docked poses
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than their counterparts trained on crystal poses. This implies
that a simple and quick solution to improving performance on
docked poses is to re-train the model on docked poses instead of
on crystal poses.

Fourth, for models 2, 3 and 4 tested on crystal poses, the
models trained on docked poses did not outperform their coun-
terparts trained on crystal poses. This is also well anticipated
due to the impact of pose generation error, and suggests that it
is not feasible to improve the predictive performance on crystal
poses by using docked poses for training.

Fifth, regardless of the training or test schemes, model 4
consistently outperformed model 3, which in turn outperformed
model 2, which in turn outperformed model 1. It is remarkable
that the best scoring function, RF::VinaElem, when trained on
docked poses, achieved the highest performance in the litera-
ture on the PDBbind v2007 benchmark in the more common
application of re-scoring docked poses. Here we denote this ver-
sion of RF::VinaElem as RF-Score-v4 specifically for the pur-
pose of binding affinity prediction given a docked pose. Im-
portantly, since Vina and RF::Vina used the same features and
were trained on the same data, RF::Vina performed much better
in predicting binding affinity than the widely-used Vina while
having the same applicability domain.

Next, we assessed the ability of each of the four models to
predict the near-native pose from the up to nine docked poses
output by Vina (Table 8.3). In other words, we would like to see
if a model could correctly assign the best score to the particular
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Table 8.3: Performance of the four models in near-native pose prediction.

PDBbind v2007 benchmark PDBbind v2013 blind benchmark
Model # % # %

1 94 48 208 54
2 59 30 142 37
3 53 27 119 31
4 59 30 141 37

docked pose having the lowest RMSD to the crystal pose out
of at most nine docked poses. Interestingly, results show that
Vina, although being the least accurate predictor of binding
strength, turned out to be the best at predicting which docked
pose is geometrically the closest to the crystal pose. This is
probably due to the fact that, as explained previously, the best-
scoring docked pose was resulted from the optimization of Vina’s
scoring function during redocking. In contrast, the presented
machine-learning scoring functions, while excelling at binding
affinity prediction, performed much worse than Vina at native
pose prediction. This indicates that these two tasks, binding
affinity prediction and native pose prediction, cannot be opti-
mally covered by a single scoring function.

8.6 Conclusions

This study has demonstrated that errors in pose generation gen-
erally introduce a degradation in the accuracy of scoring. One
straightforward approach to enhancing predictive accuracy on
docked poses is to re-train the scoring function also on docked
poses. Furthermore, RF-Score-v4, essentially RF::VinaElem trained
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on docked poses, obtained the highest predictive performance
on two PDBbind benchmarks in the common scenario where
one has to predict the binding affinity of docked poses instead
of those for crystal poses, usually because a crystal structure
of the ligand is unavailable. Nevertheless, we observed that the
presented machine-learning scoring functions did not perform as
well as Vina in predicting the near native pose of a ligand. This
could be due to the confounding factor that the docked poses
were all generated and optimized by Vina. It is out of the scope
of this study to investigate the generalization of these conclu-
sions to other machine learning methods such as support vector
regression, but we expect them to yield similar conclusions.

8.7 Future works

The redocking experiment was carried out by Vina in this study.
It is of great interest to repeat the experiment with idock to
see if the same conclusions still hold. If so, we can substitute
RF-Score-v4 for RF-Score-v3 in our istar web platform for large-
scale prospective virtual screening.

2 End of chapter.



Chapter 9

USR@istar: ultrafast shape
recognition

Finding compounds structurally similar to a query ligand has
been an important but daunting problem for a long time. The
USR (Ultrafast Shape Recognition) algorithm represents a whole
new alignment-free method that encodes the shape information
semantically and permits superfast screening of a large molec-
ular database. A few extensions to USR improve the origi-
nal method from various perspectives and three of them, UF-
SRAT, EDULISS and SwissTargetPrediction, are also available
as web servers. However, UFSRAT and EDULISS are unable
to discriminate between long, chain-like molecules, and their
calculated distributions are not meaningful when some pharma-
cophoric features are rarer than others. SwissTargetPrediction
uses a small, well annotated, bioactive compound database and
is generally for target fishing.

For prospective virtual screening purposes, in this study we
have implemented USR and its extension USRCAT (USR with

235
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Credo Atom Types) on top of our istar web platform. We re-
used the large molecular database of more than 23 million di-
verse ligands originally accompanied with idock, and exploited
three levels of parallelism with a novel implementation of sum of
absolute differences using AVX (Advanced Vector Extensions) to
accelerate similarity score calculation. Our USR@istar supports
a query ligand in either SDF, MOL2, XYZ, PDB or PDBQT
format, and interfaces with our iview WebGL visualizer for in-
teractive visualization of high-score hits. USR@istar is freely
available at http://istar.cse.cuhk.edu.hk/usr. In the future we
will exploit caching and indexing algorithms to further speed
up USR matching and implement geometrical and functional
clustering.

To thoroughly benchmark USR@istar, we selected 19 query
ligands with different molecular sizes. Not unexpectedly, rank-
ing by USR or USRCAT score yielded different output, partic-
ularly if the query ligand was large. When the query ligand had
more than four rotatable bonds, both methods failed to recover
the query ligand in a different pose in the output due to the large
torsional diversity implied. Surprisingly, input file format was
found to affect the classification of atoms into predefined phar-
macophoric subsets. We also observed that loading database
features in advance significantly reduced the matching runtime
from 167 seconds to just 30 seconds on average for a query.

We believe USR@istar, which circumvents the requirement of
macromolecular structure, would be an excellent supplement to
our existing idock@istar.



CHAPTER 9. USR@ISTAR: ULTRAFAST SHAPE RECOGNITION 237

This is an ongoing collaborative project with Pedro J. Ballester
from Cancer Research Center of Marseille, Marseille, France.

9.1 Background

Molecular shape has been widely acknowledged as a key fac-
tor for biological activity and is thus regarded as a very impor-
tant pattern for drug searching. Searching a molecular database
for compounds that most closely resemble the shape of a given
query molecule, be it a known inhibitor of a target protein, a
natural product, or even a patented compound, finds pragmatic
applications in ligand-based virtual screening [140, 254–258] and
target fishing [259–262]. Therefore molecular similarity search
can assist in discovering structurally novel active compounds,
or in identifying potential interacting target of bioactive lig-
ands, which is useful for understanding the polypharmacology
and safety profile of existing drugs. Furthermore, this approach
can be applied to other scientific disciplines such as performing
similarity comparisons between proteins or designing content-
based Internet search engines for 3D geometrical objects [263].

The molecular shape similarity can be quantified by methods
based on structural alignment [264–267] or shape recognition
[19, 20, 268]. Structural alignment is also known as molecular
superposition, and requires precise geometric comparison, which
is often computationally demanding. Shape recognition, on the
other hand, encodes shape information into a numerical feature
vector, which can be subsequently used to compute a similarity
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score between two molecules very efficiently.
USR (Ultrafast Shape Recognition) [19] was the very first

non-superposition method for molecular shape comparison, and
demonstrated superior computational performance at least three
orders of magnitude faster than previously existing alignment-
based methods. USR has another major advantage of being
invariant to spatial rotation and translation, and hence circum-
vents the problematic requirement of aligning molecules. USR
defines the shape of a molecule independently and for every
molecule uses a fixed set of 12 descriptors derived from the first
3 statistical moments of distributions of interatomic distances
between atoms and 4 purposely-selected centroids. This encod-
ing scheme ensures that every molecule has a unique location in
the 12-dimensional chemical space spanned by the used descrip-
tors, and consequently enables finding and visualizing clusters
of molecules with similar shapes [254, 263]. Selecting the most
representative molecule of each cluster can avoid repeating ex-
pensive biological tests on similar molecules [263]. The ability of
USR as a standalone method was studied to identify molecules
sharing common biological activities through retrospective [254]
and prospective [140, 255–258] virtual screening experiments.
Prospectively, USR was applied to the discovery of inhibitors
of arylamine NATs (N-acetyltransferases) [255], DHQase2 (de-
hydroquinase type 2) [140], PAD4 (protein arginine deiminase
type 4) [256], p53-MDM2 (murine double minute 2) [257], and
PRL-3 (phosphatase of regenerating liver) [258]. USR was also
used for deduplication in a virtual screening campaign [269] and
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in our iSyn [12, 13] de novo ligand design software.
Since USR was devised in 2007, there have been quite a few

extensions [20, 249, 260, 261, 268, 270–274] to augment the orig-
inal method. [270] presented a hybrid approach composed of
USR and the topological MACCS key descriptors, which are bi-
nary in nature and encode the presence or absence of 166 prede-
fined structural fragments. It used the first four unbalanced mo-
ments of each distribution of atomic distances and incorporated
additional chemical information through 2D structural similar-
ity. Random Forest [139] was used for multi-class classification.
Incorporating an additional central moment, the kurtosis, was
found to significantly improve the performance. The addition
of the fifth central moment, however, did not improve the per-
formance sufficiently to justify the increased computational ex-
pense.

UFSRAT [249] addressed the lack of discrimination between
compounds having similar shape but distinct pharmacophoric
features by subdividing atoms into four subsets which are heavy,
hydrophobic, hydrogen bond acceptor or donor atoms, accord-
ing to their atom types. For each subset, the four centroids
were calculated, and so were the 12 USR descriptors. There-
fore 48 descriptors were resulted. This was to ensure that sim-
ilar compounds are able to make the same type of interac-
tions within biological systems as the query ligand. UFSRAT
was prospectively applied to the discovery of inhibitors of 11β-
HSD1 (hydroxysteroid dehydrogenase type 1) [275]. UFSRAT
is available as a web server at http://opus.bch.ed.ac.uk/ufsrat/,
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which contains 28 databases with the largest one containing
4,853,000 conformers. UFSRAT is also employed for geometri-
cal similarity searches in the EDULISS database [271] available
at http://eduliss.bch.ed.ac.uk/, which comprises over 5 million
commercially available compounds.

CSR [272] and USR:OptIso [273] attempted to tackle the lack
of discrimination between chiral compounds. Their novel idea
was to position the centroids in such a way that they clearly dis-
tinguish between enantiomers, i.e. optical isomers. They both
used cross product because it is an operator that transforms
equivariantly under rotations and translations, but not under
reflections. The two methods differed in selecting the centroids
and in replacing or supplementing the new optical isomerism
descriptor [273]. CSR [272] was tested on the DUD (Directory
of Decoys) dataset [276], where a significant improvement in en-
richment was found over USR. USR:OptIso [273] was shown to
be helpful for analyzing molecules with stereogenic centers, at-
ropisomerism, and in the clustering of conformers generated by
systematic bond rotation.

ElectroShape [268, 274] extended the CSR [272] method by
encoding electrostatics and liphophilicity through additional di-
mensions and centroids. In [274], the partial charge was rep-
resented as a fourth coordinate, with atoms being identified by
points in four-dimensional space. ElectroShape was validated
using release 2 of the DUD dataset [276], and showed a near
doubling in enrichment over USR and CSR. Different imple-
mentations of partial charge were also revealed to affect the
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enrichment performance significantly. The addition of a fourth
statistical moment, as was done in [270], improved USR and
CSR but not ElectroShape, suggesting that adding extra in-
formation might not necessarily improve enrichment but could
dilute the information already included. In [268], ElectroShape
was further extended by using atomic lipophilicity as an addi-
tional molecular property, with atoms being identified by points
in five-dimensional space. This version of ElectroShape showed a
clear improvement in performance, indicating that adding extra
independent atomic properties makes shape-based enrichments
even better.

USRCAT [20] extended the UFSRAT [249] method by iden-
tifying five subsets of atoms with the help of the SMARTS pat-
terns used for atom typing in the CREDO database [277, 278].
The five subsets were chosen to be heavy, hydrophobic, aro-
matic, hydrogen bond acceptor or donor atoms. Aromatic-
ity was added to USRCAT as a pharmacophoric subset be-
cause USR was unable to discriminate between long, chain-like
molecules such as certain heteropeptides and long alkylchains
in particular. Unlike UFSRAT [249], USRCAT [20] derived the
four centroids from heavy atom coordinates and used them to
calculate the distributions for all the five subset moments to
improve screening performance. USRCAT was shown to out-
perform the traditional USR method in a retrospective virtual
screening benchmark on the DUD-E (Directory of Decoys, En-
hanced) dataset [279]. The highest enrichment factors were only
achieved if the LEC (Lowest Energy Conformer) of an active was
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used as a query and if the LECs were included in the target set,
but this observation could not be generalized. DUD-E was found
to be not ideal to benchmark the virtual screening performance
of global shape similarity algorithms such as USR and its vari-
ants due to the large variations in molecular size of the active
ligands.

A recent study [260] used a reference set of 224,412 molecules
active on 1,700 human proteins and showed that accurate target
prediction can be achieved by using a multiple logistic regres-
sion to combine different measures of chemical similarity based
on both chemical structure and molecular shape, with the for-
mer using FP2 fingerprints and the latter using ElectroShape
[268]. This hybrid method was subsequently encapsulated into
the SwissTargetPrediction [261] web server, freely available at
http://www.swisstargetprediction.ch/, to identify new targets
for uncharacterized molecules or secondary targets for known
molecules. With data collected from the ChEMBL database
version 16 [280], the molecular library was expanded to 280,000
compounds active on 2,686 targets of the organisms of human,
mouse, rat, cow and horse. Mapping predictions by homology
within and between different species, a powerful approach to
translate results obtained in model organisms to human, were
enabled for close paralogs and orthologs.

Table 9.1 summarizes USR and its variants.
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Table 9.1: Summary of USR-like methods.

method novelty references
USR encoding shape by atomic distribution [19]
USR+MACCS incorporating chemical similarity [270]
UFSRAT subdiving atoms into pharmacophoric subsets [249, 271]
CSR repositioning reference locations [272]
USR:OptIso repositioning reference locations [273]
ElectroShape expanding coordinate dimension [268, 274]
USRCAT subdiving atoms into pharmacophoric subsets [20]
SwissTargetPrediction mixing ElectroShape and chemical similarity [260, 261]

9.2 Motivation

Among the USR variants mentioned above, only three of them
[249, 261, 271] have been made available as web servers together
with different databases for different purposes. The UFSRAT
[249] and EDULISS [271] web servers both employ the UFSRAT
[249] method for ligand similarity search. However, as pointed
out in [20], this method is incapable of discriminating between
long, chain-like molecules such as certain heteropeptides and
long alkylchains because aromaticity is not considered as a phar-
macophoric subset; besides, calculating the four centroids for
each set of atoms individually is problematic because either the
parameters cannot be calculated at all or the underlying dis-
tance distributions are not with respect to the overall shape of
a molecule and not meaningful when some pharmacophoric fea-
tures are rarer than others. The UFSRAT [249] web server re-
stricts the input query ligand to be one molecule in SDF format
only, and does not support online visualization. The EDULISS
[271] web server requires drawing a query structure in a Java
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molecular editor, which is being disabled on more and more sys-
tems due to security concerns. The SwissTargetPrediction [261]
web server, on the other hand, comprises well-annotated active
compounds and is primarily used for predicting the target pro-
teins of bioactive small molecules but not for prospective virtual
screening purposes.

