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SUMMARY

The Fast Multipole Method of Greengard and Rokhlin does the seemingly im-

possible: it approximates the quadratic scaling N -body problem in linear time. The

key is to avoid explicitly computing the interactions between all pairs of N points.

Instead, by organizing the data in a space-partitioning tree, distant interactions are

quickly and efficiently approximated. Similarly, dual-tree algorithms, which approx-

imate or eliminate parts of a computation using distance bounds, are the fastest

algorithms for several fundamental problems in statistics and machine learning –

including all nearest neighbors, kernel density estimation, and Euclidean minimum

spanning tree construction.

We show that this overarching principle – that by organizing points spatially,

we can solve a seemingly quadratic problem in linear time – can be generalized to

problems involving interactions between sets of three or more points and can provide

orders-of-magnitude speedups and guarantee runtimes that are asymptotically better

than existing algorithms. We describe a family of algorithms, multi-tree algorithms,

which can be viewed as generalizations of dual-tree algorithms. We support this thesis

by developing and implementing multi-tree algorithms for two fundamental scientific

applications: n-point correlation function estimation and Hartree-Fock theory.

First, we demonstrate multi-tree algorithms for n-point correlation function esti-

mation. The n-point correlation functions are a family of fundamental spatial statis-

tics and are widely used for understanding large-scale astronomical surveys, charac-

terizing the properties of new materials at the microscopic level, and for segmenting

and processing images. We present three new algorithms which will reduce the de-

pendence of the computation on the size of the data, increase the resolution in the

xii



result without additional time, and allow probabilistic estimates independent of the

problem size through sampling. We provide both empirical evidence to support our

claim of massive speedups and a theoretical analysis showing linear scaling in the fun-

damental computational task. We demonstrate the impact of a carefully optimized

base case on this computation and describe our distributed, scalable, open-source

implementation of our algorithms.

Second, we explore multi-tree algorithms as a framework for understanding the

bottleneck computation in Hartree-Fock theory, a fundamental model in computa-

tional chemistry. We analyze existing fast algorithms for this problem, and show how

they fit in our multi-tree framework. We also show new multi-tree methods, demon-

strate that they are competitive with existing methods, and provide the first rigorous

guarantees for the runtimes of all of these methods. Our algorithms will appear as

part of the PSI4 computational chemistry library.

xiii



CHAPTER I

INTRODUCTION

1.1 Thesis Statement

Multi-tree algorithms, a class of higher-order generalizations of the Fast Multipole

Method, can provide orders-of-magnitude speedups on fundamental problems in data

analysis and scientific computing while providing guaranteed runtime bounds and a

unifying framework for understanding these problems and their solutions.

We support this thesis through an exploratory analysis of multi-tree algorithms

in action on problems of fundamental scientific importance. We develop, empirically

evaluate, and theoretically bound and characterize multi-tree algorithms for n-point

correlation function estimation in astronomy and cosmology and for Hartree-Fock

theory in computational chemistry. By obtaining speedups and useful theoretical

characterizations for real problems, we demonstrate that multi-tree algorithms may

be useful for a broad range of tasks.

1.2 Overview of This Dissertation

TheN -body problem is a fundamental computational task in the analysis and applica-

tion of many scientific models. Given a set of N particles and some physical potential

Φ(·) which is a function of the distance between a pair of particles, we must compute

the total potential at each particle due to all of the others: Φi =
∑N

j=1 Φ(‖ri − rj‖).

With scientific simulations and data sets already massive and growing, the O(N2)

scaling that this task seems to require makes it prohibitively expensive.

However, the Fast Multipole Method of Greengard and Rokhlin [76] can approxi-

mate the solution in O(N) time. At a high level, the method indexes the points using

1



a space partitioning tree, such as an octree. Using this indexing, we can then ap-

proximate the interactions between distant nodes in the tree, thus eliminating many

pairwise potential evaluations. By carrying these approximations up and down the

tree, we arrive at an approximate solution with bounded error in linear time.

The all nearest neighbors problem is a fundamental task in machine learning and

data mining, where it serves as the basis for a variety of classification, regression and

clustering algorithms. Given a set of data points in Rd, we must find the nearest

neighbor of each point under a given metric. Once again, this task seemingly requires

O(N2) work – we compute all pairwise distances, then scan for the smallest for each

point.

Once again, clever tree-based algorithms can overcome this obstacle. We again

index the data with a space-partitioning tree. We consider a pair of tree nodes at a

time, one for queries and one for references – the points for which we are searching

for a nearest neighbor and those which might be a nearest neighbor, respectively. For

each query, we maintain an upper bound on the distance to the true nearest neighbor

obtained from the closest reference point seen so far. We store the maximum upper

bound over all its points in each node. When the lower bound distance between a

query and reference node is greater than this maximum upper bound for the query,

we can immediately dismiss all the references as possible nearest neighbors for the

queries. This algorithm can be shown to eliminate most of the pairwise distance

computations, allowing us to find the nearest neighbor of every point in O(N) time

[141].

This doubly-recursive, or dual-tree, algorithm has been the basis of efficient al-

gorithmic solutions to many other prolbems in machine learning and computational

geometry, including Euclidean minimum spanning tree construction [112], kernel sum-

mations for kernel density estimation [72, 108], naive Bayes classification [69], and

mean shift clustering [172].

2



Both the FMM and the all nearest neighbors algorithms have the dual-tree struc-

ture in common – we obtain speedups by considering pairs of nodes in a space-

partitioning tree and using the bounds we obtain from them to compute approxima-

tions or avoid parts of the computation entirely.

There are other fundamental problems in computational science and data mining

and machine learning which scale even worse – they consist of all interactions between

sets of three, four, or even more points. Fundamental problems in astronomy, ma-

terials science, medical image processing, drug design, and computational chemistry

fit this general framework. This dissertation applies the algorithmic principles and

methods learned from the dual-tree setting to these higher-order problems.

We begin by detailing the algorithmic principles and techniques underlying dual-

tree algorithms. We define dual- and multi-tree algorithms. We pursue an extended

example of these techniques through their application to Euclidean minimum span-

ning tree construction. We then turn to applications of multi-tree algorithms in

computational science.

We focus on two problems in particular. First, we discuss the task of estimating

the n-point correlation functions – a set of fundamental spatial statistics capable of

fully characterizing any point process. In addition to their generality, these functions

are fundamental in astronomy and cosmology and materials science. The estimators

for these functions consist of counting all n-tuples of points. If performed directly, this

requires O(Nn) time. However, like most scientific data sets, sky surveys currently

consist of billions of points and are rapidly growing. Thus, efficient algorithms are

essential to keep pace.

We define the computational tasks required, then present several new multi-tree

algorithms for the n-point correlation function estimation problem. In addition to

algorithms for the basic computational task, we show how to efficiently compute

the npcf at multiple scales in a single computational pass and how to incorporate

3



resampling-based variance estimation directly into our algorithm. We present a newly

optimized base case implementation and an efficient distributed implementation of

our algorithms, both of which create substantial speedups over previous methods. We

also show a theoretical analysis of our algorithms, proving that we have solved a task

seemingly requiring O(Nn) work in O(N) time with no approximations.

Our second problem is the construction of the Fock matrix in Hartree-Fock theory.

Hartree-Fock theory is a fundamental approximation used to compute wavefunctions

of molecules in computational chemistry. Furthermore, this method serves as the

first step in more accurate correlation methods. Since understanding molecules at

the quantum level is crucial for applications in drug design, materials design, and

other applications, an efficient and accurate method for this problem is important.

The bottleneck computation in Hartree-Fock theory is the construction of the Fock

matrix, an N by N matrix, each entry of which is a double-summation over the entire

data set. Since N depends on both the size of the molecule being considered (number

of atoms) and the accuracy needed, this O(N4) scaling is prohibitively expensive.

We describe the Fock matrix construction task in detail, paying particular atten-

tion to the key two-electron integrals. We show that existing fast algorithms for Fock

matrix construction fit within our multi-tree framework. We then describe two new

multi-tree algorithms. We provide the first detailed theoretical analysis of existing

methods, and show their true dependence on both the size of the input and properties

of the computation being performed. We present a preliminary empirical evaluation

of our algorithms, and discuss their current limitations.

1.3 Contributions of this Dissertation

In support of this thesis, we make several concrete contributions. Here, we present a

list of these, which are described in detail in the following chapters.

4



1.3.1 Algorithms

• We develop a dual-tree algorithm for Euclidean minimum spanning tree con-

struction. This algorithm is the fastest method available for the EMST problem

for more than two-dimensional data, providing an order-of-magnitude speedup

over the previous state-of-the-art.

• We develop a general multi-tree algorithm for n-point correlation function esti-

mation. We also present algorithms for performing this computation at multiple

scales simultaneously and for efficiently obtaining variance estimates through

resampling. Each of these algorithms can provide up to an order-of-magnitude

speedup over previous methods. These improvements stack for truly massive

performance improvements.

• We present two new multi-tree algorithms for the entire Fock matrix construc-

tion problem. These algorithms are the first linear scaling methods to compute

the entire Fock matrix, rather than just one term in it.

1.3.2 Theory

• We define dual- and multi-tree algorithms. We also discuss adaptive algorithm

analysis – a form of algorithm analysis which takes properties of the data into

account to obtain tighter and more informative runtime bounds.

• We prove that our dual-tree EMST algorithm runs in nearly optimalO(N logN α(N))

time, where α(N) is a negligibly small factor.

• We show the first proof that the n-point correlation functions can be estimated

in O(N) time for an important subset of inputs, which is optimal for exact

algorithms. We prove that our new algorithms achieve this bound.
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• We unify existing fast methods for Fock matrix construction under our multi-

tree framework, which were previously considered to fundamentally rely on the

details of the computational task.

• We present the first formal runtime proofs for Fock matrix construction algo-

rithms. These methods are frequently claimed to run in linear time. We present

the first formal analysis of this claim, and show that it holds under some sig-

nificant conditions. We also show that our new algorithm satisfies this bound,

as well.

1.3.3 Implementations

• We contributed our EMST algorithm to the MLPACK open-source machine

learning library [39] using any general space-partitioning tree.

• We developed an open-source n-point correlation estimation library, npoint.

This algorithm includes all our efficient algorithms, an optimized base case com-

putation responsible for another order-of-magnitude speedup, and a distributed,

MPI based version of our algorithm.

• We have contributed efficient implementations of the currently optimal CFMM

and LinK methods for Fock matrix construction to the Psi4 open-source com-

putational chemistry package [169], thus extending the package’s capabilities

to much larger molecules than were previously possible. We have provided

preliminary implementations of our algorithms as well.

1.4 Publications

Some of the work presented in this thesis has been previously published in the peer-

reviewed literature.

• Optimizing the Computation of N-Point Correlations on Large-

Scale Astronomical Data, Supercomputing, 2012 [114]. In this paper, we
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developed our optimized n-point correlation estimation base case and demon-

strated that it is capable of up to an order-of-magnitude speedup over the

previous best implementation.

• Fast Algorithms for Comprehensive N-point Correlation Esti-

mates. In SIGKDD, 2012 [113]. In this paper, we develop our efficient multi-

scale npcf estimation algorithm and our jackknife resampling algorithm. We

show that each of these algorithms are capable of up to an order-of-magnitude

speedup and that these effects can be stacked.

• Fast Euclidean Minimum Spanning Tree: Algorithm, Analysis, Ap-

plications. In SIGKDD, 2010 [112]. In this paper, we develop our fast Eu-

clidean MST algorithm. We demonstrate the effectiveness of this algorithm on

both kd-trees and cover trees, and show that it provides speedups over the pre-

vious state-of-the-art on both real and synthetic data from 3 to thousands of

dimensions. We also present an adaptive analysis of the runtime of our algo-

rithm and show the that our algorithm’s runtime is within a negligible factor

of optimal.

• Multitree Algorithms for Large-Scale Astrostatistics. In Ad-

vances in Machine Learning and Data Mining for Astronomy (Edited

Volume), 2012 [115]. In this review article, we describe the applications of multi-

tree algorithms in astronomy, including n-point correlation function estimation,

naive Bayes classification, kernel density estimation, and Euclidean minimum

spanning trees.

• Linear Time Algorithms for Pairwise Statistical Problems. In

NIPS, 2009 [141]. We show adaptive algorithm analyses of several dual-tree

algorithms, including those for all nearest neighbor and kernel density estima-

tion.
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• MLPACK: A Scalable C++ Machine Learning Library. In JMLR,

2013 [39]. We describe the open-source machine learning library MLPACK and

demonstrate its efficient implementation of many fundamental machine learning

algorithms, including dual-tree algorithms.

• Tree-Independent Dual-Tree Algorithms. In ICML, 2013 [40]. We

examine one advantage of the overarching dual-tree framework – the ability to

easily use different data structures within one algorithmic framework.

This dissertation is the first time all of our n-point correlation estimation al-

gorithms have been described together, with their total speedups exhibited. Our

theoretical analyses these algorithms have also not been previously published. Our

work on Fock matrix construction is also previously unpublished.

1.5 Outline of the Dissertation

The rest of this dissertation is organized into four chapters. In Chapter 2, we define

dual- and multi-tree algorithms and give an overview of the algorithmic techniques

responsible for their speedups for many different problems. We also explore the ap-

plication of alternative forms of algorithm analysis to these techniques and show how

they can yield much tighter runtime bounds than traditional worst-case analysis. We

also present an extended example of Euclidean minimum spanning tree computation.

In Chapter 3, we turn to our first example of multi-tree algorithms in action – n-

point correlation function estimation. We define the n-point correlations and discuss

the fundamental role they play in a variety of scientific and data mining applications,

including astronomy and cosmology, materials science, and image processing. We

then examine the fundamental computational task underlying estimation of the npcf

and show that it is well suited to multi-tree algorithms.

We then show several extensions of the basic multi-tree algorithm which yield

additional speedups. We develop an algorithm capable of estimating the npcf at
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many scales simultaneously, using one pass through a multi-tree algorithm. We also

demonstrate a dynamic programming algorithm for efficiently computing jackknife

variance estimates of the npcf using our multi-tree algorithm. We also show optimized

base cases for 3-point correlation function estimation and demonstrate their impact

on the overall algorithm. We develop a distributed implementation of all of these

methods and describe our open-source library making these available.

In Chapter 4, we explore another application of multi-tree algorithms – Hartree-

Fock theory. HF theory is a fundamental tool in computational chemistry, both for

obtaining approximate wavefunctions for molecules and as the first step in more ac-

curate calculations. We briefly sketch HF theory and highlight the rate-limiting step

– the construction of the Fock matrix. We show that this computation is a double-

summation over N elements which must be performed for all pairs of N queries – a

perfect candidate for a multi-tree algorithm.. We examine existing fast algorithms

for different parts of this problem, in particular two of the most widely used – the

Continuous Fast Multipole Method [176] and Linear K (LinK) algorithm [127]. We

also describe several multi-tree algorithms for this problem. We show that all of

these algorithms, including those in the literature, can be viewed as multi-tree al-

gorithms, thus providing a unifying framework for understanding the properties and

opportunities for speedups in these algorithms.

We demonstrate that our multi-tree algorithm is competitive with the best al-

gorithms for exchange matrix construction. We also show that using the unified

multi-tree framework, we can prove the first rigorous runtime bounds for all of these

methods – the CFMM, LinK, and our multi-tree algorithms. We conclude by ob-

serving that many other problems in computational chemistry may be amenable to

solution via multi-tree algorithms.

Finally, we conclude in Chapter 5. We discuss ongoing work and further oppor-

tunities suggested by this work.

9



CHAPTER II

MULTI-TREE ALGORITHMS

In this chapter, we define and examine dual-tree and multi-tree algorithms. We dis-

cuss the origins of these methods and show their applicability to a wide class of

problems involving a computation over all pairs of points. We then discuss exam-

ples of higher-order computations – ones that involve all triples (or more generally,

n-tuples) of points, rather than just pairs. We then show an extended example of

dual-tree algorithms in action on the Euclidean minimum spanning tree problem. We

particularly emphasize the desirable properties of dual-tree algorithms that we hope

to achieve with multi-tree algorithms. These include efficient empirical runtimes and

their amenability to adaptive algorithm analysis for theoretical performance guaran-

tees.

We begin with a general discussion of space-partitioning trees – the key data

structure used in dual- and multi-tree algorithms. We then introduce dual-tree algo-

rithms and present two important problems that can be efficiently solved with them

– all nearest neighbors and the N -body problem. We sketch the generalization of

dual-tree algorithms to multi-tree algorithms. We conclude with our dual-tree EMST

algorithm.

2.1 Space Partitioning Trees

In this dissertation, we make frequent use of a class of data structures for indexing

points in Rd by position. We refer to these collectively as space-partitioning trees.

Here, we give some overall definitions and notations that will be used subsequently.

We also define several commonly used types of space partitioning trees.

We begin with a general definition of space partitioning trees [40].
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Definition 2.1.1. A space partitioning tree on a dataset D ⊂ Rd is an undirected,

connected, acyclic, rooted simple graph with the following properties:

• Each node (or vertex), contains a number of points (possibly zero) and is con-

nected to at most one parent node a number of child nodes (possibly zero).

• There is one node in every space partitioning tree with no parent; this is the

root node of the tree.

• Each point in D is contained in at least one node of the tree.

• Each node N of the tree represents a convex subset of Rd which contains each

of the points in the node as well as the convex subsets represented by each child

of the node.

Throughout, we refer to nodes of a tree with capital letters and points within them

as lower case letters. We can specify a space partitioning tree by giving the convex

subset corresponding to a node and the method of splitting a node into subsets. We

frequently represent both a node N and the set of points contained in N and its

descendants interchangeably when no confusion can result.

As we will see below, the key to using space partitioning trees for efficient solutions

to geometric problems is in computing upper and lower bounds on the distances

between a point and any point in a tree node. For a point q and tree node R, we will

require the minimum and maximum possible distances between q and any point r in

R.

dmin(q, R) = minr∈R d(q, r)

dmax(q, R) = maxr∈R d(q, r)
(2.1.1)

As mentioned in the definition, each node of a tree includes a convex bounding set

containing all of its points. If we can efficiently compute the minimum and maximum

distance between the point q and the interior of this bounding set, we immediately

obtain these bounds.
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Similarly, given two tree nodes Q and R, we can obtain pairwise distance bounds.

dmin(Q,R) = minq∈Q minr∈R d(q, r)

dmax(Q,R) = maxq∈Q maxr∈R d(q, r)
(2.1.2)

These are obtained by computing the minimum or maximum distance from the inte-

rior of the bounding set of Q to the interior of the bounding set of R.

The particular space partitioning trees used in this dissertation use axis-aligned

rectangles or balls as their convex bounding sets. In the case of balls for nodes N1, N2

of radii r1, r2 centered at points c1, c2 ∈ Rd, these bounds are easy to compute:

dmin(N1, N2) = max{d(c1, c2)− r1 − r2, 0}

dmax(N1, N2) = d(c1, c2) + r1 + r2

(2.1.3)

For axis-aligned rectangles, let the low and high endpoints of the rectangle be

stored in arrays l1, l2 and h1, h2. Then, we can compute the distances as follows:

dmin(N1, N2) =
∑d

i=0 min{fillmein}

dmax(N1, N2) =
∑d

i=0 max{|h1[i]− l2[i]|, |h2[i]− l1[i]|}
(2.1.4)

We now describe the three main types of trees used in the remainder of this work:

octrees, kd-trees, and cover trees.

2.1.1 Quad- and Oct-trees

The quadtree (in two dimensions) and octree (in three) are two widely used space

partitioning trees. The convex subset consists of an axis-aligned cube. The root

is the smallest such cube which contains all of the points. We can split a node by

partitioning it into four sub-cubes with edge length half that of the original (or into

2d sub-cubes in d dimensions). We then assign points to children based on which

sub-cube they lie in.

Throughout, we use the term octree without reference to the dimensionality. This

is because we are typically working in three dimensions. When we are not, an octree

is to be understood to refer to its d-dimensional variant.
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The octree is widely used for several reasons. It is both simple to visualize and

understand. It can also be implemented straightforwardly, and more sophisticated

implementations avoid the use of pointers entirely for greater efficiency. The octree’s

simple bounding set and regular structures also make octree-based algorithms easy

to analyze. The tree requires only linear storage space, and can be constructed in

O(N logN) time for N points.

Although the branching factor is fixed, it is exponential in the dimensionality of

the data. Furthermore, an adversarially chosen data set may cause the tree to have

up to linear depth. These restrictions will require some careful analysis when used in

theory, which is discussed in later chapters.

2.1.2 kd-trees

Quadtrees (and their higher-dimensional versions) are well suited to low-dimensional

problems. However, as the dimensionality increases, they quickly become intractable

due to their exponential branching factor. Additionally, many data sets have high

intrinsic dimensionality, but actually lie along some manifold of lower dimension.

Friedman, Bentley, and Finkel introduced a data structure capable of using this

observation in 1976 [59]. They introduced the kd-tree. Here, the convex bounds for a

node are axis-aligned rectangular boxes which are no longer constrained to be cubes.

We split a node by partitioning its bounding box at the midpoint (or median) of its

longest dimension. We create a left and right child node using the points on either

side of this boundary. We create new bounding boxes for each child consisting of the

smallest axis aligned rectangle which contains all of the points.

These trees enjoy a considerable advantage in higher extrinsic dimensions, since

they have a fixed and manageable branching factor. However, the highly variable

nature of the splits and the possibility of very uneven distributions in sizes of bounding

rectangles can make these trees difficult to use in theoretical analyses.
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Figure 1: A visualization of boxes in a uniform grid (quadtree) compared to a kd-tree.

kd-trees can be constructed in O(N logN) time and require linear storage. For

higher-dimensional problems, they are almost always empirically superior to octrees.

However, the widely varying box sizes and shapes can make them more difficult to

use in theoretical analyses.