9.3 Objective

In this project we aimed to provide an istar-based [9] web ser-
vice for large-scale prospective virtual screening using USR-like
methods. We chose to employ USR [19] and USRCAT [20] be-
cause they have demonstrated pragmatic usefulness in prospec-
tive [140, 255–258] and retrospective [20] virtual screening ex-
periments, respectively, and their Python source code is freely
available for studying the precise implementation and porting
to other programming languages such as C++ and JavaScript.

Our USR@istar has several distinctive features. First, it uses
both USR and USRCAT to search a large database comprising
23 million compounds collected from ZINC [27, 28]. Second,
it utilizes three levels of parallelism, both coarse grained and
fine grained, to accelerate job execution. Third, it supports a
query ligand in one job in five formats, and interfaces with the
iview [11] WebGL visualizer to display results in an interactive
manner.
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9.4 Methods

This section first reviews the general methods of USR [19] and
USRCAT [20], and then introduces their specific implementa-
tions on our istar platform [9].

9.4.1 USR and USRCAT

USR is based on the observation that the shape of a molecule
is uniquely determined by the relative position of its atoms,
which is in turn determined by the set of all interatomic dis-
tances. This convenient representation is independent of molec-
ular orientation or position, and thus eliminates any need for
alignment or translation. The interatomic distances are heav-
ily constrained by the forces that hold the atoms together, and
hence they contain more than sufficient information to accu-
rately describe molecular shape. So it is possible to use a set of
atomic distances from only a small number of strategic reference
locations uniquely defined in every molecule, and meanwhile re-
tain the discriminative power necessary to distinguish between
molecules.

The four reference locations are selected to be the molecular
centroid (ctd), the closest atom to ctd (cst), the farthest atom
to ctd (fct), and the farthest atom to fct (ftf). These locations
represent the center of the molecule and its extremes, and are
thus well separated. In this way molecular shape is described
by four distributions of atomic distances, where the number of
atomic distances is proportional to the number of atoms. In
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order to compare molecules with different number of atoms, the
first three moments of these distributions are computed and used
to encode the shape information instead. These moments have
semantics indeed. For instance, the 1st, 2nd and 3rd moments of
distribution of atomic distances to the molecular centroid (ctd)
capture the size, variance and skewness of the molecule, respec-
tively. Selecting the first three moments provides an excellent
compromise between the efficiency and the effectiveness of the
method. Finally the shape similarity score of two molecules is
calculated through the sum of absolute differences of their re-
spective moments.

In this study the first three moments are computed in the
same way as in ElectroShape [274], which is slightly different
than the way used in USR [19, 254, 255] and USRCAT [20].
Mathematically, for a distribution of atomic distances {dk}nk=1

to one of the four reference locations (ctd, cst, fct, ftf), where n
is the number of atoms, the first three moments are semantically
the mean, the standard deviation, and the cube root of the third
central moment, respectively. Their exact expressions are shown
in equations (9.1), (9.2) and (9.3). The roots are intended to
provide all moments with linear space dimension in Å, unlike
the skewness, for instance, which is unitless. This computation
allows the distributions to contain only one sample, in which
case the 2nd and 3rd moments will be zeros, i.e. µ2 = µ3 = 0

when n = 1. Likewise, when a distribution contains only two
samples, the 3rd moment will be zero, i.e. µ3 = 0 when n = 2.
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µ1 =
1

n

n∑
k=1

dk (9.1)

µ2 = 2

√√√√1

n

n∑
k=1

(dk − µ1)2 (9.2)

µ3 = 3

√√√√1

n

n∑
k=1

(dk − µ1)3 (9.3)

After a molecule is encoded into a 12-element moment vector
M = (µctd

1 , µctd
2 , µctd

3 , µcst
1 , µcst

2 , µcst
3 , µfct

1 , µfct
2 , µfct

3 , µftf
1 , µftf

2 , µftf
3 ),

the dissimilarity score of two molecules Mi and Mj can be
defined as the sum of absolute differences of their respective
moments, much like the city block distance. Thereafter, this
dissimilarity is monotonically inverted using equation (9.4) so
as to get transformed to a normalized similarity score, where
the minimum shape similarity is represented by score 0 and the
maximum similarity is represented by score 1. Any other inverse
monotonic function, such as cosine or L2-norm inversion, can do
this transformation if it preserves the ranking order. Equation
(9.4) is favored because it is simple, fast and interpretable, and
has fixed upper and lower bounds.

S(Mi,Mj) = (1 +
1

12

12∑
k=1

|Mi
k − Mj

k|)
−1 ∈ [0, 1] (9.4)

USR [19] is highly extensible via positioning reference loca-
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tions [272, 273], incorporating higher orders of moments [270,
274], expanding coordinate dimensions [268, 274], mixing chem-
ical component similarity [260, 261, 270], or subdividing atoms
into subsets [20, 249]. USRCAT [20] extends USR [19] by sepa-
rately identifying five pharmacophoric subsets of atoms, which
are heavy, hydrophobic, aromatic, hydrogen bond acceptor or
donor atoms. Consequently the resulting moment vector is ex-
panded from 12 descriptors to 60, with the first 12 being iden-
tical to USR moments. In the case of an empty subset, for
example if no hydrogen bond donors are found, the correspond-
ing elements in the moment vector are set to zero. The four
reference locations are uniformly derived from heavy atom co-
ordinates and are thus meaningful with respect to the overall
shape of a molecule. The five sets of 12 moments are individu-
ally scaled by the factors ow for all atoms, hw for hydrophobic
atoms, rw for aromatic atoms, aw for hydrogen bond acceptors
and dw for hydrogen bond donors, as shown in equation (9.5).
Without a prior knowledge, the values of the five scaling factors
are all defaulted to one. USRCAT degenerates to USR when
ow = 1 and hw = rw = aw = dw = 0.
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S(Mi,Mj) = (1

+ ow × 1

12

12∑
k=1

|Mi
k − Mj

k|

+ hw × 1

12

24∑
k=13

|Mi
k − Mj

k|

+ rw × 1

12

36∑
k=25

|Mi
k − Mj

k|

+ aw × 1

12

48∑
k=37

|Mi
k − Mj

k|

+ dw × 1

12

60∑
k=49

|Mi
k − Mj

k|)
−1

∈ [0, 1] (9.5)

9.4.2 USR and USRCAT on istar

Like in idock@istar for prospective structure-based virtual screen-
ing, we used the same database, which comprises 23,129,083
ligands collected from the All Clean Subset of ZINC [27, 28].

It is helpful to include more than one conformer per com-
pound in the database since flexible molecules can adopt dif-
ferent shapes. Hence the more of these conformations included
in the database, the less likely it is to miss molecules with the
desired pattern. Each small organic molecule could have an
average of about 200 conformations [254], or up to 292 confor-
mations [263]. The conformers of a particular molecule are in
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general geometrically distinct and have low potential energy, as
conformers with high internal energy are in principle less likely
to exist in nature.

There are numerous 2D-to-3D conversion tools that can gen-
erate 3D molecular conformations from a considered 2D chem-
ical structure, such as Cyndi [281, 282] and OMEGA [283].
A study [284] examined the performance of four freely avail-
able small molecule conformer generation tools, Balloon [285],
Confab [286], Frog2 [287], and RDKit (http://www.rdkit.org/),
alongside a commercial tool, MOE (http://www.chemcomp.com/),
and found that RDKit and Confab were statistically better than
other methods at generating low RMSD (Root Mean Square De-
viation) conformers to the known structure, and RDKit resulted
as the second fastest method after Frog2. These positive results
for RDKit in terms of accuracy and speed make it a valid free
alternative to commercial, closed source, proprietary software.

However, even though the conformers generated by RDKit
can be ensured to be at least a certain RMSD threshold apart
from each other by setting an appropriate parameter, they are
not guaranteed to be of low energy, so it is suggested by the
manual to energy minimize them using RDKit’s implementa-
tion of the Universal Force Field (UFF). After energy minimiza-
tion, unfortunately, some conformers could fall into the same
local energy minimum and again become structurally similar
to each other with RMSD below the threshold. To resolve this
conformational diversity problem, the study [284] also described
a postprocessing algorithm to discriminate and keep only con-
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formers which are both energy minimized and a certain RMSD
threshold apart. In the postprocessing algorithm, the energy
minimized conformers are first sorted by increasing energy value
and the lowest energy conformer is retained, and then for each of
the remaining conformers, it will be discarded when its RMSD
from any conformers that have been retained is smaller than a
fixed threshold dmin, or it will be retained otherwise. The study
[284] also suggested optimal values of the number of conformers
to generate (nconf in equation (9.6), where nrot is the number of
rotatable bonds) and the dmin value of 0.35Å. Using RDKit in
combination with the postprocessing algorithm, one can quickly
build a diverse and representative set of conformers.

nconf =


50 if nrot ≤ 7

200 if 8 ≤ nrot ≤ 12

330 otherwise

(9.6)

Due to the superior accuracy and speed of RDKit, in this
study we proposed to use RDKit together with the postprocess-
ing algorithm to generate conformers. Precisely, we would use
RDKit version 2014.09.2 and program against its C++ API in-
stead of directly using the example Python script, and adopt the
optimal parameter values suggested in [284]. Conformer genera-
tion is yet to be implemented in the near future considering the
great efforts required, such as sufficient hard disk space.

Suppose after generating approximately 10 conformers on av-
erage for each molecule, the database would contain 230 million
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conformers, each of which has a USRCAT moment vector of 60
elements of double precision floating point type, which requires
64 bits, or 8 bytes for storage. This sums up to 8B∗60∗230M =

108GB for the size of the USRCAT descriptors of all conformers
in the entire database.

On one hand, given a server with sufficient capacity of mem-
ory, it is possible to preload all descriptors to enable fast screen-
ing. Mathematically, suppose tread is the reading time of a mo-
ment vector of a conformer in the database, tscore is the scoring
time of two moment vectors, nconf is the number of conformers
in the database, nquery is the number of query ligands of a single
job, and njob is the number of jobs, the total screening time t

would be

t = tread × nconf + tscore × nconf × nquery × njob (9.7)

On the other hand, on a server with insufficient memory to
preload all descriptors, it is possible to load the descriptors
chunk by chunk whenever a new job gets executed. Suppose
only mconf << nconf moment vectors fit in the memory, the
chunk-by-chunk approach is to loop for nconf/mconf times, each
time loading a different chunk with mconf moment vectors and
then making the nquery queries on this chunk. In this way, the
total screening time t would be
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t = (tread ×mconf + tscore ×mconf × nquery)× (nconf/mconf)× njob

= tread × nconf × njob + tscore × nconf × nquery × njob (9.8)

As seen from the above screening time analysis, there are ap-
parently several levels of parallelism to exploit. On the server
side, there are millions of conformers, each of which has a mo-
ment vector of 60 elements. On the client side, there are multiple
job submissions, each of which can contain multiple queries. In
the chunk-by-chunk approach, the scoring of the current chunk
and the reading of the next chunk can even be pipelined.

Considering the fundamental architecture of our istar plat-
form [9] as well as the nature of the problem, we decided to ex-
ploit three levels of parallelism: multiple jobs are broadcast to
multiple daemons running on multiple servers; multiple queries
are broadcast to multiple CPU cores of a server; multiple de-
scriptors are broadcast to multiple vector registers of a CPU
core. The first two levels of parallelism are coarse grained and
easy to implement, whereas the third level is relatively fine
grained and requires the support of, for instance, AVX (Ad-
vanced Vector Extensions).

AVX are extensions to the x86 instruction set and expand the
width of the SIMD (Single Instruction, Multiple Data) register
file to 256 bits. Such a 256-bit register can hold four USR or
USRCAT descriptors of 64-bit double precision floating point
type. In view of the fact that a USR or USRCAT moment vector
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can be expressed as M = (M1,M2,M3,M4, . . . ,Mn) for indexing
purpose, where n = 12 for USR and n = 60 for USRCAT, this
moment vector can be decomposed into groups of four elements,
which are processed using AVX in a SIMD fashion as shown
in Figure 9.1. Specifically, to compute the USR or USRCAT
scores between two moment vectors Mi and Mj in equation
(9.4), the sum of absolute differences of their respective moments
must be first calculated. This can be done ideally using AVX
in four steps: firstly, the four elements are subtracted; secondly,
the most significant bits of the four elements are set to zeros;
thirdly, the four elements undergo a horizontal addition; and
lastly, the first and third elements are summed up. Note that
the above four steps compute the sum of absolute differences
of four respective moments only, so they are wrapped inside a
loop where the number of iterations is 3 for USR and 15 for
USRCAT so as to compute the sum of absolute differences of
all respective moments. The calculations of USR and USRCAT
scores can be merged in one loop because the first 3 iterations
for USRCAT are literally also for USR (equation (9.5)). Since
the loop count is constant and both the moment vectors are
indexed constantly, unrolling is applicable here, resulting in a
longer sequence of instructions but faster execution due to the
circumvention of the use of loop iterators.

Our daemon supports a query ligand in either SDF, MOL2,
XYZ, PDB or PDBQT format in one single job. Sample files
in these formats are provided in the USR@istar web page. The
parser on the server side is achieved by the C++ API of Open-



CHAPTER 9. USR@ISTAR: ULTRAFAST SHAPE RECOGNITION 255

Figure 9.1: AVX instructions used to compute USR or USRCAT scores.

Babel v2.3.2 [187], while the parser on the client side is our in-
house JavaScript code. Moreover, our client side user interface
features our WebGL visualizer iview [11] to realize interactive
visualization of high-score hits.

In the current implementation, no indexing or clustering has
been done to accelerate searching. Supporting geometrical and
functional clustering would be an exciting future direction.

9.5 Results and discussion

Our USR@istar requires a query ligand in 3D format as in-
put. Thereafter, the daemon program running the background
searches the entire database of 23 million compounds for struc-
turally similar ones by USR or USRCAT score, and finally out-
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Table 9.2: Molecular properties of the 19 query ligands.