2.1.3 Cover Trees

The cover tree [19] data structure attempts to combine the adaptability of kd-trees

with the theoretical applicability of simpler trees. Each node of a cover tree consists

of a single point and a bounding radius around that point. We split a parent node by

first creating a self-child consisting of the same point and a bounding ball of half the

original radius 1. The self-child contains any points in the parent that are contained in

1Any constant factor may be used to decrease the radius of child nodes. In practice, a factor
of 1.3 is often effective. Here, as in the references, we restrict the discussion to factors of two for
simplicity.
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this half-radius ball. We then account for the other points by choosing one at random

and placing a new half-radius ball with it at the center. All previously unaccounted

for points are placed in this node. We continue this process until all points are placed

in a child node.

This tree is similar to the quadtree in that children have a regular structure which

makes the data structure amenable to theoretical analyses. However, it differs from

both examples discussed above in that it has a variable branching factor.

In addition to being empirically useful, one of the key advantages to the cover

tree is its applicability to theoretical analyses. This analysis is typically carried out

through a measure of intrinsic dimensionality – the expansion constant. It can be

shown that the branching factor depends only on this measure, not on the size of the

data or the extrinsic dimensionality. Furthermore, for fixed expansion constant, the

depth of the tree is logarithmic in the size of the data and the size of the tree is linear.

A cover tree consists of a set of nested sets Ci, each at a scale i. A node in the

cover tree consists of a single point and links to the node’s children. The root is

a single point at level ∞. As we descend the tree, the scale decreases, until C−∞

contains the entire set of points. For convenience, we index nodes in the cover tree

with the node’s point and use pi to denote the node indexed by point p at level i of

the tree. The cover tree maintains three invariants for each of its levels:

1. Nesting: Ci ⊆ Ci−1

2. Covering: For every p ∈ Ci−1, there exists a q ∈ Ci such that d(p, q) ≤ 2i and

exactly one such q is a parent of p. Note that this implies that if p′ is any

descendant of a point p ∈ Ci, then d(p, p′) ≤ 2i+1.

3. Separation: For all p, q ∈ Ci, d(p, q) > 2i.

Intuitively, the cover tree consists of an infinite number of levels, with the nodes

in each higher level providing a “covering” for the nodes below. At very high levels,

15



the root node covers all the points. As we descend levels, each node shrinks, and

more nodes are required to cover the set. As we near the lowest levels, each point is

a node. We refer to this “infinite” cover tree as the implicit representation and make

use of it in algorithm descriptions and proofs.

The explicit representation allows us to use the cover tree in practice. In the

implicit representation, there are many levels where a node has only itself as a child.

To create the explicit representation, we combine all such nodes. Therefore, a node

is a single point, and contains pointers to all its children. The explicit representation

has O(N) nodes [20].

2.2 Dual-Tree Algorithms

We now turn to the main topic of this chapter: dual-tree algorithms. Dual-tree

algorithms are a computational framework that has been applied to many problems

in computational statistics, physics, and machine learning. These algorithms are the

overall fastest known methods for many problems, including all nearest neighbors [74],

kernel density estimation [73], mean shift [172], kernel discriminant analysis [144], and

general kernel summations [105, 104].

Dual-tree algorithms are an efficient class of divide-and-conquer algorithms intro-

duced in [74]. We introduce the basic concepts of these algorithms through a concrete

example: the All Nearest Neighbors (AllNN) problem.

We are given two sets of points: a set of queries Q and a set of references R, both

embedded in a metric space with distance function d(·, ·). Our task is to compute the

nearest neighbor in R of each point in Q:

Definition 2.2.1. All Nearest Neighbors Problem.

∀qi ∈ Q, find r∗(qi) = arg min
rj∈R

d(qi, rj)

Throughout our discussion, we will assume that Q and R are finite subsets of

Rd and that the distance function is the usual Euclidean distance. However, this
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assumption is only made to simplify the descriptions of the algorithms, which can

generalize to any metric space.

The simplest algorithmic solution for the AllNN problem is simply to examine

every query in turn, compute the distance between it and every reference, and store

the closest reference. We refer to this as the “naive” or “exhaustive” algorithm. Since

this method must compute all of the
(
N
2

)
pairwise distances, it requires O(N2) time.

Instead, consider a point qi and a group of points R in Fig. 2(a). Let the points in

R be contained in a convex set, such as that provided by a space-partitioning tree. In

the figure, we have shown a bounding rectangle from a kd-tree. As noted previously,

we can quickly compute distance bounds dmin(q, R) and dmax(q, R). Furthermore,

consider the case where we have already computed the distance between qi and at

least one point in the reference set. The smallest distance we have seen so far provides

an upper bound on the distance between qi and the true nearest neighbor. Call this

candidate nearest neighbor distance d̂(qi). If d̂(qi) < dl(qi, R), then we know that

none of the points in R can be the true nearest neighbor of qi. We can therefore avoid

computing all of the pairwise distances d(qi, R).

In order to use this observation in a fast algorithm, we must consider possible

query-reference pairs in a different order than in the naive method. Rather than

iterate through the pairs one-by-one, we will employ a divide-and-conquer approach.

Using a space-partitioning tree data structure built on the set R, we can recursively

split the computation into smaller, easier to handle subproblems. Using the bounding

information in the tree, we can make use of the observation above. When the distance

bounds indicate that no point in the reference subset being considered can be the

nearest neighbor of the query, we can prune the subcomputation and avoid considering

some of the pairs. If we are able to prune enough, we can improve substantially on

the naive algorithm.
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(a) Comparing a point with a node.

(b) Comparing two nodes.

Figure 2: An illustration of pruning in the computation of all nearest neighbors.
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We can now describe an improved divide-and-conquer algorithm using a space-

partitioning tree built on the set of references. We use a kd-tree for concreteness. We

consider each of the query points in turn along with the root node of our kd-tree.

Assume we are considering a point qi and a node R, as in Fig. 2(a). If the node

is a leaf, we compute the distance between qi and every point in R, and if one of

these is the smallest distance seen so far, we update the candidate nearest neighbor.

Otherwise, there are two possibilities. If the lower bound distance dl(qi, R) is less than

the candidate distance d̂(qi), it is possible for R to contain the true nearest neighbor

of qi. Therefore, we recursively consider both children of R. If dl(qi, R) > d̂(qi), then

no point in R is the nearest neighbor of qi. In this case, we can prune the rest of the

tree under node R.

For a given query point qi, this single-tree algorithm will find the nearest neighbor

using a cover tree in O(logN) time [19]. Since we must compute this algorithm for

every query, the total running time is O(N logN).

We can make even better use of the observation in Fig. 2. Instead of considering

the distance between a point and a bounding box, we can compute bounds on the

distances between points in two bounding boxes – Fig. 2(b). We consider a query

node Q and a reference node R, along with the largest candidate neighbor distance

for the points in Q, d̂(Q) = maxqi∈Q d̂(qi). Now, if dl(Q,R) is greater than d̂(Q), no

point in R can be the nearest neighbor of any point in Q, and we can prune both

Q and R. When we pruned in the single tree algorithm, if the number of points in

node R is |R|, we avoided computing |R| distances. If we can make use of this new

observation, we will save |Q| · |R| computations with each prune.

We use this observation to improve on the single-tree algorithm. We construct two

trees, one on references and one on queries (hence dual-tree algorithm). We consider

pairs of nodes at a time and use the distance bounds shown in Fig. 2(b). If the bounds

show that the nodes are too distant, then we can prune. Otherwise, we split one (or
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Algorithm 2.2.1 AllNN (Tree Node Q, Tree Node R)

if Q and R are leaves then
for all qi ∈ Q do

3: for all rj ∈ R do

if d(qi, rj) < d̂(qi) then

d̂(qi) = d(qi, rj);n(qi) = rj
6: end if

end for
end for

9: d̂(Q) = maxqi∈Q d̂(qi)

else if dmin(Q,R) > d̂(Q) then
// prune

12: else
for all Q′ ∈ C(Q) do

for all R′ ∈ C(R) do
15: AllNN(Q’, R’)

end for
end for

18: d̂(Q) = maxQ′∈C(Q) d̂(Q′)
end if

both) nodes, and recursively consider the two (or four) resulting pairs. We start by

considering the root node twice.

2.2.1 The N-Body Problem

We have introduced the fundamental concepts of dual-tree algorithms through one of

the first problems they were used to solve efficiently. However, a class of very similar

algorithms were developed in parallel to solve problems in computational physics.

The N -body problem is a fundamental computational task in classical physics,

with analogs in many other fields. We consider a model in which point masses interact

through some potential Φ, which is a function of their positions. Commonly, Φ

depends only on the distance between them2. We again use the query-reference

terminology used above. We can also divide the problem into a single query and all

query version.

2In the statistical and machine learning literature, this problem is directly analogous to the all
kernel-summation problem.
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Problem 2.2.2. N-body Problem. Given sets of reference and query points R and

Q, compute the potential at each point q. More succinctly, compute:

∀q ∈ Q,Φq =
∑
r∈R

Φ(q, r) (2.2.1)

We showed that space partitioning trees can be used to accelerate the solution

to the nearest neighbor problem by pruning reference nodes that cannot contain the

true solution. However, it is not immediately clear how to do this for the N -body

problem. If the kernel function Φ has infinite support (as is common in physics), then

no reference points can be discarded. However, in general, an approximate solution

is sufficient. We now turn to the construction of single-tree algorithms for efficiently

approximating Problem 2.2.2.

The key here is another simple observation. If a set of reference points R is

very compact and distant from the query point q, then the values Φ(q, r) are almost

the same for each r ∈ R. The Barnes-Hut algorithm [13] takes advantage of this

observation in a single tree algorithm. The algorithm was originally presented on a

quadtree, but can be generalized.

In each node R of the tree, we maintain the total mass mR and center of mass

cR. This can be easily computed as a preprocessing step using a bottom-up traversal.

We specify an approximation parameter θ. We can then prune a node R if

s/d(q, cR) < θ (2.2.2)

where s is the side-length of the bounding cube of R.

When we can prune, we add the contribution of a single virtual particle of mass

mR at cR to the total potential.

This algorithm is again efficient in both theory and practice, since it is both

widely used and generally claimed to run in O(N logN) time. The version usually
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Algorithm 2.2.2 Barnes-Hut (query point q, Quadtree node R, approximation
parameter θ)

// Maintain n(q) as the closest point found so far to q and d(q) = d(q, n(q)).
if R is a leaf then

3: for all rj ∈ R do
if q 6= rj) then

Φq+ = Φ(q, rj)
6: end if

end for
else if s/d(q, cR) < θ then

9: Φq+ = Φ(q, cj)
else

for all R′inC(R) do
12: Barnes-Hut(q, R′)

end for
end if

presented (and the one shown here) is only for quad trees. We can generalize the

algorithm by using the distance bounds to compute general upper and lower bounds

on the kernel. We then specify an approximation tolerance and prune if we can show

that the maximum possible error (the distance between our approximation and the

bounds) is smaller than the tolerance. This is the basis for efficient, dual-tree kernel

summation algorithms [75].

The dual-tree idea was first presented in the context of the N -body problem by

Appel [8]. The Barnes-Hut algorithm uses the observation that a compact group of

reference points can be treated as a single pseudo-point with small error. Appel’s

algorithm applies this observation to queries as well. For a compact set of query

points, the potential due to a single reference point at each query is nearly the same.

Rather than fixing a query point and traversing a tree built on reference points, we

build trees on each set and traverse them simultaneously 3. This algorithm is generally

considered to run in O(N) time for common input distributions [53]. In practice, it

can offer speedups over Barnes-Hut, but these are often difficult to achieve.

3Note that the query and reference points are often the same set. Here, we discuss the more
general bichromatic case.
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This algorithm can be further improved through more sophisticated pruning tech-

niques and approximations. The Fast Multipole Method [76] uses multipole expan-

sions to more accurately treat the interactions between distant query and reference

nodes. Although the FMM is not generally implemented as a recursive algorithm, it

fundamentally consists of interactions between pairs of nodes which are either pruned

or expanded, depending on some pruning criterion.

The FMM uses the same observation as Appel’s algorithm – the potential due to

one group of points on another, distant group can be approximated with a simpler

calculation. Rather than simply grouping all of the source points into a single pseudo-

point, the FMM more fully captures their distribution through a multipole expansion.

We can compute, for each node, a multipole expansion approximating the potential

due to points in the node at a distant point. Through translation operators, we can

transform the far-field expansion at one node – i.e. the effect its points have on distant

points – into a near-field expansion at a target node – the effect distant points have

on this node.

Note that unlike the dual-tree algorithms described above, the FMM is not re-

cursive. It could easily be implemented as a recursive algorithm through a top-down

dual-tree traversal. This is generally not done for performance efficiency. However,

the FMM does use the same fundamental principle as the other dual-tree algorithms

discussed: the problem is divided into subproblems, some of which are efficiently

approximated to reduce the overall runtime.

2.3 Extending Dual-Tree Algorithms to Multi-Tree Algo-
rithms

We have described two fundamental problems and given dual-tree algorithms to solve

each of them. We now provide a working definition for dual- and multi-tree algo-

rithms. Although more rigorous work is being done on this topic [40], we stick to a
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Algorithm 2.2.3 FMM(Point set S)

Construct an octree T on S
// Upward pass
for all leaves L in T do

Compute a multipole expansion for points in L
5: end for

Pass expansions up the tree using translation operators
// Downward pass
for all nodes in T , starting with the root and proceeding level-by-level do

Find all nodes T ′ on the same level as T whose interactions have not been
approximated

10: if T and T ′ are well-separated then
Translate T ′’s expansion to T as part of T ’s near-field expansion

end if
Pass all near-field expansions for T to its children

end for
15: Compute any remaining interactions directly

simpler working definition for this dissertation. This is fine because our goal is to ex-

plore multi-tree algorithms in practice on specific problems of fundamental scientific

interest, rather than a general theory of the topic. Therefore, we stick to a simpler

definition and leave the full definition to future work.

At a high-level, a dual-tree algorithm applies divides the overall problem into

subproblems via a space partitioning tree. The data points are indexed in a tree,

and then the algorithm compares a pair of tree nodes at a time. This pair of nodes

represents a subset of the original computation. For example, in the N -body problem,

one node represents a set of points for which we are finding potentials and the other

represents a set of points which are contributing to those potentials. The entire

computation is given by Equation 2.2.1, and the subset represented by nodes S and

T is given by

∀q ∈ S; Φq+ =
∑
r∈T

Φ(q, r) (2.3.1)

The efficiency improvements in a dual-tree algorithm come from the ability to

prune. If we are careful in our choice of subdivisions, we can eliminate or approx-

imate some of these subdivisions with little work. In the FMM, the interaction
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between distant nodes is approximated using multipole expansions. In the dual-tree

AllNN algorithm, a query reference pair can be eliminated entirely if the distance

between them is greater than the distance to any candidate neighbor seen so far for

the references.

This divide-and-conquer approach is possible because of the structure of the com-

putation. For both the N -body problem and all nearest neighbors, consist of a reduc-

tion (sum and minimum, respectively) performed over one set for each of the elements

in another set. In place of sum or minimum, we could decompose the computation in

the same way for any associative and commutative operation. Similarly, the “for-all”

over queries can be viewed as a commutative and associative operation, since the

order in which we consider queries is irrelevant to the final result.

The following chapters will examine problems which consist of more than two

operations, possibly done over more than two sets. The first example we will discuss

in the proceeding chapters is the estimation of n-point correlation functions. As we

will show, the fundamental computational task for 3-point correlation estimation is

of the form ∑
i∈I

∑
j∈J

∑
k∈K

f(xi, xj, xk) (2.3.2)

This problem can be arbitrarily divided into distinct subproblems in the same way

as the all nearest neighbor and N -body problems. Thus, we can naturally try to

extend the dual-tree idea to this problem. Rather than considering a pair of tree

nodes and attempting to prune the computation between them, we will look at sets

of three nodes at a time. We will again choose a space-partitioning tree and formulate

a pruning rule and a traversal pattern.

The central claim of this thesis is that this generalization is fruitful in exactly the

same way as the original dual-tree idea – we can obtain algorithms which are both

extremely fast in practice and provably efficient under suitable assumptions.
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2.4 An Extended Example – Euclidean Minimum Spanning
Trees

Before turning to multi-tree algorithms, we first present a more thorough example of

dual-tree algorithms in action. A detailed look at the process of actually designing

and implementing an efficient dual- or multi-tree algorithm will help to understand

the algorithms in later chapters. We present a new algorithm for the fundamental

and widely applied Euclidean Minimum Spanning Tree (EMST) problem.

Problem 2.4.1. Given a set of points S in Rd, find the lowest weight spanning tree

in the complete graph on S with edge weights given by the Euclidean distances between

points.

With references in the literature as early as 1926, the MST problem is one of the

oldest and most thoroughly studied problems in computational geometry [137]. In

addition to this long-standing theoretical and algorithmic interest, the MST is useful

for many practical data analysis problems. Many optimization problems can be posed

as the search for the MST in a network [137]. The MST is also used as an approxi-

mation for the traveling salesman problem [82], in document clustering [178], analysis

of gene expression data [49], wireless network connectivity [171], percolation analyses

[21], and modeling of turbulent flows [161], among other areas. These problems are

commonly solved in the Euclidean setting.

In particular, we are interested in using the EMST to compute hierarchical clus-

terings [68, 184]. One such clustering is obtained by deleting all edges longer than a

specified cutoff in the MST, generating a clustering through the remaining connected

components. By varying the scale of the cutoff, this generates a hierarchical cluster-

ing. In the clustering literature, this is often referred to as a single-linkage clustering

and is frequently represented by a dendrogram. While the single-linkage clustering

is very simple and can be sub-optimal for many applications, it can form the basis

of more insightful clusterings. The single linkage clustering can be pruned to obtain
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more useful astronomical results [14]. MST’s also form the inner loop for methods

to identify non-parametric clusters in noisy data [179]. Furthermore, theoretically

optimal clusterings can be obtained efficiently from the single-linkage clustering [10].

In astronomy, EMST-based clustering is used to analyze deep-space surveys and

simulations of the early universe. Each level of single-linkage clustering is known as

a friend-of-friends clustering [147, 9]. The EMST is used to identify dark matter

haloes in simulations, which are believed to be crucial to galaxy formation [101].

Clustering is also applied to sky surveys to identify the super-large scale structure

of the universe, which sheds light on the conditions of the early universe and the

mechanisms of galaxy formation [14].

2.4.1 Related Work

In this work, we focus on the earliest known minimum spanning tree algorithm,

Bor̊uvka’s algorithm, which dates from 1926. See [124] for a translation and com-

mentary on Boruvka’s original papers. As in Kruskal’s algorithm, a minimum span-

ning forest is maintained throughout the algorithm. Kruskal’s algorithm adds the

minimum weight edge between any two components of the forest at each step, thus

requiring N − 1 steps to complete. Bor̊uvka’s algorithm finds the minimum weight

edge incident with each component, and adds all such edges, thus requiring at most

logN steps and a total running time of O(m log n). We define the nearest neighbor

pair of a component C as the pair of points q ∈ C, r 6∈ C that minimizes d(q, r).

Finding the nearest neighbor pair for each component and adding the edges (p, q)

to the forest is called a Boruvka step. Boruvka’s algorithm then consists of forming

an initial spanning forest with each point as a component and iteratively applying

Boruvka steps until all components are joined.

Many MST algorithms rely on Tarjan’s blue rule [166], which says the minimum

weight edge across any edge cut is in the minimum spanning tree. This allows us
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to greedily form cuts in the graph and add the minimum weight edge across each.

Algorithms using this rule include those attributed to Kruskal [98] and Prim [139],

which require O(m log n) and O(m + n log n) time, respectively, on a graph with n

points and m edges. Both algorithms maintain one or more components in spanning

forest and use the cut between one component of the forest and the rest of the graph,

adding the edges found in this way one at a time.

Shamos & Hoey [152] applied the Voronoi diagram to constructing the MST in

the Euclidean plane. The Voronoi diagram can be constructed in O(N logN) time

for N points and contains O(N) edges. Since the MST is a subset of the edges in

the dual of the Voronoi diagram, the MST can be found in O(N logN) time using

one of the algorithms above. This bound worsens to O(N2 logN) in three or more

dimensions, fundamentally limiting this method to two dimensional cases. Preparata

and Shamos [138] give a lower bound for the EMST problem of Ω(N logN), which is

the tightest known lower bound.

Bentley and Friedman [16] developed an EMST algorithm using kd-tree-based

nearest neighbor searches to find the next edge to add in Prim’s algorithm. While their

method lacks a formally rigorous bound, they estimate that it requires O(N logN)

time for most distributions of points. An alternate implementation of this approach

is given in [125]. In 1982, Yao gave a bound of O(N2−a(k)(logN)1−a(k)) where a(k) =

2−(k+1) for points in a k-dimensional metric space, along with a O((N logN)1.8) bound

for points in three dimensions [182]. Agarwal et al. (1991) related the running time

to the bichromatic closest pair (BCP) problem. Given a set of red and a set of blue

points, the bichromatic closest pair is the red point r and blue point b such that d(r, b)

is minimized. They showed a bound of O(Fd(N,N) logd(N)), where Fd(N,M) is the

time to solve the BCP problem with N blue and M red points in d dimensions [3].

Callahan & Kosaraju’s Well-Separated Pair Decomposition (WSPD) [24] forms

the basis of the most recent EMST algorithms. The WSPD is defined as a set of
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pairs of nodes in a space-partitioning tree such that for each pair of points (p, q), we

have p ∈ P, q ∈ Q for exactly one pair of nodes (P,Q), and the the nodes in any

pair are farther apart than the diameter of either node. It can be shown that the

WSPD has O(N) pairs of nodes, and that the MST is a subset of the edges formed

between the closest pair of points in each pair of nodes. In [26], the authors use the

WSPD to improve Agarwal and coworker’s 1991 bound to O(Fd(N,N) logN). Their

algorithm uses the WSPD-based nearest neighbor algorithm to compute neighbors

of components for Boruvka’s algorithm. The method identifies a list of pairs in the

WSPD, for which bichromatic closest pair computations are performed to find edges

of the MST. This algorithm is superficially similar to our method, but only locates

neighbors for small components in each iteration. It also requires bookkeeping and

connectedness queries which are not factored into the analysis, and no experimental

results are shown.