ZINC ID HA MWT HBD HBA NRB
06827693 4 60.008 0 3 0
03641271 7 103.101 4 4 0
00000882 10 135.130 3 5 0
03594299 13 176.243 4 3 1
01760831 16 206.244 0 1 0
00000163 19 277.771 0 2 2
00000931 22 314.796 2 4 1
00000706 25 332.335 0 5 0
00577115 28 382.449 1 1 5
03784182 31 411.521 0 3 4
00537755 35 476.591 2 4 7
33359785 39 536.653 4 10 3
53073961 42 588.552 1 6 10
34801951 46 650.698 4 12 7
29416466 49 671.863 7 11 13
08101127 53 751.991 0 8 14
08101051 57 806.987 4 14 9
85536932 60 835.944 3 15 15
96006018 65 914.187 3 14 6

puts the top 1000 matches. Hence, to benchmark the searching
capability of USR@istar given different input, we selected 19
query ligands with different numbers of heavy atoms, spanning
from 4 to 65 with a step size of 3 or 4 (Table 9.2. HA: heavy
atoms. MWT: molecular weight in Daltons. HBD: hydrogen
bond donors. HBA: hydrogen bond acceptors. NRB: rotatable
bonds). These query ligands had a molecular weight as low as 60
Daltons and as high as 914 Daltons, covering nearly all possible
input.

In the following subsections, we analyzed the output results
of these 19 query ligands in order to see how the USR or US-
RCAT score would affect compound ranking. We then studied
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how the input file format would impair pharmacophoric subset
classification. Finally we benchmarked the execution time and
found the performance bottleneck.

9.5.1 Matching ligands with different molecular sizes

Table 9.3 lists the top five matching compounds of the 19 se-
lected query ligands with different molecular sizes in terms of
number of heavy atoms. For clarity, the output results for dif-
ferent query ligands are separated by horizontal lines. Note that
these query ligands were in their docked pose in PDBQT format
generated by idock [9] when docked against cyclin-dependent ki-
nase 2 (CDK2), a critical protein involved in the regulation of
cell cycle transition, which will be detailed in Chapter 10. In
prospective applications, the advantage of using a docked pose
as input is obvious because the matching output compounds are
likely to exhibit geometrically similar shape, which could retain
or even enhance the intermolecular interactions and thus the
putative binding affinity.

It is important to note that there is no ground truth for rank-
ing output compounds similar to a query. The term similarity
is somewhat subjective given that it might have inconsistent, or
even contradictive definitions under different applications. Nev-
ertheless, in many existing definitions, similarity can be quanti-
fied, for instance, by Tanimoto coefficient, which measures chem-
ical similarity, or by USR score, which measures geometrical
similarity.
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Not unexpectedly, sorting by USR or USRCAT score yielded
different output in all the 19 cases. For instance, in the case of
ZINC33359785 as query, the output compound ZINC35770975,
which had the highest USR score of 0.93307793, had a USRCAT
score of just 0.35822866, whereas the highest USRCAT score was
0.71794128 obtained by ZINC79055171. Similarly, in the case of
ZINC00577115 as input, the output compound ZINC00577115,
which had the highest USRCAT score of 0.75399074, had a USR
score of just 0.61248204, whereas the highest USR score was
0.95057414 obtained by ZINC68658377.

In 13 of the 19 cases, the top five matches by USR score were
totally different from the top five matches by USRCAT score.
This suggests that a matching compound which has a high USR
score does not necessarily have a high USRCAT score, and vice
versa. Particularly, in 12 of these 13 cases, the query ligand
had at least 25 heavy atoms. This may indicate that USR and
USRCAT tend to prioritize distinct compounds when the query
ligand is large. This result was to be expected because the larger
the query ligand, the larger the chemical and structural diversity
of potential matching compounds.
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Table 9.3: Top 5 matches of 19 query ligands

input sorting output output USR USRCAT
ZINC ID method rank ZINC ID score score
06827693 USR 1 06827693 0.99989084 0.93387099
06827693 USR 2 08214514 0.94435271 0.85958990
06827693 USR 3 08101126 0.91583558 0.90090227
06827693 USR 4 05224164 0.91323638 0.83597828
06827693 USR 5 08034818 0.91124311 0.80893830
06827693 USRCAT 1 06827693 0.99989084 0.93387099
06827693 USRCAT 2 08101126 0.91583558 0.90090227
06827693 USRCAT 3 01846598 0.82101487 0.86076010
06827693 USRCAT 4 08214514 0.94435271 0.85958990
06827693 USRCAT 5 04658552 0.77735039 0.85427671
03641271 USR 1 19737051 0.98779656 0.82477674
03641271 USR 2 34689286 0.98720924 0.82948216
03641271 USR 3 04262127 0.98577986 0.83173477
03641271 USR 4 05226936 0.98436293 0.77590893
03641271 USR 5 05226942 0.98419217 0.77576925
03641271 USRCAT 1 04417022 0.90277096 0.95866631
03641271 USRCAT 2 32296878 0.89128565 0.92383824
03641271 USRCAT 3 64033578 0.91094937 0.91829554
03641271 USRCAT 4 04658602 0.89124510 0.91780849
03641271 USRCAT 5 01666720 0.89345170 0.91692833
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
00000882 USR 1 00000882 0.99992602 0.99993121
00000882 USR 2 26995176 0.99597115 0.80645548
00000882 USR 3 72231352 0.99543539 0.82250290
00000882 USR 4 82410931 0.99508429 0.81322159
00000882 USR 5 01615910 0.99476961 0.85551400
00000882 USRCAT 1 00000882 0.99992602 0.99993121
00000882 USRCAT 2 08616408 0.99327569 0.98073897
00000882 USRCAT 3 03652180 0.98439837 0.93952496
00000882 USRCAT 4 18153302 0.97495298 0.93319108
00000882 USRCAT 5 13516924 0.99128475 0.92503209
03594299 USR 1 03594299 0.99978454 0.99983624
03594299 USR 2 86639023 0.94249238 0.56539305
03594299 USR 3 23093521 0.94248914 0.67187858
03594299 USR 4 63169716 0.94098603 0.56936544
03594299 USR 5 23093522 0.93999049 0.67166081
03594299 USRCAT 1 03594299 0.99978454 0.99983624
03594299 USRCAT 2 22219232 0.89835884 0.86306679
03594299 USRCAT 3 86051862 0.89218389 0.85055658
03594299 USRCAT 4 38532749 0.81227537 0.84324650
03594299 USRCAT 5 19796009 0.84131930 0.84309403
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
01760831 USR 1 01760831 0.99987949 0.99989913
01760831 USR 2 01709154 0.98699243 0.75851222
01760831 USR 3 00971553 0.98535056 0.81526150
01760831 USR 4 67730206 0.98262917 0.75827336
01760831 USR 5 01681580 0.97753801 0.94530750
01760831 USRCAT 1 01760831 0.99987949 0.99989913
01760831 USRCAT 2 01681580 0.97753801 0.94530750
01760831 USRCAT 3 02510715 0.89837623 0.91571639
01760831 USRCAT 4 01555275 0.88135318 0.90937875
01760831 USRCAT 5 39255067 0.89111121 0.90652744
00000163 USR 1 00000163 0.96426028 0.95981456
00000163 USR 2 95003095 0.96059429 0.46005568
00000163 USR 3 94998736 0.95953442 0.45932022
00000163 USR 4 93855398 0.95647154 0.56896132
00000163 USR 5 94468575 0.94929677 0.52144044
00000163 USRCAT 1 00000163 0.96426028 0.95981456
00000163 USRCAT 2 12336856 0.88870156 0.87618989
00000163 USRCAT 3 72196442 0.85417800 0.86199583
00000163 USRCAT 4 03830577 0.89135269 0.84555906
00000163 USRCAT 5 71767467 0.79282467 0.84492369
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
00000931 USR 1 33693318 0.96997742 0.78246622
00000931 USR 2 00000931 0.96952854 0.98807569
00000931 USR 3 66774020 0.96744933 0.69240859
00000931 USR 4 66773996 0.96728672 0.70565997
00000931 USR 5 66546099 0.96669849 0.55832601
00000931 USRCAT 1 00000931 0.96952854 0.98807569
00000931 USRCAT 2 05284765 0.89184694 0.84417333
00000931 USRCAT 3 02193124 0.93922432 0.83616846
00000931 USRCAT 4 36020480 0.88785134 0.82437481
00000931 USRCAT 5 05011019 0.90642740 0.82042605
00000706 USR 1 65405747 0.95996452 0.44442734
00000706 USR 2 40647363 0.95682962 0.50111399
00000706 USR 3 93828780 0.95053992 0.40343405
00000706 USR 4 72255543 0.95023716 0.54229924
00000706 USR 5 00408247 0.94828659 0.51394696
00000706 USRCAT 1 80448655 0.87617333 0.83086022
00000706 USRCAT 2 78886065 0.77618234 0.82713956
00000706 USRCAT 3 93775002 0.73152053 0.82414472
00000706 USRCAT 4 78886066 0.76913264 0.82370563
00000706 USRCAT 5 78700739 0.89428224 0.81951128
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
00577115 USR 1 68658377 0.95057414 0.39005121
00577115 USR 2 69389189 0.94579839 0.35499414
00577115 USR 3 89143595 0.94491604 0.46345807
00577115 USR 4 78399755 0.94491250 0.45419415
00577115 USR 5 83027211 0.94480002 0.34078650
00577115 USRCAT 1 22657173 0.61248204 0.75399074
00577115 USRCAT 2 01550499 0.56107197 0.74185012
00577115 USRCAT 3 11678289 0.55772743 0.73271990
00577115 USRCAT 4 11662947 0.82521725 0.72450314
00577115 USRCAT 5 08474264 0.84212073 0.72433086
03784182 USR 1 67249641 0.94940522 0.45316801
03784182 USR 2 79160658 0.94444038 0.37397556
03784182 USR 3 66798033 0.94393213 0.41624736
03784182 USR 4 78080377 0.94104867 0.41947726
03784182 USR 5 44148945 0.93967079 0.39586261
03784182 USRCAT 1 03784182 0.77235330 0.83985811
03784182 USRCAT 2 71789431 0.74342618 0.80805432
03784182 USRCAT 3 93106652 0.73942307 0.66665953
03784182 USRCAT 4 93106649 0.73848385 0.66623719
03784182 USRCAT 5 90800223 0.64094384 0.66486802
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
00537755 USR 1 33077240 0.92816370 0.46838130
00537755 USR 2 71880803 0.92703459 0.44320682
00537755 USR 3 10246617 0.92144736 0.47914766
00537755 USR 4 34759207 0.91737385 0.43123165
00537755 USR 5 03223873 0.91734806 0.50177117
00537755 USRCAT 1 65623842 0.82911423 0.73050138
00537755 USRCAT 2 65623840 0.82920422 0.73043065
00537755 USRCAT 3 65623844 0.84434115 0.72502994
00537755 USRCAT 4 65623838 0.84429533 0.72498612
00537755 USRCAT 5 91738997 0.80098542 0.72414875
33359785 USR 1 35770975 0.93307793 0.35822866
33359785 USR 2 72004193 0.93114334 0.38182298
33359785 USR 3 33435896 0.92965520 0.33894654
33359785 USR 4 09254874 0.92781816 0.40359101
33359785 USR 5 12807677 0.92642912 0.35213376
33359785 USRCAT 1 79055171 0.84112415 0.71794128
33359785 USRCAT 2 71923062 0.73844740 0.71181372
33359785 USRCAT 3 77341431 0.75924711 0.70930088
33359785 USRCAT 4 77341441 0.75921732 0.70927376
33359785 USRCAT 5 69046249 0.70287350 0.70695212
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
53073961 USR 1 03280771 0.89422462 0.55998626
53073961 USR 2 12509920 0.89370657 0.48547850
53073961 USR 3 34899971 0.89334569 0.59114533
53073961 USR 4 15730136 0.89292055 0.47162568
53073961 USR 5 09451077 0.89287846 0.40216378
53073961 USRCAT 1 20677274 0.82865029 0.73844702
53073961 USRCAT 2 08916625 0.80980780 0.72773540
53073961 USRCAT 3 02110104 0.80092701 0.72556402
53073961 USRCAT 4 20685629 0.84494018 0.71625164
53073961 USRCAT 5 53064465 0.81539807 0.71344270
34801951 USR 1 09813531 0.86662080 0.49260706
34801951 USR 2 10120418 0.85012639 0.48564947
34801951 USR 3 22633339 0.84690548 0.32109534
34801951 USR 4 09942653 0.83253562 0.41993991
34801951 USR 5 09016590 0.83239022 0.44123198
34801951 USRCAT 1 09730878 0.78365470 0.65931372
34801951 USRCAT 2 02952637 0.69990120 0.63865229
34801951 USRCAT 3 03066292 0.79377130 0.63427123
34801951 USRCAT 4 63600618 0.78591726 0.62978556
34801951 USRCAT 5 02171971 0.81658623 0.62773804
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
29416466 USR 1 63514587 0.91665219 0.46731155
29416466 USR 2 40292843 0.91468903 0.47087614
29416466 USR 3 40293083 0.91077708 0.45683873
29416466 USR 4 22052805 0.90502904 0.50124716
29416466 USR 5 22052817 0.90013261 0.56632489
29416466 USRCAT 1 13389101 0.77024906 0.69218386
29416466 USRCAT 2 67741752 0.71934043 0.68237936
29416466 USRCAT 3 67769739 0.71092297 0.67849718
29416466 USRCAT 4 27016688 0.75586732 0.66575518
29416466 USRCAT 5 27016682 0.73442306 0.66531265
08101127 USR 1 40253466 0.82049130 0.45823208
08101127 USR 2 40251780 0.81389665 0.44709474
08101127 USR 3 40253347 0.81270120 0.45688630
08101127 USR 4 40252264 0.81007384 0.43212674
08101127 USR 5 40252260 0.80935988 0.42814493
08101127 USRCAT 1 40204804 0.70216986 0.61769941
08101127 USRCAT 2 40203918 0.72134056 0.61467790
08101127 USRCAT 3 40198912 0.75040459 0.61092978
08101127 USRCAT 4 19788980 0.67787440 0.60600169
08101127 USRCAT 5 40203919 0.72535625 0.60578330
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
08101051 USR 1 34906112 0.81662557 0.38601073
08101051 USR 2 12790633 0.81216532 0.38263829
08101051 USR 3 34905308 0.81088357 0.37345643
08101051 USR 4 34906092 0.80499926 0.37499018
08101051 USR 5 22623297 0.80282387 0.42624504
08101051 USRCAT 1 91742856 0.62507638 0.63946406
08101051 USRCAT 2 63634534 0.68412199 0.63451306
08101051 USRCAT 3 63634530 0.66760438 0.63182588
08101051 USRCAT 4 12530576 0.59249267 0.62763900
08101051 USRCAT 5 08872621 0.63481592 0.62422077
85536932 USR 1 38491099 0.87113381 0.54465979
85536932 USR 2 33767419 0.86880460 0.51486740
85536932 USR 3 12304689 0.86865297 0.56751118
85536932 USR 4 00903819 0.85511867 0.44597602
85536932 USR 5 12706271 0.85465720 0.44716140
85536932 USRCAT 1 63386406 0.72871316 0.62348129
85536932 USRCAT 2 14232016 0.70572357 0.61247207
85536932 USRCAT 3 38573815 0.72269606 0.61188087
85536932 USRCAT 4 09713729 0.78048080 0.60555170
85536932 USRCAT 5 26998174 0.74923801 0.59966269
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Table 9.3 – Continued from previous page
input sorting output output USR USRCAT

ZINC ID method rank ZINC ID score score
96006018 USR 1 40200504 0.83259667 0.31658414
96006018 USR 2 35402146 0.79559059 0.35874467
96006018 USR 3 10462892 0.78614715 0.34836142
96006018 USR 4 09693915 0.78488061 0.33538157
96006018 USR 5 40206470 0.78111193 0.30224723
96006018 USRCAT 1 77320087 0.65583149 0.61433137
96006018 USRCAT 2 31392738 0.64614083 0.58921551
96006018 USRCAT 3 04536260 0.60279466 0.57727754
96006018 USRCAT 4 89960170 0.47860515 0.57257619
96006018 USRCAT 5 66730926 0.48114189 0.56721396

Figures 9.2 and 9.3 plot the 3D poses of two query ligands,
ZINC03784182 and ZINC00537755, respectively, as well as their
top 5 matching compounds using iview [11]. These two query
ligands were selected for visualization because their molecular
weight (Table 9.2) is in the range of candidate leads, so they
are of high chance of being selected as query ligands in real case
studies. Note that the output compounds were not structurally
aligned to the query.