Narasimhan et al. [123] implement a variant of this method, which they attribute

to [26]. In this algorithm, GeoMST, they compute the BCP for each pair in the

WSPD, then apply Kruskal’s algorithm to the resulting edge set. They improve

this method by postponing and avoiding some BCP computations and refer to the

resulting algorithm as GeoMST2. This method can be successfully applied to point

sets of any dimensionality; however, the constant in the O(N) size of the WSPD

grows exponentially in the dimension and is often very large in practice. The authors

argue that the algorithm has an expected O(N logN) running time, but do not prove

this rigorously. They also demonstrate favorable running times on several data sets.

These algorithms are the most sophisticated methods for the EMST problem in

terms of both theoretical analysis and practical performance. The runtime bound in

terms of the bichromatic closest pairs problem is the tightest available given opti-

mistic runtimes for bichromatic closest pairs, but it is incomplete without bounding

Fd. Bentley and Friedman’s kd-tree-based method and the tree- and WSPD-based
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GeoMST2 are the most practically viable algorithms. We return to these methods in

our experimental analysis.

2.4.2 Dual-Tree Boruvka Algorithm

The running time of Bor̊uvka’s algorithm depends on an efficient method to find the

nearest neighbor pair of each component. Here, we describe a method to compute

all nearest neighbor pairs simultaneously by amortizing some computations across

different points. This allows us to implement Boruvka’s algorithm more efficiently

than previous methods.

Our new algorithm, DualTreeBoruvka, uses a dual-tree method to find the

nearest neighbor pair for each component. Algorithm 2.4.1 gives the description of

the outer loop. The subroutine UpdateTree handles the propagation of any bounds

up and down the tree and resets the upper bounds d(Cq) to infinity. We also make use

of a disjoint set data structure [166] to store the connected components at each stage

of the algorithm. Our algorithm is independent of the particular space partitioning

tree used. In this paper, we present experimental results on two instantiations of the

algorithm. Algorithm 2.4.2 uses a kd-tree, and algorithm 2.4.3 uses the cover tree[20].

For the remainder of this work, we assume that we are given a set S of N points

in Rd. Furthermore, we make the standard assumption that all pairwise distances

between points are unique. We make use of the following notation:

• q ∼ r : q and r belong to the same component of the spanning forest.

• R ./ Q: all points in node R are in the same component as all points in node Q.

Similarly, r ./ q in a cover tree denotes that all descendants of r are connected

to all descendants of q.

• Cq : the component of the forest containing q

• d(Cq): distance to current nearest neighbor of component Cq (initialized to∞).
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Algorithm 2.4.1 Dual-Tree Bor̊uvka (Tree root q)

E = ∅
while |E| < N − 1 do

3: FindComponentNeighbors(q, q, e)
E ← E ∪ e
UpdateTree(q)

6: end while

• e(Cq): edge from Cq to its candidate nearest neighbor

• d(Q,R): the minimum distance between the bounding boxes of nodes Q and R

Each nodeQmaintains an upper bound d(Q) = maxq∈Q d(Cq) and records whether

all the points belong to the same component of the spanning forest. A node where

all points belong to the same component is referred to as fully connected.

Theorem 2.4.2. The FindComponentNeighbors routine in Algorithm 2.4.2 re-

turns the correct nearest neighbor pairs.

Proof. The algorithm can only prune in two ways. If Q and R are fully connected,

then no edges (q, r) with q ∈ Q and r ∈ R can be nearest neighbor pairs. The

distance-based prune only occurs when for all q ∈ Q, d(Cq) < d(Q,R). Therefore, all

components with points in Q must have a candidate neighbor closer than any point

in R, which again implies that no edge (q, r) can be a nearest neighbor pair. So, for

each q ∈ Q, the correct Boruvka neighbor r of the component Cq cannot be pruned

and must be found in the base case.

The cover tree version of FindComponentNeighbors (Algorithm 2.4.3) follows

the all nearest neighbor pseudocode given in [141]. The reference set Ri contains all

points at level i that may have a nearest neighbor of a descendant of qj as one of

their descendants. Therefore, points are pruned from Ri−1 in line 12 only when they

are too distant to provide a neighbor. All descendants of qj are within 2j+1 of qj and

all descendants of points in R are within 2i of a point in R by the covering invariant.
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Algorithm 2.4.2 FindComponentNeighbors(kd-tree node Q, kd-tree node R,
Edge set e)

if Q ./ R then
return

3: else if d(Q,R) > d(Q) then
return

else if Q and R are leaves then
6: for all q ∈ Q, r ∈ R, r 6∼ q do

if d(q, r) < d(Cq) then
d(Cq) = d(q, r), e(Cq) = (q, r)

9: end if
end for
d(Q) = maxq∈Q d(Cq)

12: else
FindComponentNeighbors(Q.left, R.left, e)
FindComponentNeighbors(Q.right, R.left, e)

15: FindComponentNeighbors(Q.left, R.right, e)
FindComponentNeighbors(Q.right, R.right, e)
d(Q) = max{d(Q.left), d(Q.right)}

18: end if

Therefore, any point outside the bound in line 12 cannot be a nearest neighbor for

descendants of qj.

Theorem 2.4.3. The FindComponentNeighbors routine in Algorithm 2.4.3 re-

turns the correct nearest neighbor pair.

Proof. For a query qj being considered at level j, the algorithm must guarantee that

it finds the nearest neighbor pair both for the component Cq and for all components

Cq′ , where q′ is a descendant of qj. Pruning a fully-connected node can never delete

the true nearest neighbor pair.

We then consider distance-based pruning. As before, we use the nearest neighbor

of the component Cq that the algorithm has seen up to this point in the execution.

This candidate neighbor can be either a previously found nearest neighbor of another

point in Cq (in which case d = d(Cq)), a point r ∈ R (d = d(qj, r)), or an inferred

descendant of a connected point r (d = d(qj, r) + 2i). If qj ∼ r but qj 6./ r, then r

must have a descendant r′ that is not connected to qj. By the covering invariant,
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Algorithm 2.4.3 FindComponentNeighbors(Cover tree node qj, Reference Set
Ri, Edge set e)

if i = −∞ then
// base case

3: for all q that are descendants of qj and r ∈ Ri with r 6∼ q do
if d(q, r) < d(Cq) then
d(Cq) = d(q, r), e(Cq) = (q, r)

6: end if
end for

else if j < i then
9: // reference descend

R = {r ∈ Children(r′) : r′ ∈ Ri and r 6./ qj}

d = min

d(Cq), min
r∈R
r∼qj

{d(qj, r) + 2i}, min
r∈R
r 6∼qj

{d(qj, r)}


12: Ri−1 = {r ∈ R : d(qj, r) ≤ d+ 2i + 2j+2}

d(Cq) = d
FindComponentNeighbors(qj, Ri−1, e)

15: else
// query descend
for all pj−1 ∈ Children(qj) do

18: FindComponentNeighbors(pj−1, Ri, e)
end for

end if

d(qj, r
′) ≤ d(qj, r)+2i. Therefore, d is a valid upper bound for Cq. Since the distance

between any point in R and any descendant is bounded by 2i, any ancestor of the

true nearest neighbor of qj must be within d + 2i, so the algorithm can never prune

the ancestor of this neighbor.

We must also show that d is a valid bound for any descendant q′ of q. If q and

q′ are in the same component, then this is clearly true, since bounds are shared

across components. Otherwise, q is a candidate neighbor for q′ and d(q, q′) ≤ 2j+1.

Therefore, we can be sure that d(Cq′) ≤ 2j+1. Let r′ be the correct neighbor for q′,

and let r be the ancestor of r′ in R. Then, d(qj, r) ≤ d(qj, q
′) + d(q′, r′) + d(r′, r) ≤

2j+1 +2j+1 +2i = 2j+2 +2i. Therefore, the distance prune cannot remove the neighbor

of any descendant of q.
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2.4.3 Runtime Analysis

In this section, we prove our main theoretical result:

Theorem 2.4.4. For a set S of N points in a metric space with expansion constant

c, cluster expansion constant cp, and linkage expansion constant cl, the DualTree-

Boruvka algorithm using a cover tree requires O(N logN α(N)) ≈ O(N logN) time

(where α(N) is defined below).

2.4.3.1 Properties of the Data

The expansion constant, due to Karger and Ruhl [92], bounds the maximum increase

in the density of points as a function of the distance from any point, and was used in

adaptive analysis of nearest neighbors in previous work [20, 141].

Definition 2.4.5. Let S be a set of points in a metric space (X, d). Let BS(p, r) =

{q ∈ S : d(p, q) ≤ r}. Then, the expansion constant c of S is defined as the smallest

c such that for all p ∈ X and all r > 0

|BS(p, 2r)| ≤ c|BS(p, r)| (2.4.1)

While the expansion constant depends only on the pairwise distances between

points, the MST has a “higher-order” structure. In other words, the MST depends

on distances between clusters of points in addition to distances between the individual

points. Since the expansion constant does not capture this structure, we define two

new parameters: the cluster expansion constant and linkage expansion constant.

We first require a definition of clusters. Independently of how they are computed,

successive Boruvka steps define a hierarchical clustering of the data. We can therefore

define and use the Boruvka clustering without reference to any method for computing

it.
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Definition 2.4.6. Given a point set S, the Boruvka clustering at level i, Di, is the

clustering obtained from applying a single Boruvka step to the clustering Di−1. D1

consists of each point as its own cluster.

Given the Boruvka clustering, we define the new expansion constants. Let Bc
i (q, r)

be the set of all components Cp with a point p ∈ Cp such that d(q, p) ≤ r. Using this

component-wise ball, we define the cluster expansion constant.

Definition 2.4.7. The cluster expansion constant is the smallest real number cp such

that

|Bc
i (q, 2r)| ≤ cp|Bc

i (q, r)| (2.4.2)

for all points q ∈ S, distances r > 0, and each level of the Boruvka clustering Di.

Let C1 and C2 be two clusters in the Boruvka clustering at level i and let S1 ⊆ C1

and S2 ⊆ C2. Let Bl
i(S1, S2, r) be the set of all pairs (p, q) such that p ∈ S1, q ∈ S2,

and d(p, q) ≤ r.

Definition 2.4.8. The linkage expansion constant is the smallest real number cl such

that

|Bl
i(S1, S2, 2r)| ≤ cl|Bl

i(S1, S2, r)| (2.4.3)

for all levels of the Boruvka clustering Di, clusters C1 and C2 at level i, subsets

S1 ⊆ C1, S2 ⊆ C2, and distances r > 0.

We now turn to the proof of Theorem 2.4.4. We first require a few simple lemmas

about cover trees.

Lemma 2.4.9. (Width Bound) The number of children of any node in the cover tree

is bounded by c4.

Lemma 2.4.10. (Depth Bound) The maximum depth in the tree of any point in the

explicit representation is O(c2 logN).
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(a) Large expansion constant. (b) Large cluster expansion
constant.