Next, we examined the capability of ranking high the par-
ticular compound in the output with an identical ZINC ID as
the input query. Apparently, such recovery test requires that
the query compound must be present in the target database, al-
though it can be in a different pose. Out of the 19 query ligands,
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(a) Query (b) USR rank 1. (c) USR rank 2.

(d) USR rank 3. (e) USR rank 4. (f) USR rank 5.

(g) Query (h) USRCAT rank 1. (i) USRCAT rank 2.

(j) USRCAT rank 3. (k) USRCAT rank 4. (l) USRCAT rank 5.

Figure 9.2: Top 5 matching compounds for ZINC03784182 (a & g) using
USR (b to f) or USRCAT (h to l).
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(a) Query (b) USR rank 1. (c) USR rank 2.

(d) USR rank 3. (e) USR rank 4. (f) USR rank 5.

(g) Query (h) USRCAT rank 1. (i) USRCAT rank 2.

(j) USRCAT rank 3. (k) USRCAT rank 4. (l) USRCAT rank 5.

Figure 9.3: Top 5 matching compounds for ZINC00537755 (a & g) using
USR (b to f) or USRCAT (h to l).
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9 satisfied this requirement (Table 9.4). Note again that the
query ligands were in their docked pose while the compounds in
the molecular database were in their low energy pose, therefore
the corresponding compound with an identical ZINC ID as the
input query was not always guaranteed to be ranked the first in
the output. Interestingly, the recovery rate seemed to correlate
with NRB (number of rotatable bonds). When NRB was zero,
both USR and USRCAT ranked the input compound the highest
in the output. When NRB was 1 or 2, the recovery rate started
to drop slightly for USR. When NRB was equal to or beyond 4,
both methods had difficulty in prioritizing the input compound
in the output. This observation was to be expected because USR
and USRCAT are dependent on torsions, though independent of
spatial position and orientation. When a compound has a NRB
of zero, there is only one possible conformation, so the docked
pose of the query must be conformationally equivalent to the
original pose present in the molecular database. On the other
hand, when a compound has a large NRB, there is a high chance
that the docked pose and the original pose differ remarkably in
their torsions, and so are their encoded features.

9.5.2 Impact of file format on pharmacophoric subset
classification

It was anticipated that the same query ligand should yield iden-
tical output regardless of its input file format, be it sdf, mol2 or
pdbqt. Surprisingly, we found that this was not necessarily the
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Table 9.4: Output ranking of the same input compound in a different pose.

input USR rank of the USRCAT rank of the
ZINC ID NRB same input compound same input compound
06827693 0 1 1
00000882 0 1 1
01760831 0 1 1
03594299 1 1 1
00000931 1 2 1
00000163 2 1 1
03784182 4 >1000 1
00577115 5 >1000 >1000
00537755 7 >1000 >1000

case. We used as an example ZINC00537755 in its low energy
pose (Figure 9.4) rather than in its docked pose in order to re-
trieve a USR score and a USRCAT score of exactly one. When
the query ligand was in pdbqt format, the same format used to
encode the molecular database, the corresponding output com-
pound had USR and USRCAT scores of exactly one and was
hence ranked the first. Nevertheless, for the same query, if the
format was changed to sdf or mol2, the corresponding output
compound turned out to have a USR score of 0.99984619 and
a USRCAT score of just 0.81023940, though it was still ranked
the first (Table 9.5).

The large deviation in USRCAT score from an expected value
of one attracted our attention. After careful investigations, we
were surprised to find that the N3 atom, covalently connected to
a polar hydrogen and therefore supposed to be a hydrogen bond
donor (Figure 9.4), failed to be recognized so in the SMARTS
matching operation by OpenBabel [187] when the query was in
pdbqt format. This certainly had a great impact on the score of
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Figure 9.4: ZINC00537755 with the N3 atom labeled.

Table 9.5: Top 5 matches of ZINC00537755 in pdbqt or sdf/mol2 format.

input input output output USR USRCAT
ZINC ID format rank ZINC ID score score
00537755 pdbqt 1 00537755 1.00000000 1.00000000
00537755 pdbqt 2 91686384 0.81962803 0.66995207
00537755 pdbqt 3 09254146 0.80012011 0.66812359
00537755 pdbqt 4 22804726 0.76476137 0.66203173
00537755 pdbqt 5 22919990 0.69273531 0.66197772
00537755 sdf/mol2 1 00537755 0.99984619 0.81023940
00537755 sdf/mol2 2 89286333 0.71411555 0.65628724
00537755 sdf/mol2 3 89286335 0.71272183 0.65581047
00537755 sdf/mol2 4 26008225 0.85084668 0.65553656
00537755 sdf/mol2 5 67878453 0.64157793 0.65528239
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USRCAT, which requires classification of atoms into five prede-
fined pharmacophoric subsets prior to moment calculation.

Such misclassification of a certain pharmacophoric subset other
than heavy atoms should not affect USR score, which merely
replies on heavy atoms to calculate the features. The USR score
for the query in sdf/mol2 format was somewhat less than one be-
cause the coordinates in sdf/mol2 format have 4 decimal digits,
whereas those in pdbqt format have 3 decimal digits.

9.5.3 Execution time

For the 19 selected queries, we inserted additional code to the
daemon to record their execution time on the server equipped
with Intel Xeon W3520 and 16GB ECC DDR3. Their execution
times were averaged to 167 seconds and were quite consistent
with a small standard deviation across the 19 query ligands (Ta-
ble 9.6) regardless of their molecular size in terms of number of
heavy atoms, molecular weight, or number of rotatable bonds.

We further measured to what extent preloading the precal-
culated USRCAT features of the 23 million compounds would
help to shorten the query time. The size of entire features is
8B ∗ 60 ∗ 23M = 10GB. These features can be loaded from
hard disk ad hoc or in advance. In the latter case, there are
two additional one-off steps, memory allocation and file read-
ing. Memory allocation took 5 seconds, which could be longer
in case of insufficient free memory and therefore requirement of
spare capacity from hard disk swapping. File reading from hard
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Table 9.6: Execution time in seconds of the 19 queries when the USRCAT
features were loaded ad hoc or in advance.

ZINC ID ad hoc (s) in advance (s)
06827693 171 34
03641271 165 20
00000882 172 29
03594299 173 30
01760831 172 30
00000163 173 29
00000931 164 31
00000706 163 29
00577115 163 30
03784182 165 30
00537755 167 32
33359785 166 28
53073961 167 31
34801951 165 31
29416466 166 32
08101127 161 27
08101051 164 31
85536932 164 30
96006018 164 30
Average 167 30
Std dev 4 3
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disk took another 149 seconds. Subsequently during USR and
USRCAT score calculation, it required just 30 seconds to com-
plete a query on average (tscore × nconf in equations (9.7) and
(9.8)), compared to 167 seconds when the features were loaded
ad hoc. In other words, the pairwise similarity score computa-
tion accounted for only 18% (=30/167=tscore/(tread + tscore)) of
the matching time, while the majority 82% time was spent in
file reading. This suggests that job execution is IO bound, hence
deploying the daemon on a server with sufficient memory or a
fast solid state drive helps to reduce query time significantly.
The query time of 30 seconds can be possibly furtuer shortened
by proper structural clustering and indexing in the future to
prune dispensable moment vector matching.

9.6 Conclusions

Searching for compounds that resemble the shape of a given
query molecule is a widely seen yet daunting problem in ligand-
based virtual screening [140, 254–258] and macromolecular tar-
get prediction [260–262]. The USR-like methods [19, 20, 268]
represent an entirely new class of non-superposition algorithms
that effectively capture the molecular shape information inde-
pendent of spatial position and orientation. These methods cir-
cumvent the requirement of structural alignment and show out-
standing computational efficiency with respect to superposition-
based methods [264–266].

In this study we have reviewed the traditional USR method
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[19] and its various extensions [20, 249, 260, 261, 268, 270–274],
as well as their applications, both retrospective [20, 254] and
prospective [140, 255–258, 275]. We have highlighted the pros
and cons of three web servers [249, 261, 271] which use USR
variants as their underlying methods. Consequently, to address
the existing constraints, we have designed our pragmatic im-
plementation of USR [19] and USRCAT [20] on istar [9] and
explained its methodological advancement in terms of function-
ality, usability, and efficiency.

First and foremost, our molecular database has been pop-
ulated with more than 23 million small and diverse molecules
that are collected from the ZINC database [27, 28] and thus
possibly commercially available to purchase for subsequent bi-
ological assays. We have also proposed to generate low-energy
conformers that are likely to occur in nature. The reason why
a molecular database should be populated with multiple con-
formers of each flexible compound is to reduce the possibility of
missing compounds with similar shape to the query. We would
use RDKit and the postprocessing algorithm suggested in [284]
for the conformer generation task in the near future. The USR
and USRCAT features of these 23 million compounds have been
precalculated, which was a one-off exercise.

Second, we have estimated the storage size of all descriptors
across the entire database, and suggested two approaches, i.e.
preloading all descriptors at once and loading them chunk by
chunk, and analyzed their theoretical execution time. Based on
the time analysis, we have exploited three levels of parallelism,



CHAPTER 9. USR@ISTAR: ULTRAFAST SHAPE RECOGNITION 278

which map multiple jobs to multiple servers, multiple queries to
multiple CPU cores, and multiple descriptors to multiple CPU
registers, respectively, to fully utilize all available computational
resources so as to accelerate job execution. Notably, we have
described a novel AVX implementation of sum of absolute dif-
ferences to calculate the USR or USRCAT scores between two
moment vectors.

Moreover, our implementation of USR and USRCAT, de-
noted as USR@istar for short, supports a query ligand in SDF,
MOL2, XYZ, PDB or PDBQT format. It also features our iview
[11] WebGL visualizer to aid result interpretation in an interac-
tive manner.

To benchmark USR@istar comprehensively, we selected 19
query ligands with different numbers of heavy atoms. To our
expectation, sorting by USR or USRCAT score yielded different
output, especially when the input ligand was large. From an-
other perspective, when NRB was large, both methods did not
manage to recover the query ligand in a different pose in the out-
put because of the large conformational diversity implied by a
large NRB. To our surprise, input file format impaired the classi-
fication of atoms into predefined pharmacophoric subsets, prob-
ably due to a bug in OpenBabel [187]. We have also found that
preloading database features boosted matching performance by
four times.

We believe our USR@istar web service for ligand-based vir-
tual screening purpose can perfectly supplement our idock@istar
web service for structure-based virtual screening purpose. We
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suggest users try both services to reach a consensus. In the fu-
ture we would provide a hybrid service that incorporates the
advantages of idock@istar and USR@istar.

9.7 Availability

USR@istar is free and open source under Apache License 2.0.
It is available as a module of istar [9]. Our deployment of
USR@istar is running at http://istar.cse.cuhk.edu.hk/usr. Sam-
ple query files are provided therein.

9.8 Future works

Although USR is advantageous in being independent of position
and orientation, it is dependent on torsions. Likewise, none of
the surveyed USR extensions are invariant of torsions. There-
fore multiple conformers must be generated for each ligand in
a large database in order to represent conformational diversity
to some extent. The more conformers that are to generate, the
higher degree in which the conformational space will be cov-
ered. So there is a tradeoff between database storage size and
conformational diversity exhaustiveness.

We present USRT (Ultrafast Shape Recognition with Tor-
sions), the first USR-like algorithm that can identify different
conformations of the same ligand. In other words, different con-
formers generated from the same ligand will result in identical
USRT descriptors. This is a huge advantage over existing meth-
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ods because it circumvents the task of conformer generation for
a large database, leading to greatly reduced storage requirement.
Moreover, it covers the entire conformational space spanned by
all conformations of a ligand. Since no conformer generation
is required, there are no more considerations of whether to use
the bound or unbound conformations of a bioactive molecule
even though the two conformations could be in principle signif-
icantly different. Apart from the circumvention of conformer
generation, other applications of USRT include the detection of
duplicate ligands in virtual screening campaigns [269] or in de
novo fragment-based drug design [12, 13], and ligand clustering
[254, 263].

The methodological idea of USRT is quite straightforward.
Compared to UFSRAT [249] and USRCAT [20], instead of sub-
dividing atoms into subsets according to pharmacophoric prop-
erties, USRT subdivides atoms into subsets according to branches
that are connected via rotatable bonds. Figure 9.5 illustrates
two conformations of the same ligand with different torsions.
Figures 9.6 and 9.7 show the underlying PDBQT contents. The
ligand has five rotatable bonds. The atoms and bonds in the
same branch are rendered in the same color. For each branch,
the only reference atom is chosen to be the atom connecting
the parent branch, i.e. the second atom involved in the rotat-
able bond or the Y atom in the line of “BRANCH X Y”. It is
always the first atom of the current branch if the PDBQT file
is produced by AutoDockTools4 [32]. For the rigid root where
there is no parent, the only reference atom is simply chosen to
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(a) Structure of the 1st conformation. (b) Structure of the 2nd conformation.

Figure 9.5: Two different conformations of the same ligand, with branches
highlighted in separate colors.

be the first atom. Next, the atomic distance distributions are
computed between the atoms of the current branch and the cor-
responding reference atom. In this way, the relative positional
information within a rigid branch is captured regardless of the
torsions introduced by, say, flexible ligand docking. The re-
maining steps remain intact, where the first three moments are
calculated from the atomic distance distribution of each branch.

Like other USR extensions, USRT also inherits the major
advantages from USR such as being ultrafast and extensible,
and avoiding the need of aligning molecules before testing for
similarity. USRT can be possibly combined with other USR
variants [20, 268, 270] for different applications.

Although USRT seems very attractive, there are some major
problems to solve before USRT becomes practically useful. The
length of the resulting moment vector is proportional to one
plus the number of branches, which is a variable. This raises
the obvious question of how to compare molecules with different
numbers of rotatable bonds. One possible solution is to output
the descriptors in a tree structure rather than in a linear vector,
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Figure 9.6: PDBQT content of the 1st conformation.
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Figure 9.7: PDBQT content of the 2nd conformation.
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and uses dynamic programming with branch insertion and dele-
tion and molecular connectivity to construct a mapping between
the branches of the two molecules being compared. In another
issue, some branches are hydroxyl groups —OH, amine groups
—NH2 or methyl groups —CH3 where there is only one heavy
atom. In this case the calculated moments are meaningless. One
possible solution is to incorporate the connecting atoms of child
branches into the calculation of the atomic distance distribution
of the current branch.

In addition to the USRT development, another future work
is to base on USRCAT [20] but expand the atom set to also
incorporate protein atoms within the binding site using protein-
ligand complex data from PDB [22, 144] or PDBbind [136–138].
Apparently the application is no longer for ligand-based vir-
tual screening, but for characterizing and clustering intermolec-
ular binding patterns in terms of shape. In this way, to dis-
cover inhibitors of a target protein, we can borrow knowledge
from another well-studied protein-ligand complex that has simi-
lar binding site interaction patterns. A related work is FragVLib
[288], a free tool for performing similarity search across ligand-
receptor complexes using 3D-geometric and chemical similarity
of the atoms forming the binding pocket for identifying binding
pockets similar to that of a target receptor of interest. Another
related work is RAPMAD [289], which permits large-scale min-
ing for similar protein binding pockets on the fly.

Another interesting study [290] presents a rotation-translation
invariant molecular descriptor of partial charges and its use in
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ligand-based virtual screening. Porting this novel method to
USR@istar deserves further investigations.

2 End of chapter.



Chapter 10

Case study of CDK2-related
cancers

Human colorectal cancer has been reported to express high level
of cyclin-dependent kinase 2 (CDK2), a key factor regulating the
cell cycle G1 to S transition and a hallmark for cancers. In this
study, we used idock prospectively for the first time to iden-
tify potential CDK2 inhibitors from 4,311 FDA-approved small
molecule drugs with a repurposing strategy. Among the top
compounds sorted by idock score, nine were purchased. Among
them, adapalene (CD271, 6-[3-(1-adamantyl)-4-methoxyphenyl]-
2-naphtoic acid) exhibited the highest anti-proliferative effect
in human colon cancer LOVO and DLD1 cells. We demon-
strated for the first time that adapalene treatment significantly
increased the percentage of cells in G1 phase, and decreased the
expressions of CDK2, cyclin E and Rb, as well as the phospho-
rylations of CDK2 on Thr160 and Rb on Ser795. We then ex-
amined the anti-cancer effect of adapalene in vivo in BALB/C
nude mice subcutaneously xenografted with human colorectal

286
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cancer DLD1 cells. Our results showed that oral adapalene
treatment significantly (p<0.05) and dose-dependently inhib-
ited tumor growth. Adapalene (20 mg/kg) exhibited strong
anti-tumor activity, comparable to that of the leading cancer
drug oxaliplatin (40 mg/kg). The combination with adapalene
and oxaliplatin exhibited the highest therapeutic effect. These
results suggested for the first time that adapalene is a poten-
tial CDK2 inhibitor and a candidate anti-cancer drug for the
treatment of human colorectal cancer.

This was a collaborative project with Prof. Marie Chia-Mi
Lin and Ms. Xi-Nan Shi from Biotechnology Center, Kumming
Medical University, China. It was accepted for publication in
Molecular Medicine Reports on 7 January 2015.

10.1 Background

Cyclin-dependent kinase 2 (CDK2) is one of the serine/threonine
protein kinases. It plays a pivotal role in regulating the cell cy-
cle transition from G1 to S phase, and thus in controlling cell
proliferation. Abnormally high expression of CDK2 has been
reported in many human neoplasias, such as colorectal, ovar-
ian, breast and prostate cancers. Hence, CDK2 inhibitors are
potential effective anti-cancer agents.
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10.2 Motivation

Although a number of CDK2 inhibitors have been described in
the literature and some have entered clinical trial phases [291],
e.g. flavopiridol [292], roscovitine [293] and olomoucine [294],
none of them is available for clinical use due to various reasons
such as toxicity and multi-target specificity.

10.3 Objective

We utilized our free and open-source protein-ligand docking soft-
ware idock [7, 9] to screen FDA-approved small molecule drugs
against CDK2. We adopted the approach of structure-based vir-
tual screening to repurpose approved toxicity-free drugs for the
treatment of cancers that involve CDK2 regulation.

10.4 Methods and materials

10.4.1 Ensemble docking and compound selection

44 X-ray crystallographic structures of CDK2 in complex with a
bound ligand (Table 10.1) were collected from the PDB (Protein
Data Bank) [22, 144]. Figure 10.1, created by iview [11], depicts
human CDK2 in complex with ATP. The molecular surface of
CDK2 is colored by secondary structure, with an opacity of 0.9
to show the underlying secondary structure in cylinder & plate
representation. ATP is rendered in stick representation colored
by atom type. Waters are shown as red dots and metal ions are
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shown as green dots.
A previously written script [9] was re-used to automatically

define the docking search space by finding the smallest cubic box
that covers the entire co-crystallized ligand and subsequently
extending the box by 10Å in all the three dimensions. The
44 CDK2 structures were manually extracted from their corre-
sponding complexes with the co-crystallized ligands and waters
removed, and then converted from PDB format to PDBQT for-
mat using the prepare_receptor4.py script of AutoDockTools
[32].

The structures of FDA-approved drugs were obtained from
the dbap and fda catalogs of the ZINC database [27, 28], where
the dbap catalog comprises approved drugs collected from the
DrugBank database [296] and the fda catalog comprises ap-
proved drugs collected via the DSSTox (Distributed Structure-
Searchable Toxicity) project. The dbap catalog of version 2014-
03-19 with 1,738 compounds and the fda catalog of version
2012-07-25 with 3,176 compounds were downloaded. Among
these 4,914 compounds, 4,311 were unique in terms of ZINC
ID. These 4,914 compounds in Mol2 format were then con-
verted to PDBQT format using the prepare_ligand4.py script
of AutoDockTools [32].

Our free and open-source docking software idock v2.1.2 [9]
was then executed to predict the binding conformations and the
binding affinities of the 4,914 compounds when docked against
the 44 CDK2 structures using an ensemble docking strategy
[115–117]. For each protein structure, free energy grid maps
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Table 10.1: The 44 CDK2 holo structures used for ensemble docking.

PDB ID Resolution (Å) UniProt ID
1AQ1 2.00 P24941
1CKP 2.05 P24941
1DI8 2.20 P24941
1DM2 2.10 P24941
1E1V 1.95 P24941
1E1X 1.85 P24941
1FVT 2.20 P24941
1G5S 2.61 P24941
1GIH 2.80 P24941
1GII 2.00 P24941
1GIJ 2.20 P24941
1GZ8 1.30 P24941
1H00 1.60 P24941
1H01 1.79 P24941
1H07 1.85 P24941
1H08 1.80 P24941
1H0V 1.90 P24941
1H0W 2.10 P24941
1JSV 1.96 P24941
1JVP 1.53 P24941
1KE5 2.20 P24941
1KE6 2.00 P24941
1KE7 2.00 P24941
1KE8 2.00 P24941
1KE9 2.00 P24941
1OIQ 2.31 P24941
1OIR 1.91 P24941
1OIT 1.60 P24941
1P2A 2.50 P24941
1PF8 2.51 P24941
1PXI 1.95 P24941
1PXJ 2.30 P24941
1PXK 2.80 P24941
1PXL 2.50 P24941
1PXM 2.53 P24941
1PXN 2.50 P24941
1PXO 1.96 P24941
1PXP 2.30 P24941
1PYE 2.00 P24941
1R78 2.00 P24941
1URW 1.60 P24941
1V1K 2.31 P24941
1VYZ 2.21 P24941
1W0X 2.20 P24941
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Figure 10.1: Crystal structure of human CDK2 with ATP (PDB ID: 1HCK)
[295].
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with a fine granularity of 0.08 Å were constructed in parallel,
and for each compound, 256 Monte Carlo conformational opti-
mization tasks were run in parallel across multiple CPU cores.

After docking, idock outputted a maximum number of nine
predicted conformations for each input compound. The docked
conformation with the best idock score was selected because
it was previously shown to be the most likely one closest to
the crystal conformation with a redocking success rate of more
than 50% on multiple benchmarks [9]. The 4,914 compounds
were sorted in the ascending order of their predicted binding
free energy averaged across the 44 CDK2 structures, and the
top-scoring ones were visually examined using iview [11] and
PoseView [34] in the context of CDK2 using the X-ray structure
of the highest resolution, i.e. PDB ID 1GZ8 in this case (Ta-
ble 10.1). Finally, commercially available compounds were pur-
chased via the Chemical Book website http://www.chemicalbook.com/
and subsequently validated in vitro and in vivo.

10.4.2 Chemicals, antibodies, cell lines and cell culture

The selected chemicals and the leading cancer drug oxaliplatin
were purchased from Sigma-Aldrich, USA. Anti-cyclin D, B1, E,
CDK2, Rb, Pho-CDK2 (Thr160), Pho-Rb (Ser795) and GAPDH
were obtained from Cell Signaling Technology, Inc., Danvers,
Massachusetts, USA.

Colorectal cancer cell lines LOVO and DLD1 were obtained
from the American Type Culture Collection, Manassas, Vir-
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ginia, USA. These cell lines were cultured in RPMI 1640 medium
containing 10% fetal bovine serum (FBS) (Invitrogen, Rockville,
Maryland, USA) at 37°C in 5% CO2 and 95% humidified air.

Cells were plated in 96-, 24-, or 6-well plates with 0.125% FBS
medium for 24 hours and then treated with 10% FBS medium
containing the testing compounds at various concentrations of
1, 3, 10, 30µM, and incubated for 24, 48, or 72 hours.

10.4.3 MTT assay

Cells were plated at an initial density of 9x103 cells/well in 96
well plates and incubated with 0.5mg/ml 3-(4,5-methylthiazol-2-
yl)-2,5-diphenyl-tetrazolium bromide for 4 hours. The medium
was then discarded and 200µl of formazan in dimethylsulphox-
ide (DMSO) was added. The absorbance was measured at 570
nm according the standard protocol. The IC50 values were cal-
culated by Graphpad prime5.

10.4.4 Cell cycle analysis

LOVO or DLD1 cells (4x104) were seeded in 24-well plates in
RPMI 1640 medium containing 0.125% FBS, and cultured for
24 hours. The cells were incubated in medium containing 10%
FBS and various doses of adapalene (1, 3, 10, 30 µM) for 12,
24, 36 hours at 37°C, then fixed in ice-cold 70% ethanol and
stained with a Coulter DNA-Prep Reagents kit (Beckman Coul-
ter, Fullerton, California, USA). Cellular DNA content of 1x104

cells from each sample was determined with the use of an EPICS
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ALTRA flow cytometer (Beckman Coulter). Cell cycle phase
distribution was analyzed with the ModFit LT 2.0 software (Ver-
ity Software House, Topsham, Maine, USA). All results were ob-
tained from two separate experiments, each of which was done
in triplicate.

10.4.5 Western blotting

LOVO and DLD1 cells were plated at 6-well plates with 0.125%
FBS medium for 24 hours and then with 10% FBS medium con-
taining adapalene at concentration 3, 10, 30µM. Cells were har-
vested after 6 hours of incubation. Cells were lysed with RIPA
buffer containing 1 mM PMSF and protease inhibitor cocktail
at 4°C for 30 minutes. After centrifugation at 13,000 rpm for 15
minutes, the supernatants were recovered and the protein con-
centration was measured by BCA Protein Assay Kit (Thermo).
Equal amounts of cell lysates were resolved in 10% SDS-PAGE
and transferred onto nitrocellulose membranes (Sigma). After
blocking, the membranes were incubated sequentially with the
appropriate diluted primary and secondary antibodies. Proteins
were detected by the enhanced chemiluminescence detection sys-
tem (Amersham, Piscataway, New Jersey, USA). To ensure
equal loading of the samples, the membranes were re-probed
with an anti-GAPDH antibody (Cell Signalling Technologies).
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10.4.6 Adapalene treatment in vivo in nude mice xenografted
with colorectal cancer DLD1 cells

Female BALB/C nude mice, 4 to 5 weeks old from Vital River
Laboratory Technology Co. Ltd, Peking, China, were kept un-
der specific pathogen-free conditions and cared for in accordance
with the guidelines of the laboratory animal ethics committee
of Kunming Medical University. For the xenografted tumor
growth assay, 1x106/0.2ml PBS DLD1 cells were injected sub-
cutaneously into the right flank of the mice. Tumor size was
measured every day. One week after inoculation when the tu-
mors grew to a volume of 80 to 100 m3, the mice were randomly
divided into groups of 5 mice per group, and fed by gavage daily
for 21 days with 0.5% CMC-NaCl containing various doses (15,
20, 65 and 100mg/kg) of adapalene and oxaliplatin (40mg/kg).
The mice were then sacrificed by cervical dislocation. Tumor
volume was calculated by the formula V = ab2/2, where a is the
longest axis and b is shortest axis.

10.4.7 Statistical analysis

The results were obtained from at least three different exper-
iments and expressed as mean ± SD. Statistical analysis was
performed by Student’s t test and differences were considered
to be statistically significant if p < 0.05. Statistically signifi-
cant results are marked with the ※ symbol.
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Table 10.2: The nine top-scoring compounds purchased and validated.