(c) Large linkage expansion
constant.

Figure 3: Cases illustrating the expansion constants used in the analysis of the
DualTreeBoruvka algorithm.

Proof. Since each Bor̊uvka step reduces the number of components in the spanning

forest by a factor of at least two, the entire algorithm requires at most logN iterations.

The construction of the cover tree takes O(N logN) time (proved in [20]) and only

needs to be done once as a preprocessing step. Bookkeeping and cleanup in the tree in

between calls to FindComponentNeighbors requires a single depth-first traversal,

which takes O(N) time.

Adding edges requires at most O(N) Union operations on the disjoint-set struc-

ture, each of which requires O(α(N)) time, with α(N) defined as follows. Let

Ak(j) = A
(j+1)
k−1 (j) and let A0(j) = j + 1. Then, define

α(N) = min {k : Ak(1) ≥ N} (2.4.4)

Therefore, in order to complete the proof, we only need to show that the FindCom-

ponentNeighbors subroutine on a cover tree requires O(N α(N)) time.

We now apply our adaptive analysis to bounding the runtime of FindCompo-

nentNeighbors.

Theorem 2.4.11. Under the assumptions of Thm. 2.4.4, the FindComponent-

Neighbors algorithm on a cover tree (Algorithm 2.4.3) finds the nearest neighbor of

each component in O(N α(N)) ≈ O(N) time.
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Proof. We show that the amount of work done in each line of the algorithm during the

entire execution is at most O(maxi |Ri|N α(N)). We complete the proof by showing

maxi |Ri| depends only on c, cp, and cl.

Base Case. The base case (lines 1 through 7) is executed at most once for each

explicit query node. Each base case requires maxi |Ri| Find operations, each of which

requires O(α(N)) time, so this step takes O(maxi |Ri| ·N α(N)) time.

Query Descends. Each query node in the explicit representation is expanded at

most once (line 18), so this step requires O(N) time overall.

Reference Descends. On the other hand, a reference node may be expanded more

than once. When a query node is expanded, its reference cover set Ri needs to be

duplicated for each child of the query. By the width bound, this creates at most c4

duplications. Therefore, the total number of reference nodes considered in Line 12 is

O(c4N).

At each level, |R| ≤ c4 maxi |Ri|. Since the maximum depth of a node isO(c2 logN)

(depth bound), the number of nodes considered in Line 14 is O(c6 maxi |Ri| logN).

Considering possible duplication across queries, the total number of calls to Line 14

is at most O(c10 maxi |Ri| logN). Computing d in each reference descend involves

checking the connectedness of qj and r, which requires O(α(N)) time, for a total

running time of O(c10 maxi |Ri| logN α(N)).

Bounding |Ri|. For a given query qj and reference cover set Ri, we compute the

upper bound distance d. Then, Ri−1 = {r ∈ R : d(qj, r) ≤ d+ 2i + 2j+2}. Since j < i

in this part of the algorithm, and since the query and reference trees are identical,

j = i− 1. Therefore, B(qj, d+ 2i + 2j+2) = B(qj, d+ 2i+1 + 2i).

Consider two cases: first let d ≤ 2i+2. Then, as in [20], we bound number of balls

of radius 2i−2 that can be packed into B(qj, d+ 2i+1) by:
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|B(qj, d+ 2i+1 + 2i + 2i−2)|

≤ |B(p, 2(d+ 2i+1 + 2i) + 2i−2)|

≤ |B(p, 2i+4)|

≤ c6|B(p, 2i−2)|

Each ball of radius 2i−2 can contain at most one point in Ci−1 by the separation

invariant. Therefore, the number of points in B(qj, d+ 2i+1 + 2i) ∩Ci−1 ⊆ Ri−1 is at

most c6.

Consider the other case where d > 2i+2. Without loss of generality, assume that we

have computed k previous iterations. First note that all points within B(qj, d− 2i+1)

must be connected to qj. Otherwise, let q′ be a point in B(qj, d − 2i+1) that is not

connected to qj. Then, q′ has a grandparent q′′ at level Ci−1 such that d(q′, q′′) ≤ 2i.

Therefore,

d(qj, q
′′) ≤ d(qj, q

′) + d(q′, q′′) < d− 2i+1 + 2i = d− 2i

Therefore, d(qj, q
′′) + 2i < d and qj 6./ q′′, which contradicts the definition of d in

line 11.

The number of components that qj may have to search is bounded by

|Bc
p(qj, d+ 2i+1 + 2i)| ≤ |Bc

k(qj, 2d)|

≤ c2p|Bc
k(qj, d/2)|

≤ c2p|Bc
k(qj, d− 2i+1)|

As noted above, all points within d − 2i+1 of qj are connected to qj, so the only

component in Bc
k(qj, d− 2i+1) is Cq.

We now bound the number of points within a component that qj may have to

consider. Let Cr be a component distinct from Cq. Let L(qj) denote the set of all
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leaves that are descendants of qj. Let d′ = minq∈L(qj),r∈Cr d(q, r). Then,

|Bl
k(Cq ∩ L(qj), Cr, d+ 2i+1 + 2i)|

≤ |Bl
k(Cq ∩ L(qj), Cr, 4(d− 2i+1))|

≤ c2l |Bl
k(Cq ∩ L(qj), Cr, (d− 2i+1)|

≤ c2l |Bl
k(Cq ∩ L(qj), Cr, d

′)|

By the above argument, there can be at most one pair in Bl
k(Cq ∩ L(qj), Cr, d

′).

Therefore, there are at most c2l points in Cr contained in B(qj, d+ 2i+1 + 2i). In the

worst case, each of these points is at level Ci−1 of the tree and must be considered

in Ri−1. There are at most c2p components Cr that can contribute points, so the

maximum number of points in Ri−1 is c2pc
2
l .

Combining these cases, we have maxi |Ri| ≤ max{c6, c2pc2l }. Therefore, the running

time is:

O
(
N + c4N + max{c6, c2pc2l } ·N α(N)

+ max{c6, c2pc2l } · c10 logN α(N)
)

which completes the proof.

2.4.4 Results

We present results for kd-tree-based and cover-tree-based DualTreeBoruvka. For

comparison, we implemented the other fast EMST methods mentioned in section 2.4.1.

Specifically, we compare against the single-fragment EMST algorithm from Bentley

and Friedman [16], which is an implementation of Prim’s algorithm. The algorithm

uses a single-tree algorithm on a kd-tree to find the next edge to add at each step. We

also show results for the WSPD-based algorithm GeoMST2 [123], described above.
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Figure 4: Runtimes of EMST construction algorithms. The data are generated from
a mixture of 10 Gaussians in three dimensions. The kd-tree and cover tree results
refer to the DualTreeBoruvka algorithm on those trees. Times are in seconds.

Finally, we compare against a näıve implementation of Boruvka’s algorithm in which

nearest neighbor pairs are computed by iterating over all pairs of points.

The experiments here are on four datasets: one synthetic and three sets of as-

tronomy data. The synthetic data are drawn from a mixture of ten evenly weighted

Gaussians placed uniformly at random in the unit cube in three dimensions. Figure 4

compares timing results on these data. Figure 5 shows runtimes on four dimensional

samples of spectral data from the Sloan Digital Sky Survey. Table 1 has results for

two other astronomy datasets: a 40,000 point, 3,840-dimensional set of color spectra

from the SDSS, and a million point, 3 dimensional set of (x, y, z) coordinates from a

galaxy-formation simulation.
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Figure 5: Runtimes of EMST construction algorithms. The kd-tree and cover tree
results refer to the DualTreeBoruvka algorithm on those trees. The data are four
dimensional spectra from the SDSS. Times are in seconds.
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The algorithms are implemented using the MLPACK machine learning library,

and are currently available as part of the library [39]. The code was compiled with

gcc version 4.1.2 with the -O2 flag. All experiments were performed on a 3.0 GHz

Intel Xeon processor with 8GB of RAM running Linux.

We attempted to run all the algorithms on all the sets of data. However, the näıve

experiments were limited by time, since the brute-force algorithm scales quadratically.

Thus results are missing for the larger sets. The GeoMST2 algorithm is limited by

available memory. Although the WSPD contains O(N) pairs of nodes, the constant

factor can be very large. The constant in the O(N) analysis scales exponentially with

the dimension [24], so the storage bottleneck becomes tighter with higher-dimensional

data. Missing timings for GeoMST2 indicate that the available memory was exceeded.

In our experiments, the Bentley-Friedman algorithm is more efficient than either of

these.

In both the synthetic data (Figure 4) and the SDSS data (Figure 5), DualTree-

Boruvka on a kd-tree is the fastest method, by a factor of 2.8 and 4.6 over the

Bentley-Freidman method, respectively. On both figures, we plot the slope of the

predicted N logN performance, scaled to align with the timings for our method.

Our results also consider dimensionality of the data. In the three- and four-

dimensional data given in Figures 4 and 5, the kd-tree based DualTreeBoruvka

is fastest. Unlike most EMST algorithms, our method can also efficiently handle

high-dimensional data, as shown in table 1. For the high-dimensional SDSS data, the

two methods using kd-trees require roughly the same time. DualTreeBoruvka on

a cover tree, however, is faster by a factor of 2.9.

2.5 Conclusion

We have developed the core concepts of dual- and multi-tree algorithms through

several examples. Having illustrated the details of dual-tree algorithm development

42



Table 1: Comparison of DualTreeBoruvka and Bentley-Friedman timings for
EMST construction. The first row is a set of spectra from the Sloan Digital Sky
Survey. The second is a synthetic data set from a mixture of 10 Gaussians. Timings
are in seconds.

N dim DTB kd DTB cover BF [16]
40,000 3840 45825.18 15791.37 45780.43

1,000,000 3 17.39 333.45 42.54

through the EMST example, we now turn to the core contributions of this dissertation:

new multi-tree algorithms for important scientific problems.
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CHAPTER III

N-POINT CORRELATION FUNCTIONS

We now turn to our first application of multi-tree algorithms – estimation of the

n-point correlation functions. The n-point correlation functions (npcf) are powerful

spatial statistics capable of fully characterizing any set of multidimensional points.

These functions are critical in key data analyses in astronomy and materials science,

among other fields. For example, the npcf has been used to study the phenomenon of

dark energy, considered one of the major breakthroughs in recent scientific discoveries.

Unfortunately, directly estimating the continuous npcf at a single value requires

O(Nn) time for N points, and n may be 2, 3, 4 or even higher, depending on the

sensitivity required. In order to draw useful conclusions about real scientific problems,

we must repeat this expensive computation both for many different scales in order to

derive a smooth estimate and over many different subsamples of our data in order to

bound the variance. Since scientific data sets are large and growing, a more efficient

solution is crucial.

In this chapter, we demonstrate that multi-tree algorithms can be applied to the

npcf estimation problem. We present a comprehensive study of the npcf estimation

problem show a re-implemented and optimized multi-tree algorithm for the raw corre-

lation counts problem, the bottleneck computational task in npcf estimation (defined

below), originally introduced in [74, 120]. We then show several new contributions:

• We present a new multi-tree algorithm capable of estimating the npcf at many

different scales simultaneously.