ZINC ID idock score (kcal/mol) name
06716957 -10.46 nilotinib
03830332 -10.43 LS-194959
03784182 -10.38 adapalene
03830768 -10.23 estradiol benzoate
03881613 -10.08 nandrolone phenylpropionate
01542113 -10.06 vilazodone
00897240 -10.01 azelastine hydrochloride
33974796 -9.98 latuda
01481956 -9.95 paliperidone

10.5 Results

10.5.1 Ensemble docking results and selection of can-
didate inhibitors

Totally 4,914 FDA-approved drugs were docked and ranked ac-
cording to their average predicted binding affinity across 44
X-ray crystal structures of CDK2 (Table 10.1). The docking
prediction results with iview visualization [11] are freely avail-
able at http://istar.cse.cuhk.edu.hk/idock/iview/?1GZ8-dbap.
Based on commercial availability, nine top-scoring compounds
(Table 10.2) were selected and purchased for further investiga-
tions.

10.5.2 Adapalene decreased cell viability of colorectal
cancer

We first evaluated the anti-cancer effect of the nine compounds
by MTT assay (Figure 10.2). All the nine compounds decreased
cell viability in LOVO and DLD1 cells, but had discrepant cy-
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Figure 10.2: Comparison of the effect of the nine compounds on the viability
of LOVO and DLD1 colorectal cancer cells.

totoxicity at different concentrations. Among them, adapalene
had the lowest IC50, i.e. 7.135µM for LOVO and 4.43µM for
DLD1. In other words, adapalene exhibited the highest cy-
totoxicity compared to the control with statistical significance
(※p<0.05).

Adapalene exhibited dose- and time-dependent inhibition ef-
fect on cell viability in LOVO and DLD1 cell lines compared to
the control (※p<0.05) (Figure 10.3). Marked inhibition was ob-
served at 10µM and 30µM, but no significant effect was observed
at concentrations below 3µM.



CHAPTER 10. CASE STUDY OF CDK2-RELATED CANCERS 298

Figure 10.3: The growth inhibition effect of adapalene on LOVO and DLD1
colorectal cancer cells.

10.5.3 Adapalene treatment arrested cell cycle in G1
phase

We analyzed the effect of adapalene treatment with concentra-
tions of 3, 10, 30 µM for 6, 12, 24 hours on cell cycle profile
in LOVO and DLD1 cells by flow cytometry (Figure 10.4) in
order to understand if adapalene inhibited CDK2 activities in
colorectal cancer cells. Adapalene treatment significantly in-
creased the percentage of cells in G1 phase compared to the
control (※p<0.05) in a dose- and time-dependent manner. At
30µM or 10µM concentrations, adapalene treatment continu-
ously increased the percentage of G1 phase for 24 hours.

Figure 10.5 shows the changes of cell cycle profile of G0-G1,
S, and G2-M phases after 24 hours of adapalene treatment. The
increase of the G1 phase was accompanied by the simultaneous
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Figure 10.4: Dose- and time-dependent effect of adapalene treatment on the
percentage of cells in G1 phase.

Figure 10.5: Cell cycle distributions at 24 hours after adapalene treatment.

decrease of S and G2-M phases.

10.5.4 Adapalene treatment decreased the expressions
of CDK2, Rb, cyclin E, pho-CDK2 and pho-Rb,
but not cyclin D and cyclin B1

We investigated the effect of adapalene on the expressions of crit-
ical proteins involved in G1-to-S transition by western blotting
in LOVO and DLD1 cells (Figure 10.6). Adapalene treatment
reduced the expressions of CDK2, Rb, pho-CDK2, pho-Rb and
cyclin E. In contrast, the expression levels of cyclin D1 and cy-
clin B1 remained unchanged. These results are consistent with
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Figure 10.6: Effect of adapalene treatment on the expressions of cyclins,
CDK2 and Rb.

what are expected from a CDK2 inhibitor.

10.5.5 Daily oral adapalene treatment reduced tumor
growth in vivo

To evaluate the effect of adapalene on the growth of colorec-
tal carcinoma in vivo, BALB/C nude mice were subcutaneously
injected with DLD1 cells. Carcinoma volumes were measured
every 3 to 4 days after tumor appearance. At day 7 after tumor
inoculation, the tumor volume reached 80 to 100 mm3, then var-
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ious doses (15, 65, 100mg/kg in 0.5% CMC-NaCl) of adapalene
were administered daily for 21 days by oral gavage. Figure 10.7
shows that oral adapalene treatment significantly (※p<0.05) in-
hibited tumor growth. At day 21 after treatment, 15 mg/kg
adapalene resulted in significant reduction of tumor weight and
volume compared to the control (※p<0.05). Nevertheless, there
is no significant difference between 15 and 65 mg/kg adapalene
treatment.

In a separate experiment, we compared the efficacy of adapa-
lene (20mg/kg), oxaliplatin (40mg/kg) and the combination of
adapalene (20mg/kg) plus oxaliplatin (40mg/kg) (Figure 10.8).
The anti-tumor activity of oral adapalene (20 mg/kg) was com-
parable to that of oxaliplatin (40 mg/kg). Importantly, the
combinatorial therapy exhibited the highest therapeutic effect.
These results suggested for the first time that adapalene is a
potential CDK2 inhibitor and a candidate anti-cancer drug for
the treatment of human colorectal cancer.

10.5.6 Structural analysis of the predicted conforma-
tion of adapalene docked against CDK2

Figure 10.9 plots the predicted conformation of adapalene in
complex with CDK2 (PDB ID: 1GZ8) using iview [11]. Fig-
ure 10.10 plots the intermolecular interaction diagram using
PoseView [34]. Adapalene was predicted to reside in the ATP-
binding site of CDK2 and interact with CDK2 mainly through
hydrophobic contacts with Phe82, Ile10, Leu134, Lys33 and
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Figure 10.7: Effect of oral treatment of adapalene on tumor growth in vivo
in nude mice xenografted with DLD1 cells.
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Figure 10.8: Effect of oral treatment of adapalene combined with oxaliplatin
on tumor growth in vivo in nude mice xenografted with DLD1 cells.
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Figure 10.9: The predicted conformation of adapalene in complex with
CDK2.

His84, and a hydrogen bond with Lys33.

10.6 Discussion

Cell cycle progress is sequentially and strictly processed through
the interactions of CDKs and cyclins. Different cyclin-CDK
complexes are activated in different phases of the cell cycle.
When the cell cycle goes through G1 to S phase, the cyclin D1-
CDK4/6 and cyclin E-CDK2 complexes are ordinally activated
and the retinoblastoma protein (pRB) is hyper-phosphorylated
on serine and threonine residues. The hyper-phosphorylated
pRB promotes the release of E2F transcription factors, which in
turn facilitate the transcription of numerous genes required for
G1 to S transition and S phase progression. From the medici-
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Figure 10.10: The putative interactions of adapalene with CDK2.
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nal perspective, CDK2 has long been a classical and important
target for cancer therapy.

Though a number of CDK2 inhibitors have entered clinical
trial phases, none has been officially approved for clinical use,
probably because of their toxicity and multi-target specificity.
Given the obstacle that developing a new drug de novo is a la-
borious and costly endeavor, repurposing toxicity-free old drugs
for new uses is a favorable strategy.

The powerful synergy of in silico methods in drug repurpos-
ing by structure-based virtual screening (SBVS) was highlighted
in several recent reports [190]. To name a few successful repur-
posing cases by SBVS, [297] rediscovered 2,4-Dichlorophenoxy
acetic acid, a well-known plant auxin, as a new anti-inflammatory
agent through in silico molecular modeling and docking stud-
ies along with drug formulation and in vivo anti-inflammatory
inspection; [298] attempted to repurpose FDA-approved drugs
by an integrated SBVS approach and reported the discovery
of piperacillin 1 as an inhibitor of NEDD8-activating enzyme
(NAE) in cell-free and cell-based systems with high selectivity.

In addition to SBVS, ligand-based virtual screening (LBVS)
also finds its successful applications in repurposing. [256] used
Ultrafast Shape Recognition (USR) [19] to search for compounds
with similar shape to a previously reported inhibitor of pro-
tein arginine deiminase type 4 (PAD4), a new therapeutic tar-
get for the treatment of rheumatoid arthritis, and identified a
novel compound that has a strikingly different structure from
the template inhibitor yet showed significant inhibition on the
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enzymatic activity of PAD4.
Encouraged by these successful stories, in this study we adopted

the repurposing strategy, and utilized the computational method-
ology of SBVS by protein-ligand docking to shortlist candidates
from FDA-approved small molecule drugs. Specifically, we used
our fast docking program idock [7, 9] in combination with our
convenient visualizer iview [11] for the task of rediscovering
existing drugs as CDK2 inhibitors. idock is an exciting de-
velopment not only because it has been vigorously shown [9]
to outperform the state-of-the-art docking software AutoDock
Vina [8] in terms of docking speed by at least 8.69 times and
at most 37.51 times while maintaining comparable redocking
success rates, but also because it is free and open source un-
der a permissive license. The latter guarantees that users from
both industry and academia can freely utilize idock in their own
projects that require protein-ligand docking.

To facilitate the use of idock, its input arguments and out-
put results were purposely designed to be similar to those of
AutoDock Vina, therefore existing users can easily transit to
idock and benefit from considerable speedup in SBVS perfor-
mance. Moreover, to promote prospective SBVS by idock, a
web server called istar [9] was developed and made available at
http://istar.cse.cuhk.edu.hk/idock, where there are as many as
over 23 million purchasable small molecule compounds ready for
docking against any protein supplied by the user. Both idock [7]
and istar [9] would hopefully supplement the efforts of medicinal
chemists in drug discovery research.
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Regarding the structural data in use, there are so far as many
as 346 solved X-ray crystal structures of CDK2 with a UniProt
ID of P24941. To account for their structural variability and to
mine knowledge from multiple structures of CDK2, we selected
44 holo structures of CDK2 in a bound state with a ligand in
complex to carry out ensemble docking. The final score used to
prioritize compounds was purposely designed to be the average
score of that compound when docked to the 44 selected struc-
tures of CDK2 with their native ligand removed manually before
docking. In this way the top-scoring compounds would guaran-
tee a consistent binding strength on average. In the aspect of
data source of approved drugs, although we chose the dbap and
fda catalogs of the ZINC database [27, 28], it is also possible to
use some other freely accessible drug databases such as NCGC
[299], DrugBank [296], KEGG DRUG [300] and e-Drug 3D [181].

After ensemble docking experiments with idock [7, 9] fol-
lowed by careful visual inspections with iview [11], we purchased
nine top-ranking compounds for subsequent wet experiments.
Among them, adapalene was selected for further investigations
because its IC50 was less than 10 umol/L as determined by MTT
assay. Adapalene is the third generation of synthetic retinoids,
currently used for the topical therapy of acne vulgaris [301]. Its
anti-proliferative and proapoptotic effects in vitro were first re-
ported in colon carcinoma cell lines (CC-531, HT-29 and LOVO)
[302] and hepatoma cells (HepG2 and Hep1B) [303] by increas-
ing the activity of caspase 3 via up-regulating bax and down-
regulating bcl-2.
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In this study, we reported for the first time that adapalene
is a potential CDK2 inhibitor, and demonstrated for the first
time that oral administration of adapalene (20 mg/kg) exhib-
ited significant and strong anti-cancer efficacy as compared to
the leading cancer drug oxaliplatin (40 mg/kg) in vivo in nude
mice xenografted with colorectal DLD1 cells. Most importantly,
the combination of effective dose of adapalene and oxaliplatin
produced even higher therapeutic effect, indicating that adapa-
lene may work through a different mechanism than oxaliplatin,
which further indicates that adapalene could be combined with
other chemotherapy drugs to achieve synergistic therapeutic ef-
fect.

No obvious toxicity was previously reported by either in-
traperitoneal injection of 100 mg/kg adapalene in carrageenan
induced paw oedema rat, or topic use of 10% (10 mg/ml) in UV
induced erythema guinea pig [304]. In this study, we did not ob-
serve significant change in body weight by oral administration
of adapalene (15 to 100 mg/kg) for 21 days, suggesting that
oral administration or intraperitoneal injection of adapalene is
relatively safe.

Intraperitoneal injection of 5 and 10 mg/kg oxaliplatin in
B6D2F mice subcutaneously xenografted with colon 38 was pre-
viously reported to significantly reduced tumor weight to 38%
and 16% of the control level, respectively, at 21 day post-treatment
[305]. In this study, we tested oral oxaliplatin treatment by gav-
age at doses of 10, 20, and 40mg/kg, and found that 40mg/kg ef-
fectively reduced the tumor weight to 28% of the control on day
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21 post-treatment without showing any body weight change, in-
dicating that oral administration of oxaliplatin is relatively safe
and effective.

10.7 Conclusions

This study presents the first successful prospective application of
idock [7, 9] in identifying CDK2 inhibitors from FDA-approved
small molecule drugs using a repurposing strategy. We have
showed that adapalene (CD271, 6-[3-(1-adamantyl)-4-methoxyphenyl]-
2-naphtoic acid), currently used for the topical therapy of acne
vulgaris, exhibited anti-cancer effect in human colorectal LOVO
and DLD1 cells. We have demonstrated for the first time that
oral adapalene treatment significantly and dose-dependently in-
hibited tumor growth. Most importantly, the combinatorial
therapy of adapalene and the leading cancer drug oxaliplatin ex-
hibited higher therapeutic effect. These results have suggested
for the first time that adapalene is a potential CDK2 inhibitor
and a candidate anti-cancer drug for the treatment of human col-
orectal cancer. The potential application of adapalene combined
with other chemotherapy drugs for the treatment of colorectal
neoplasms and other cancers warrants further investigations.

2 End of chapter.



Chapter 11

Case study of influenza A

Influenza is a serious respiratory disease that causes severe ill-
ness and death in high risk populations. The rapid emergence of
drug-resistant viral mutations void existing drugs. It is thus in
urgent need of new anti-influenza drugs that inhibit novel viral
proteins such as nucleoprotein (NP) and the RNA-dependent
RNA polymerase (RdRP) subunits PA, PB1 and PB2.

In this study, we targeted at three novel targets: the tail-
loop binding domain of NP, the PB1-binding domain of PA, and
the cap-binding domain of PB2. We utilized idock to perform
structure-based virtual screening of 273,880 cheaply available
compounds, and identified several hits that were predicted to
establish strong interactions with their respective viral protein
target and believed to exhibit strong inhibitory effects. These
identified compounds may serve as promising candidates for sub-
sequent investigations in vitro and in vivo.

This is an ongoing collaborative project with Prof. Pang-Chui
Shaw and Mr. Edwin Lo from School of Biomedical Sciences,
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Chinese University of Hong Kong, Hong Kong.