• We show a new algorithm for efficient variance estimation of the npcf using the

jackknife which can be used in conjunction with our multi-tree algorithms.
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• We show detailed CPU optimizations of the base case of our algorithm.

• We discuss our open-source massively parallel distributed implementation of all

of these algorithms.

• We present detailed adaptive analyses of our algorithms, showing for the first

time that the n-point correlation can be estimated in O(N) time under assump-

tions that hold for computations of real scientific interest.

• We demonstrate the largest full 3-point correlation estimation computation on

the large scale galaxy structure to-date.

We demonstrate that each of our algorithmic improvements and the optimized

base case offer speedups of an order-of-magnitude or more. Taken together, these

contributions make previously impossible studies of the npcf of the galaxy distribution

tractable on commodity clusters. Much of this work has been previously published

in KDD [113] and Supercomputing [114].

3.1 Applications of the N-Point Correlation Functions

The n-point statistics have long constituted the state-of-the-art approach in many

scientific areas, in particular for detailed characterization of the patterns in spatial

data. They are a fundamental tool in astronomy for characterizing the large scale

structure of the universe [130], fluctuations in the cosmic microwave background [165],

the formation of clusters of galaxies [177], and the characterization of the galaxy-mass

bias [118]. They can be used to compare observations to theoretical models through

perturbation theory [12, 60]. A high-profile example of this was a study showing

large-scale evidence for dark energy [66] – this study was written up as the Top

Scientific Breakthrough of 2003 in Science [150]. In this study, due to the massive

potential implications to fundamental physics of the outcome, the accuracy of the n-

point statistics used and the hypothesis test based on them were a considerable focus
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of the scientific scrutiny of the results – underscoring both the centrality of n-point

correlations as a tool to some of the most significant modern scientific problems, as

well as the importance of their accurate estimation.

The materials science community also makes extensive use of the n-point corre-

lation functions. They are used to form three-dimensional models of microstructure

[109] and to characterize that microstructure and relate it to macroscopic properties

such as the diffusion coefficient, fluid permeability, and elastic modulus[168, 167].

The n-point correlations have also been used to create feature sets for medical image

segmentation and classification [143, 121, 34].

In addition to these existing applications, the n-point correlations are completely

general. Thus, they are a powerful tool for any multivariate or spatial data analysis

problem. Ripley [145] showed that any point process consisting of multidimensional

data can be completely determined by the distribution of counts in cells. The dis-

tribution of counts in cells can in turn be shown to be completely determined by

the set of n-point correlation functions [130]. While ordinary statistical moments are

defined in terms of the expectation of increasing powers of X, the n-point functions

are determined by the cross-correlations of counts in increasing numbers of nearby

regions. Thus, we have a sequence of increasingly complex statistics, analogous to

the moments of ordinary distributions, with which to characterize any point process

and which can be estimated from finite data. With this simple, rigorous characteri-

zation of our data and models, we can answer the key questions posed above in one

statistical framework.

3.2 The N-Point Correlation Functions

We begin by defining the npcf. We start with a definition of the problem setting: point

processes. We consider our data set to be a single sample drawn from some ensemble

of possible samples. We then define the n-point correlation functions themselves,
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which describe the expected clustering properties of samples from the ensemble. We

then turn to the algorithmic problem of interest in this chapter: the task of estimating

the npcf from a real data set.

3.2.1 Spatial Data and Spatial Statistics

We now define the n-point correlation functions. We provide a high-level description;

for a more thorough defintion, see [130, 163]. Once we have given a simple description

of the npcf, we turn to the main problem of interest here: the computational task

of estimating the npcf from real data. We give several common estimators for the

npcf, and highlight the underlying counting problem in each. We also discuss the

full computational task involved in a useful estimate of the npcf for real scientific

problems.

Throughout, we deal with point processes. Our sample consists of a finite set of

points D in a compact, bounded subset of Rd, sometimes referred to as the sample

window. This set is drawn from some ensemble of possible realizations. Note that

we do not assume that the individual points are independent, only that our sample is

a fair representative of the ensemble of all possible samples. Therefore, rather than

averaging over individual points, we must average over sample point sets drawn from

this ensemble. In general, when making inferences about such a process, we invoke

an ergodic hypothesis. Under this assumption, averages taken over distant parts of

the sample window approximate averages over different samples from the ensemble.

We can then make inferences from a single data set, assuming that it is large enough

to allow averaging over distant regions.

Throughout our discussion, we assume that the process is homogeneous and

isotropic. This is standard practice when studying astronomical data sets, since all

cosmological models make this assumption as well. In other applications, such as ma-

terials science, this assumption may not hold. However, the n-point correlations can
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be defined both for more general point processes and for continuous random fields.

The estimators for these cases are similar to the ones described below and can be

improved by similar algorithmic techniques.

3.2.2 Defining the N-Point Correlation Functions

We now turn to an informal, intuitive description of the hierarchy of n-point correla-

tions. Since we have assumed that properties of the point process are translation and

rotation invariant, the expected number of points in a given volume is proportional to

a global density ρ. Consider a small volume element dV . In the limit as dV becomes

small, the probability of finding more than one point in D in dV becomes negligible.

Therefore, we can say that

dP ∝ ρdV (3.2.1)

with only a normalization constant necessary to make this an equality. If the density

ρ completely characterizes the process, we refer to it as a Poisson process.

The assumption of homogeneity and isotropy does not require the process to lack

structure. The positions of points may still be correlated. This is illustrated in

Figure 6. In a Poisson process, the joint probability of finding objects in disjoint

volume elements dV1 and dV2 separated by a distance r is given by:

dP12 ∝ ρ2dV1dV2 (3.2.2)

We obtain this directly from Equation 3.2.1 by noting that in a Poisson process, the

events that a point lies in dV1 and one lies in dV2 are independent. Therefore, the

joint probability of the two events is just the product of their individual probabilities.

However, in general, a point process does not need to be Poisson. The two events,

finding a point in dV1 and another point in dV2, can be dependent. Let r be the

vector pointing from dV1 to dV2
1. We can modify Equation 3.2.2 to reflect this fact

1Note that we are working in the limit as dVi becomes small, so the precise choice of endpoints
of the vector within the regions is not significant.
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as follows:

dP12 ∝ ρ2dV1dV2(1 + ξ(r)) (3.2.3)

The expression (1 + ξ(r)) is the two-point correlation function (2pcf). The quan-

tity ξ(·) is sometimes called the reduced 2pcf, or when no confusion can result, just

the two-point correlation function. If ξ(r) = 0, then we recover the definition in

Equation 3.2.2. Positive values of ξ(·) indicate that the events are correlated, while

negative values indicate anti-correlation.

Since we have assumed that the point process is homogeneous and isotropic, then

the 2pcf must be as well. Therefore, we can write ξ(·) as a function of only the

distance ‖r‖. In other words, the 2pcf does not depend on the particular choice of

small regions or on their position within the sample window, but only on the distance

between them. We therefore have a continuous function of a single variable, the

distance between the two small regions of interest.

Higher-order correlations describe the probabilities of more than two points in a

given configuration. We first consider three small volume elements, which form a

triangle. The joint probability of simultaneously finding points in volume elements

dV1, dV2, and dV3, separated by distances r12, r13, and r23, is given by:

dP123 ∝ ρ3dV1dV2dV3(1 + ξ(r12) + ξ(r23) + ξ(r13) + ζ(r12, r23, r13)) (3.2.4)

As above, the quantity in square brackets is sometimes called the complete (or full)

3-point correlation function and ζ is the reduced 3-point correlation function. We

will often refer to ζ as simply the 3-point correlation function, since it will be the

quantity of computational interest to us. Note that unlike the 2-point correlation, the

3-point correlation depends both on distance and configuration. The function varies

continuously both as we increase the lengths of the sides of the triangle and as we

vary its shape, for example by fixing two legs of the triangle and varying the angle

between them.
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Higher-order correlation functions (such as the 4-point correlation are defined in

the same fashion. The probability of finding n-points in a given configuration can be

written as a summation over the n-point correlation functions. For example, in ad-

dition to the reduced 4-point correlation function η, the complete 4-point correlation

depends on the six 2-point terms (one for each pairwise distance), four 3-point terms

(one for each triple of distances), and three products of two 2-point functions.

dP1234 = ρ4dV1dV2dV3dV4

[
1 +

∑
ξ(rij) +

∑
ζ(rij, rik, rjk) +

∑
ξ(rij)ξ(rkl) + η

]
(3.2.5)

The reduced four-point correlation is a function of all six pairwise distances. In

general, we will denote the n-point correlation function as ξ(n)(·), where the argument

is understood to be a set of
(
n
2

)
pairwise distances. We refer to this set of pairwise

distances as a configuration, or in the computational context, as a matcher (see

below).

We have defined a hierarchy of correlation functions of increasing complexity.

These can be viewed as analogs of the moments of a single random variable, X.

While moments are defined in terms of the expectation of increasing powers of X,

the n-point functions are determined by the cross-correlations of counts in increasing

numbers of nearby regions.

Like the moments for a univariate distribution, the collection of n-point correlation

functions can completely characterize any point process. Ripley [145] showed that any

point process can be completely determined by the distribution of counts in cells. We

can define the point process by specifying the probability distribution P (N(A) = n)

for all bounded areas (or volumes) A and integers n. The distribution of counts in cells

can in turn be shown to be completely determined by the set of n-point correlation

functions [130].

50



0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

50
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

Galaxy Distribution Uniform Distribution

Figure 6: A visualization of two data sets with different correlation functions. Both
data sets consist of approximately 106 points contained in a cube with sides of length
1000 Mpc/h. In both cases, we have taken a subsample in a slice of the sample
window of thickness 5 Mpc/h in the z and projected the points in the slice onto
the x-y plane. The figure on the left shows data from an N -body simulation of the
distribution of galaxies. The ensemble generating this distribution has non-zero 2
and 3-point correlation. The data on the right are from a Poisson ensemble, with all
n-point correlations equal to zero. Both images contain approximately 6,500 points.
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3.2.3 Estimating the NPCF

We have shown that the n-point correlation function is a fundamental spatial statistic

and have sketched the definitions of the n-point correlation functions in terms of the

underlying point process. We now turn to the central task of this chapter: the problem

of estimating the n-point correlation from real data. We describe several commonly

used estimators and identify their common computational tasks.

Note that the (reduced) npcf ξ(n)(·) is a function of the underlying point process.

In general, we do not directly have any information on this process. Instead, we are

given one or more point sets drawn from the process. We must therefore use these

data to estimate the npcf.

For simplicity, we consider the 2-point function first. Recall that ξ(r) captures

the increased (or decreased) probability of finding a pair of points at a distance r

over finding the pair in a Poisson distributed set. This observation suggests a simple

Monte Carlo estimator for ξ(r). We generate a random set of points R from a Poisson

distribution with the same (sample) density as our data and filling the same volume.

We then compare the frequency with which points appear at a distance close to r in

our data versus in the random set.