11.1 Background

According to the fact sheets of World Health Organization, avail-
able at http://www.who.int/mediacentre/factsheets/fs211/en/,
influenza viruses have been causing sporadic pandemics and
annual epidemics worldwide, every year claiming 250,000 to
500,000 lives and resulting in about 3 to 5 million cases of severe
illness. The H5N1 bird flu outbreak in Hong Kong in 1997, the
H1N1 swine flu outbreak in Mexico in 2009, and the ever-present
threat of H5N1 acquiring human-to-human transmission capa-
bility remind us of the imminent danger posed by the influenza
viruses.

Influenza viruses are negative-sense single-stranded RNA viruses.
They are classified into types A, B and C based on the antigenic
difference in their nucleoproteins and matrix proteins. Influenza
A is the major pathogen for most cases of epidemic influenza.
The influenza A genome comprises 8 segments of RNA coding
for 11 proteins, which are hemagglutinin (HA), neuraminidase
(NA), matrix protein 1 (M1), M2 proton channel, nucleoprotein
(NP), non-structural protein 1 (NS1), nuclear export protein
(NEP), polymerase acid protein (PA), polymerase basic pro-
teins (PB1 and PB2) and PB1-F2. Influenza A viruses are fur-
ther organized into 16 hemagglutinin subtypes (H1-H16) and
9 neuraminidase subtypes (N1-N9) according to their distinct
antigenic properties.
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The life cycle of influenza viruses has been well studied [306–
308] and nearly all the viral proteins have become potential
therapeutic targets [306, 308–311]. To date, four anti-influenza
drugs have been approved by the US FDA (Food and Drug Ad-
ministration). In order of their release, they are two M2 channel
blockers, amantadine (Symmetrel®) and rimantadine (Fluma-
dine®), and two NA inhibitors, zanamivir (Relenza®) and os-
eltamivir (Tamiflu®). Unfortunately, oseltamivir, amantadine
and rimantadine are now found to be ineffective against circu-
lating strains due to the rapid emergence of drug-resistant viral
mutations in pandemic and seasonal influenza viruses. Even
worse, amantadine and rimantadine exhibit side effects on the
central nervous system. No drugs have been firmly established
for the other viral proteins, although leads have been proposed
in some cases [307, 308, 310, 311]. These alarming facts highlight
the urgent need for designing new anti-influenza drugs.

In this study we concentrate on discovering inhibitors of three
influenza A proteins: NP, PA and PB2. These viral proteins are
structurally related in that NP forms homo-oligomers and mul-
tiple copies of NP wrap around genomic RNA, along with a
trimeric RNA-dependent RNA polymerase (RdRP) of subunits
PA, PB1 and PB2 making up a ribonucleoprotein (RNP) com-
plex.
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11.1.1 Nucleoprotein (NP)

NP is the most abundantly expressed viral protein during the
course of infection. NP is a polypeptide of 498 amino acids,
which fold into a crescent shape with a head and a body do-
main. Functionally speaking, NP not only encapsidates the viral
RNA, but also forms homo-oligomers. NP homo-oligomerizes by
inserting the flexible tail loop (amino acids 402 to 428) into the
groove of the body domain of its neighboring NP molecule.

Several crystal structures of NP have been solved. The first
is a 3.2Å resolution structure from human origin H1N1 (PDB
ID: 2IQH) [312]. The second is a 3.3Å resolution structure from
avian origin H5N1 (PDB ID: 2Q06) [313]. Figure 11.1 shows
the H1N1 NP crystal structure [312], rendered by iview [11].
H5N1 NP and H1N1 NP share 94% sequence identity [313].
Their root mean square deviation (RMSD) is 1.0Å after aligning
398 residues [313]. The interaction of the tail loop of one NP
molecule with the neighboring protomer in H5N1 and H1N1 is
virtually identical [313]. Other more recently solved structures
of H1N1 NP include 3RO5 [314], 3TG6, 4IRY [315], 3ZDP [316],
4DYA, 4DYB, 4DYN, 4DYP, 4DYT and 4DYS.

The NP tail loop makes extensive interactions with the bind-
ing groove through intermolecular β-sheets, hydrophobic inter-
actions and salt bridges [312]. Specifically at the residual level,
the salt bridge between E339 lining the binding pocket and R416
on the tail loop is essential. The E339A mutant totally abol-
ishes the RNP activities [317]. E339A and R416A are unable to
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Figure 11.1: Crystal structure of H1N1 nucleoprotein trimer with three sub-
units shown in different colors.

support viral replication in the absence of wild type NP [318].
The R267A and E449A mutants decrease the RNP activities by
more than 50% [317]. These results indicate that within the
tail-loop binding groove E339 is critical while R267 and E449
are important for NP homo-oligomerization.

The displacement of the tail loop from its binding pocket
causes significant structural rearrangements in NP and com-
pletely abolishes the replication and transcription functions [313].
Tail-loop peptides are shown to disrupt NP-NP interaction and
inhibit viral replication [318]. The amino acids in the tail-
loop binding groove for NP oligomerization are highly conserved
across 4430 sequences of NP among all influenza A virus sub-
types from all hosts [319]. Therefore the tail-loop binding groove
is an attractive target for inhibitor design. Chemical compounds
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which competitively displace the tail loop from its binding pocket
would interfere with viral genome replication, and thus serve as
promising candidates for anti-influenza drug development [312,
313, 317, 318]. Targeting at the tail-loop binding site, a few
novel inhibitors [318] have been identified to be effective against
both wild-type and mutant strains using structure-based virtual
screening, but none have been approved as drugs.

11.1.2 Polymerase acidic protein (PA)

The RNA-dependent RNA polymerase is a heterotrimer com-
posed of three subunits, namely PA, PB1 and PB2. PA con-
tains the endonuclease domain, PB1 carries the polymerase ac-
tive site, and PB2 includes the capped-RNA recognition domain.
All the three subunits are required for both viral transcription
and replication.

The amino-terminal residues of PB1 interact with the carboxy-
terminal domain of PA. Two crystal structures of PAC-PB1N

complex have been solved. The first is a 2.9Å resolution struc-
ture of avian H5N1 influenza A virus PA (PAC, residues 257-716)
in complex with the PA-binding region of PB1 (PB1N, residues
1-25) (PDB ID: 3CM8) [320]. The second is a 2.3Å resolution
structure of influenza A H1N1 (PDB ID: 2ZNL) [321]. Figure
11.2 shows the H1N1 PAC-PB1N crystal structure, rendered by
iview [11]. In addition to PAC-PB1N structures, two apo crys-
tal structures of PAC in the absence of PB1 have been reported
recently [322]. The first is a 1.9Å resolution structure of H1N1
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Figure 11.2: Crystal structure of the C-terminal domain of H1N1 PA bound
to the N-terminal peptide of PB1.

PAC (PDB ID: 4IUJ). The second is a 2.2Å resolution structure
of H7N9 PAC (PDB ID: 4P9A).

The C-terminal domain of PA forms a deep and highly hy-
drophobic groove into which the N-terminal residues of PB1
can fit by forming a 310 helix P5TLLFLK11 and interacting
through an array of hydrogen bonds and hydrophobic contacts
[321]. Four double mutations W706A/Q670A, L666G/F710E,
L666G/F710G and W706A/F710Q disrupt the binding of PB1N

to PAC [320]. Four point mutations V636S, L640D, L666D and
W706A greatly weaken or abolish PB1 binding, and similarly
reduce viral RNA synthesis in human cells [321].

The loss of PA abolishes RNA polymerase activity and viral
replication. Peptides corresponding to the PA-binding domain
of PB1 block the polymerase activity and inhibits viral spread
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[323–326]. The residues from PAC and PB1N at the interface are
highly conserved in H1N1, H5N1 and other influenza A viruses
[320, 324]. Key interface residue mutations and PB1N-derived
peptides inhibit viral replication and transcription, suggesting
a crucial role of PAC-PB1N interactions in polymerase activity
and heterotrimer formation. Therefore, novel chemotherapeutic
agents mimicking the PB1N 310 helix are potential inhibitors
of PAC-PB1N dimerization. Targeting at the PB1 binding site
of PA, two FDA approved medications [327] and several novel
small molecules [328–332] have been identified, but none have
been approved as anti-influenza drugs.

11.1.3 Polymerase basic protein 2 (PB2)

Transcription of influenza virus can be divided into the follow-
ing stages [333]: 1) binding of the 5’ and 3’ vRNA sequences
to PB1, probably causing a conformational change in the poly-
merase complex; 2) binding of the 5’ cap of a host pre-mRNA to
PB2; 3) cleavage of a phosphodiester bond 10 to 13 nucleotides
downstream of the cap by PA; and 4) activation of the viral
mRNA transcription at the cleaved 3’ end of the capped frag-
ment.

PB2 residues 318 to 483 form the cap-binding domain, which
is essential for cap-dependent transcription by viral RNPs in
vitro and in vivo. Figure 11.3 shows the 2.3Å resolution crystal
structure of the influenza A H3N2 PB2 cap-binding domain in
complex with a 5’cap analog m7GTP (PDB ID: 2VQZ) [334],
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Figure 11.3: Crystal structure of H3N2 PB2 cap binding domain in complex
with m7GTP.

rendered by iview [11]. Other recently solved crystal structures
of PB2cap include 4EQK [335], 4NCE [336], 4NCM [336] and
4P1U [336] for the H3N2 strain, 4ENF [335], 3WI0 [337], 3WI1
[337] and 4J2R [338] for the H1N1 strain, and 4ES5 [335], 4CB4
[339], 4CB5 [339], 4CB6 [339] and 4CB7 [339] for the H5N1
strain.

The binding of m7GTP to PB2cap is assisted by a hydropho-
bic sandwich between the aromatic residues Phe325 and Phe404.
This results in strong electrostatic interactions between the posi-
tively charged methylated base m7G and the aromatic π-electrons,
giving up to 100-fold discrimination against a non-methylated
base, i.e. m7GTP versus GTP [334]. On the solvent side of the
ligand, the sandwich is completed by His357, which stacks par-
allel to the base. The key acidic residue Glu361 makes hydrogen
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bonds with the N1 and N2 atoms of the guanine. Lys376 is in-
volved in base recognition by interaction with O6. Phe323 stacks
on the ribose. His432 and Asn429 interact with the α-phosphate.
His357, Lys339 and Arg355 interact with the γ-phosphate. Mu-
tants E361A and K376A had no remaining affinity. Mutants
F325A, H357A and F404A had greatly reduced affinity. Mu-
tant F323A had weak binding activity [334].

Phe404 is conserved in influenza B and C viruses, whereas
His357, on the other side of the sandwich, is unique to influenza
A and is replaced by the more conventional cap-stacking residue
tryptophan in influenza B and C [334]. A statistical analysis
of 13 key residues using 9246 sequences with unambiguous host
annotation showed that most of the 13 residues were highly con-
served, except that Lys339 and Arg355 showed polymorphisms
in certain subtypes [335].

PB2cap is structurally distinct from other cap binding proteins
[334]. Hence PB2cap appears to be a favorable drug target for
the development of new antiviral drugs. Targeting at the PB2cap

binding site, several novel small molecules [333, 336, 339] have
been identified, but none have been approved as anti-influenza
drugs.

11.2 Motivation

The influenza viruses have been constantly mutating into drug-
resistent strains. The four existing anti-influenza drugs grad-
ually lose their effectiveness. New drugs targeting novel viral
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proteins are thus highly desired. The key residues located in
the tail-loop binding groove of NP, the PB1N binding pocket
of PAC and the cap-binding domain of PB2 are highly con-
served, and therefore serve as attractive drug targets. Although
some inhibitors have been proposed, designed, synthesized and
evaluated in some cases, none have been firmly established as
new anti-influenza drugs. In this study, we attempted to dis-
cover novel anti-influenza small-molecule inhibitors targeting the
above three conserved sites on three viral proteins, and hopefully
optimize the inhibitors into approved drugs.

11.3 Objective

We aimed at the discovery of anti-influenza small molecules.
Particularly, we utilized our docking tool idock [7, 9] to perform
structure-based virtual screening, as well as our visualization
tool iview [11] to analyze intermolecular interactions.

11.4 Methods

We downloaded the X-ray crystallographic structures of NP
trimer (PDB ID: 2IQH) [312], PAC in complex with PB1N (PDB
ID: 2ZNL) [321], and PB2cap in complex with m7GTP (PDB ID:
2VQZ) [334]. For the 2IQH NP trimer structure, only chain A
was retained and chains B and C were removed. For the 2ZNL
PAC-PB1N structure, only PAC was retained and PB1N was re-
moved. For the 2VQZ PB2cap-m7GTP structure, only PB2 chain
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Table 11.1: Search space defined for docking the 2IQH, 2ZNL and 2VQZ
structures.

PDB ID center_x center_y center_z size_x size_y size_z
2IQH 82.440 100.261 26.307 30 24 22
2ZNL -7.965 -56.681 20.928 30 24 24
2VQZ 46.857 24.018 -30.614 16 14 18

A was retained and PB2 chains B, D, E, F, and m7GTP were
removed. Table 11.1 lists the centers and sizes of the docking
space of the three structures.

We collected 273,880 compounds from version 2013-02-19 of
the Specs catalog of the ZINC database [27, 28]. The Specs
compounds were chosen because they are readily available and
commercially cheap.

We then executed idock v2.1.3 [9] with a grid map granularity
of 0.08Å. Each compound was docked against the specified bind-
ing site of each of the three viral proteins, and was subsequently
ranked according to the predicted idock score in kcal/mol units
or the predicted RF-Score-v3 in pKd units. Finally the top hits
were structurally examined with the help of iview [11].

11.5 Results

11.5.1 Nucleoprotein (NP)

Table 11.2 lists the top hits targeting at the NP tail-loop binding
groove. The best idock score obtained was -15.78 kcal/mol,
which translates to Kd = 2.66 pM (picomolar). The best RF-
Score-v3 obtained was 9.79 pKd, which translates to Kd = 0.16
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Table 11.2: Predicted top ten NP-tail-loop-binding-groove-targeted com-
pounds ranked by idock score (top half) and RF-Score-v3 (bottom half).

ZINC ID idock score (kcal/mol) RF-Score-v3 (pKd)
08398177 -15.78 8.50
04527915 -14.79 7.54
08427160 -14.51 8.29
08448951 -14.45 8.62
08443691 -14.40 8.71
08455791 -14.22 8.49
08425107 -14.16 8.22
08453194 -14.07 8.10
08443534 -13.99 8.21
08442491 -13.96 8.37
08384690 -9.76 9.79
08384620 -9.25 9.68
06143179 -8.97 9.56
08430094 -9.08 9.35
08432234 -8.18 9.32
08384589 -10.31 9.30
08399495 -10.01 9.27
08399544 -10.35 9.24
08399490 -10.09 9.21
08384414 -10.66 9.20

nM (nanomolar).
Figure 11.4 visualizes the predicted structures of NP in com-

plex of the top four compounds ranked by idock score and the
top four compounds ranked by RF-Score-v3. Putative hydrogen
bonds are shown as cyan dashed lines. For instance, the O3
atom of ZINC08398177 forms a putative hydrogen bond with
the HE2 atom of HIS272 at a distance of 2.05Å.
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(a) ZINC08398177 forms a hydrogen bond
with HIS272.

(b) ZINC04527915 forms a hydrogen bond
with ARG267.

(c) ZINC08427160 forms 5 hydrogen bonds
with HIS272, THR390 and SER457.

(d) ZINC08448951 forms 2 hydrogen bonds
with HIS272 and THR390.

(e) ZINC08384690 forms 8 hydrogen
bonds with SER165, ARG267, HIS272 and
THR390.

(f) ZINC08384620 forms 9 hydrogen bonds
SER165, ARG267, GLY268, ASP340 and
THR390.

(g) ZINC06143179 forms 6 hydrogen bonds
with HIS272, ILE388 and THR390.

(h) ZINC08430094 forms 6 hydrogen bonds
with VAL186, GLY268, HIS272, ALA337,
PHE338 and THR390.

Figure 11.4: Predicted structures of NP in complex of the top four com-
pounds ranked by idock score (a to d) and the top four compounds ranked
by RF-Score-v3 (e to h).
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Table 11.3: Predicted top ten PAC-targeted compounds ranked by idock
score (top half) and RF-Score-v3 (bottom half).

ZINC ID idock score (kcal/mol) RF-Score-v3 (pKd)
08383903 -15.45 8.24
08398361 -14.53 8.01
08417364 -14.09 8.53
04176726 -13.85 7.96
16526187 -13.84 7.57
00652029 -13.79 7.84
08453194 -13.76 8.01
08427363 -13.67 7.16
08444058 -13.61 8.24
04527916 -13.49 8.05
08439610 -11.20 8.90
08396899 -10.81 8.88
08384461 -9.75 8.84
08443595 -11.59 8.83
08399680 -9.78 8.77
08454594 -11.78 8.74
08399439 -10.26 8.72
08442229 -10.21 8.71
08398784 -10.88 8.70
08397557 -11.66 8.69

11.5.2 Polymerase acidic protein (PA)

Table 11.3 lists the top hits targeting at the PB1N binding site of
PAC. The best idock score obtained was -15.45 kcal/mol, which
translates to Kd = 4.65 pM. The best RF-Score-v3 obtained was
8.90 pKd, which translates to Kd = 1.26 nM.

Figure 11.5 visualizes the predicted structures of PAC in com-
plex of the top four compounds ranked by idock score and the
top four compounds ranked by RF-Score-v3.
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(a) ZINC08383903 forms no hydrogen bond. (b) ZINC08398361 forms no hydrogen bond.

(c) ZINC08417364 forms a hydrogen bond
with TRP706.

(d) ZINC04176726 forms 6 hydrogen bonds
with ILE621, GLY622, ASN703 and PHE710.

(e) ZINC08439610 forms a hydrogen bond
with LYS643.

(f) ZINC08396899 forms 4 hydrogen bonds
with GLU623, ASN703 and SER709.

(g) ZINC08384461 forms 4 hydrogen bonds
with SER631, LYS643, ASN703 and CYS415.

(h) ZINC08443595 forms 2 hydrogen bonds
with GLN408 and TRP706.

Figure 11.5: Predicted structures of PAC in complex of the top four com-
pounds ranked by idock score (a to d) and the top four compounds ranked
by RF-Score-v3 (e to h).
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Table 11.4: Predicted top ten PB2cap-targeted compounds ranked by idock
score (top half) and RF-Score-v3 (bottom half).

ZINC ID idock score (kcal/mol) RF-Score-v3 (pKd)
08383936 -12.52 7.67
08386295 -12.15 7.41
03015113 -11.85 7.67
15188425 -11.74 7.53
02125231 -11.69 7.09
02154274 -11.56 7.31
08453194 -11.56 7.40
02077599 -11.46 7.21
02077477 -11.45 7.36
00657519 -11.45 7.65
08439610 -8.77 8.47
08439605 -8.59 8.38
08399683 -7.38 8.37
08437929 -9.27 8.33
08455074 -9.81 8.25
08444191 -9.56 8.23
08446351 -9.96 8.20
08452812 -9.49 8.20
02752464 -10.58 8.19
08446353 -8.82 8.19

11.5.3 Polymerase basic protein 2 (PB2)

Table 11.4 lists the top hits targeting at the cap binding site of
PB2. The best idock score obtained was -12.52 kcal/mol, which
translates to Kd = 0.66 nM. The best RF-Score-v3 obtained was
8.47 pKd, which translates to Kd = 3.39 nM.

Figure 11.6 visualizes the predicted structures of PB2cap in
complex of the top four compounds ranked by idock score and
the top four compounds ranked by RF-Score-v3.
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(a) ZINC08383936 forms no hydrogen bond.(b) ZINC08386295 forms 11 hydrogen bonds
with SER321, ARG332, ARG355, GLN406
and ASN429.

(c) ZINC03015113 forms 8 hydrogen bonds
with SER321, ARG332, ARG355 and
ASN429.

(d) ZINC15188425 forms no hydrogen bond.

(e) ZINC08439610 forms 3 hydrogen bonds
with LYS339 and HIS357.

(f) ZINC08439605 forms 2 hydrogen bonds
with HIS357 and ASN429.

(g) ZINC08399683 forms 6 hydrogen bonds
with ARG355, HIS357 and GLN406.

(h) ZINC08437929 forms 6 hydrogen bonds
with SER321, ARG332 and LYS339.

Figure 11.6: Predicted structures of PB2cap in complex of the top four com-
pounds ranked by idock score (a to d) and the top four compounds ranked
by RF-Score-v3 (e to h).
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11.6 Discussion

For the top hits in all the three docking cases, the binding affini-
ties predicted by idock are generally at pM level, whereas those
predicted by RF-Score-v3 are generally at nM level. This means
idock tends to estimate a significantly higher binding affinity for
a top hit than RF-Score-v3 does. The top hits of NP and PAC

have significantly higher binding affinities than those of PB2cap

on average, probably because the chosen binding sites of NP
and PAC are remarkably larger in volume, as can be seen in
Table 11.1. In contrast, the PB2cap binding site locates at the
protein surface and constitutes a shallow pocket. Apparently a
larger binding site permits a more comprehensive exploration of
conformational flexibility of the ligand.

In each of the three docking cases, there is no duplicate com-
pound in both the top ten hits ranked by idock score and the
top ten hits ranked by RF-Score-v3. This suggests the two
scores tend to prioritize compounds differently. However, in-
terestingly, ZINC08453194 appears in the idock top ten lists
across all the three cases, and ZINC08439610 appears in the
RF-Score-v3 top ten lists across the cases of PAC and PB2cap.
Their chemical structures are shown in Figure 11.7. A certain
type of scoring function seems to favor some certain atom types.
ZINC08453194 contains mostly carbon atoms and five oxygen
atoms, while ZINC08439610 contains mostly carbon atoms and
six nitrogen atoms. Besides, looking at the quasi-linear formula
to calculate idock score [7–9], the number of rotatable bonds,
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(a) ZINC08453194 appears in the idock top
ten lists across the docking cases of NP, PAC
and PB2cap.

(b) ZINC08439610 appears in the RF-Score-
v3 top ten lists across the docking cases of
PAC and PB2cap.

Figure 11.7: Duplicate top hits across docking cases.

denoted as Nrot, is in the denominator so as to penalize ligand
flexibility, therefore idock score also favors ligands that have
few rotatable bonds, such as ZINC08453194 which has just one
rotatable bond. Taken together, these indicate that some par-
ticular ligand-only properties already guarantee that the ligand
will be ranked high when docking against certain types of pro-
teins.

11.7 Conclusions

Treatment of seasonal and pandemic influenza is currently lim-
ited by the availability of only few drugs that are challenged
by emergence of drug-resistant mutants. In this study, we have
targeted at novel binding sites of three viral proteins, namely
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the tail-loop binding domain of NP, the PB1-binding domain of
PA, and the cap-binding domain of PB2, and reported the top
hits obtained from structure-based virtual screening of 273,880
cheaply available compounds from Specs using idock [7, 9] as the
molecular docking tool and iview [11] as the interaction visual-
ization tool. These top hits may serve as potential promising
starting points for subsequent wet experiments. Moreover, we
have observed that idock tends to output a substantially higher
binding affinity for a top hit than RF-Score-v3 does, and certain
types of scoring functions tend to favor certain ligand-only prop-
erties, which permit certain ligands to be ranked high regardless
of the protein in study.

11.8 Future works

Recently, two apo crystal structures of H1N1 and H7N9 PAC

(PDB ID: 4IUJ and 4P9A) in the absence of PB1 have been re-
ported to exhibit the same global topology as other strains, but
differ extensively in the PB1 binding pocket [322]. These struc-
tural changes demonstrate plasticity in the PAC-PB1N binding
interface, which can be exploited in the development of novel
therapeutic drugs. Furthermore, the structure of polymerase has
recently been solved [340, 341], which provides valuable struc-
tural insights for drug design.

The top scoring compounds reported in this study will be
subjected to post-screening evaluations, including Lipinski’s rule
filter [83], visual inspection and consensus docking [342] using



CHAPTER 11. CASE STUDY OF INFLUENZA A 332

DOCK [39], AutoDock Vina [8], or PLANTS [42–44]. The com-
mercially available compounds will be purchased for subsequent
biological evaluations.

The cytotoxicity of the compounds will first be tested by
MTT assay. Influenza RNP reconstitution assay will then be
performed to investigate their ability to inhibit RNP transcrip-
tional activity. Hit compounds causing significant reduction of
RNP activity will be subjected to whole virus assay including
plaque reduction assay and yield reduction assay using seasonal
flu viruses. Surface plasmon resonance will also be performed to
test the in vitro binding affinity of the compounds to the target
protein.

For compounds that exhibit substantial anti-influenza prop-
erties, chemical analogues will be purchased for further evalua-
tion. Structure activity relationship study will be performed to
further characterize the interaction between the compound and
the target protein.

2 End of chapter.



Chapter 12

Conclusions

Drug discovery has been an expensive and long-term practice
over the decades. The cost of drug development has now reached
US$2.6B [2]. On the other hand, computer-aided drug discovery
(CADD) methods are becoming cheaper and faster, and their
predictive accuracy are continuously improving. This thesis
presents our pragmatic CADD toolset as well as its prospective
applications.

Chapter 2 describes idock [7] for multithreaded flexible lig-
and docking. idock adopts a substantially simplified numerical
model and implements dimension reduction for stochastic opti-
mization. Compared to the competitive docking tool AutoDock
Vina [8], idock obtains a speedup of 3.3 in CPU time and a
speedup of 7.5 in elapsed time on average. A faster implemen-
tation permits testing more compounds or finding lower energy
conformations in a large virtual screen.

Chapter 3 describes istar [9] as a heterogeneous web platform
for hosting diverse web services from multiple disciplines, in-

333
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cluding idock for large-scale prospective structure-based virtual
screening. istar features a huge molecular database of over 23
million compounds, and provides comfortable and unique user
experience via the proper use of modern web technologies. istar
is now getting more attentions worldwide according to Google
Analytics.

Chapter 4 describes iview [11] for quick elucidation of molecu-
lar interactions on web pages interactively. iview eliminates the
prerequisite of Java in browsers and utilizes WebGL instead, en-
abling GPU hardware acceleration. iview supports the helpful
features of macromolecular surface construction and virtual re-
ality effects. iview is also highly customizable that a specific
version for visualizing idock results is derived and deployed on
istar.

Chapter 5 describes iSyn [12, 13] for generating potent com-
pounds de novo from molecular fragments with desired molec-
ular properties. iSyn circumvents the compound database di-
versity limitation imposed by virtual screening methods. iSyn
guarantees synthetic feasibility with click chemistry, and inter-
faces with idock and iview to provide consistent experience. iSyn
is capable of producing extraordinarily novel compounds within
a reasonable runtime.

Chapters 6, 7 and 8 describe our separate studies [15–18] on
the use of random forest (RF) to improve binding affinity predic-
tion with related but different motivations. We have shown that
the simple functional form typically implemented in classical
scoring functions is detrimental for their predictive performance
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due to their incapability of exploiting abundant training sam-
ples, and substituting machine learning techniques like RF for
the commonly-used multiple linear regression (MLR) model can
substantially improve predictive accuracy [15–17]. This finding
is significant because RF-based scoring functions will continue
to gain their competitive edge over MLR-based scoring func-
tions given the future availability of more experimental data.
We have also investigated the impact of pose generation error
on the predictive performance and found that re-training the
scoring functions on docked poses can be a simple and quick
solution to reduce the negative impact of pose generation error
[18].

Chapter 9 describes USR@istar for convenient identification
for compounds structurally similar to a query using the ultrafast
shape recognition algorithm USR [19] and its extension USR-
CAT [20]. As a novel feature, our USR@istar exploits the AVX
SIMD instructions of modern processors to accelerate similar-
ity score computation. As many as 19 sample query ligands
with different molecular sizes have been selected to benchmark
USR@istar. To our expectation, USR and USRCAT priori-
tize completely different compounds when the query has a large
number of heavy atoms. To our surprise, however, different file
formats of the same query ligand yield different output. With
the calculated features preloaded on the server side, searching
23 million compounds requires merely 30 seconds on average,
compared to 167 seconds when the precalculated features are
loaded ad hoc.
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It is noteworthy that all of our CADD tools are free and
open source so as to promote their use. In addition to tool
development, described in the chapters above, we also emphasize
prospective applications, presented in the chapters below.

Chapter 10 presents our case study of cancers related to
CDK2 (cyclin-dependent kinase 2). We have utilized idock [7,
9] and [11] iview prospectively for the first time in identify-
ing potential CDK2 inhibitors from approved small molecule
drugs using a repurposing strategy and an ensemble docking
methodology. The anti-acne drug adapalene exhibits the anti-
proliferative effect in human colon cancer in vitro and signif-
icantly inhibited tumor growth in vivo in nude mice subcuta-
neously xenografted with human colorectal cancer cells, render-
ing adapalene a candidate anti-cancer drug.

Chapter 11 presents our case study of influenza A. We have
selected three novel protein targets and utilized idock [7, 9] to
screen 273,880 commercially cheap compounds, and identify hits
predicted to establish strong interactions with their respective
viral protein target and hence believed to yield strong inhibitory
effects.

In conclusion, we believe our toolset constitutes a step to-
ward generalizing the use of CADD tools beyond the traditional
purely experimental community, and our successful drug discov-
ery endeavors in real life would hopefully inspire researchers in
the CADD field.

2 End of chapter.
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