Let DD(r) denote the number of pairs of points (xi, xj) in our data, normalized by

the total number of possible pairs, whose pairwise distance d(xi, xj) is close to r (in

a way to be made precise below). Let RR(r) be the number of points whose pairwise

distances are in the same interval (again normalized) from the random sample (DD

stands for data-data, RR for random-random). Then, a simple estimator for the

two-point correlation is [130, 163]:

ξ̂(r) =
DD(r)

RR(r)
− 1 (3.2.6)

This estimator captures the intuitive behavior we expect. If pairs of points at a

distance near r are more common in our data than in the completely random (Poisson)
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distribution, we are likely to obtain a positive estimate for ξ. Conversely, if our data

are drawn from a Poisson or nearly Poisson distribution, this estimator will be close

to zero, as in Equation 3.2.2.

This simple estimator suffers from suboptimal variance and sensitivity to noise.

Several alternative estimators utilize the same underlying Monte Carlo idea, while

providing improved variance and shot noise sensitivity.

The Landy-Szalay estimator [103]

ξ̂(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
(3.2.7)

is a widely used improvement over Equation 3.2.6. Here the notation DR(r) denotes

the number of pairs (xi, yj) at a distance near r where xi is from the data and yj is

from the Poisson sample (DR denotes data-random pairs).

Another popular estimator for the 2pcf is due to Hamilton [78].

ξ̂(r) =
DD(r) ·RR(r)

DR(r)2
(3.2.8)

Note that both these alternatives use the same quantities as Equation 3.2.6, namely

counts of pairs of points satisfying a distance constraint.

The 3-point correlation function depends on the pairwise distances between three

points, rather than a single distance as before. We will therefore need to specify three

distance constraints, and estimate the function for that configuration. The Landy-

Szalay estimator for the 2-point function can be generalized to any value of n, and

retains its improved bias and variance characteristics [164]. We again generate points

from a Poisson distribution, and the 3pcf estimator is also a function of quantities of

the form DDD, DDR, DRR, or RRR. These refer to the number of unique triples of

data and random points whose pairwise distances lie close to given constraints, again

normalized by the total number of such triples. For the three point correlation, the

Szapudi-Szalay estimator [164] is

ζ̂(·) =
DDD − 3DDR + 3DRR− 3RRR

RRR
(3.2.9)
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Any n-point correlation can be estimated using a sum of counts of n-tuples of

points of the form D(i)R(n−i)(r), where i ranges from zero to n. The argument is a

set of
(
n
2

)
pairwise distance, pair of points. We count unique tuples of points whose

pairwise distances are close to the distances in the matcher in some ordering. Note

that a tuple of points may satisfy the constraints when their pairwise distances are

considered in one order but not in another. We count such tuples exactly once.

We make use of the following (symbolic) notation.

[D −R]n =
n∑
i=0

DiRn−i (3.2.10)

Then, the estimator is given by

ˆξ(n)(·) =
[D −R]n

Rn
(3.2.11)

3.3 The Computational Task

Unfortunately, directly estimating the n-point correlation functions is extremely com-

putationally expensive. In principle, computing a count Dn(r) requires us to enumer-

ate all unique n-tuples of points. Since this scales as O(Nn) for N data points, this is

prohibitively expensive for even modest-sized data sets and low-orders of correlation.

Higher-order correlations are often necessary to fully understand and characterize

data [177]. Furthermore, the npcf is a continuous quantity. In order to understand its

behavior at all the scales of interest for a given problem, we must repeat this difficult

computation many times. We also need to estimate the variance of our estimated

npcf. This in general requires a resampling method in order to make the most use

of our data. We must therefore repeat the O(Nn) computation not only for many

scales, but for many different subsamples of the data.

In the past, these computational difficulties have restricted the use of the n-point

correlations, despite their power and generality. The largest 3-point correlation esti-

mation thus far for the distribution of galaxies used only approximately 105 galaxies
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[119]. Higher-order correlations have been even more restricted by computational

considerations.

Note that all the estimators described previously depend on the same fundamental

quantities: the number of tuples of points from the data/random set that satisfy some

set of distance constraints. Thus, our task is to efficiently compute this number given

the data and a suitably large Poisson set. Clearly, a direct approach, one which

enumerates all n-tuples of points, will require O(Nn) work. However, the scales of

interest for the npcf estimators are much smaller than the sample window containing

the data. Therefore, most tuples will not be counted and we can take advantage of

this observation to formulate a more efficient algorithm.

3.3.1 Specifying Distance Constraints and Satisfying Matchers

Above, we described the npcf in terms of a set of
(
n
2

)
distance constraints. We now

make this idea more concrete. Each of the
(
n
2

)
pairwise distance constraints consists

of a lower and upper bound: r
(l)
ij and r

(u)
ij . In the context of our algorithms, we refer

to this collection of distance constraints r as a matcher. We refer to the entries of

the matcher as r
(l)
ij and r

(u)
ij , where the indices i and j refer to the volume elements

introduced above . We sometimes refer to an entry as simply rij, with the upper and

lower bounds being understood.

We can write a matcher in a matrix form:

r =



· r12 r13 · · · r1n

r12 · r23 · · · r2n

. . . . . . . . . . . .
...

r1n r2n r3n · · · ·


(3.3.1)

If we specify upper and lower bounds, we would have two such tables – one for the

lower and upper bounds. The matrix is symmetric, and the diagonal entries are left

unspecified.
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As an alternative to individual upper and lower bounds, we can specify a thickness

dr. This thickness can depend on the scale of the matcher or not, as needed. We then

specify a single matrix of constraints, and the upper and lower bounds are understood

to be rij ± dr/2.

When no confusion will arise, we will simply denote a matcher as r, where the

vector is understood to contain either the 2 ·
(
n
2

)
lower and upper-bound distance

constraints or nchoose2 distance constraints a thickness.

Given an n-tuple of points and a matcher r, we say that the tuple satisfies the

matcher if there exists a permutation of the points such that each pairwise distance

does not violate the corresponding distance constraint in the matcher. More formally:

Definition 3.3.1. Given an n-tuple of points (p1, . . . , pn) in Rd and a matcher r, we

say that the tuple satisfies the matcher if there exists (at least one) permutation σ

of [1, . . . , n] such that

r
(l)
σ(i)σ(j) < ‖pi − pj‖ < r

(u)
σ(i)σ(j) (3.3.2)

for all indices i, j ∈ [1, . . . n] such that i < j.

Equivalently, in the case of upper and lower bound matchers, we have that

rσ(i)σ(j) −
dr

2
< ‖pi − pj‖ < rσ(i)σ(j) +

dr

2
(3.3.3)

3.3.2 Computational Tasks

We can now identify the central computational task in npcf estimation: Raw Corre-

lation Count.

Definition 3.3.2. Computational Task 1: Raw Correlation Counts. Given

a matcher r, data set D, random set R, and integer 0 ≤ i ≤ n, the task of computing

D(i)R(n−i)(r): the number of unique n-tuples of points, i from D, n− i from R, such

that the tuple satisfies the matcher is the Raw Correlation Count task.
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The Raw Correlation Count problem is the central computational bottleneck in

npcf estimation.

Note that computing one of the estimators given above (such as Equation 3.2.11)

simply requires solving Computational Task 1 n + 1 times. Therefore, the work

required to compute a point estimate of the npcf will be directly proportional to the

work required to solve Computational Task 1.

The estimators above give us a value ξ̂(n)(r) at a single configuration. However,

the n-point correlations are continuous quantities of each distance constraint in the

matcher. In general, we will need to understand the behavior of the npcf at a variety of

scales and configurations. Since we do not have a method to estimate the continuous

npcf directly, we must estimate it at several discrete points. This requires us to

repeatedly compute an estimator such as Equation 3.2.11 for many different matchers.

Clearly, we will obtain a more precise view of the continuous npcf with more point

estimates.

This leads us to our second computational task.

Definition 3.3.3. Computational Task 2: Multiple matchers. Given a data

set D, random set R, and a collection of M matchers {rm}, compute D(i)R(j)(rm) for

each matcher m ∈M .

This task requires us to repeat Task 1 O(M) times, where M controls the smooth-

ness of our overall estimate of the npcf and our quantitative picture of its overall

behavior. Therefore, the total work is O(M · T (N), where T (N) is the time required

to perform Task 1 for N data points.

As noted above, our data are a single sample from the underlying point process.

We invoke an ergodic assumption, which allows us to use averages over our large

data set in place of averages over many samples from the point process. Ideally, we

would have several samples from the point process. We could then repeat the npcf
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estimation on each set, and from these estimates obtain the sample variance of our

estimator.

However, additional samples are often prohibitively expensive or even impossible

to obtain. For instance, if we model the distribution of galaxies as a point process, we

cannot obtain any sample other than the one available for us to observe in the universe.

Data sets obtained from N -body simulations may require enormous computational

resources, preventing us from generating more than one. Therefore, we must use a

bootstrapping method for internal variance estimation.

Jackknife resampling is a widely used variance estimation method [153] and is

popular with astronomical data [111]. It is also used to study large scale structure by

identifying variations in the npcf across different parts of the sample window [119].

We divide the data set into subregions. We eliminate each region from the data in

turn, then compute our estimate of the npcf. We repeat this for each subset, and

use the resulting estimates to bound the variance. This leads to our third and final

computational task.

Definition 3.3.4. Computational Task 3: Jackknife resampling. We are

given a data set D, random set R, a set of M matchers rm, and a partitioning of

D into J subsets Dk. For each 1 ≤ k ≤ J , construct the set D(−k) = D/Dk. Then,

compute D
(i)
(−k)R

(j)(r).

This task requires us to repeat Task 1 J times on sets of size D−D/J . Note that

J controls the quality of our variance estimation, with larger values necessary for a

better estimate.

3.3.3 The Complete Computational Task

We can now identify the complete computational task for n-point correlation estima-

tion. Given our data and random sets, a collection of M matchers, and a partitioning

of the data into J subregions, we must perform Task 3. This in turn requires us to
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perform Task 2 J times. Each iteration of Task 2 requires M computations of Task

1. Therefore, the entire computation requires O(J ·M · T (N − N
J

) time.

We now turn to efficient algorithms for each of these computational tasks. We

begin with a multi-tree algorithm for Task 1, which reduces the work T (N) from

O(Nn) to a tractable amount. We then discuss new algorithms for Tasks 2 and 3

which extend our multi-tree algorithms for massive speedups.

3.4 Related Work

Due to the computational difficulty associated with estimating the full npcf, many

alternatives to the full npcf have been developed, including those based on nearest-

neighbor distances, quadrats, Dirichlet cells, and Ripley’s K function (and related

functions) (See [146] and [37] for an overview and further references).

Counts-in-cells [164] and Fourier space methods [133, 134] are commonly used for

astronomical data. However, these methods are generally less powerful than the full

npcf. For instance, the counts-in-cells method cannot be corrected for errors due to

the edges of the sample window. Fourier transform-based methods suffer from ringing

effects and suboptimal variance [163] and cannot fully account for errors due to the

edge of the sample window.

Methods to approximate the npcf have also been developed. Some methods use

a Fourier transform-based approach to approximate the counts required for npcf es-

timators [187]. While this approach can be fast, it introduces additional errors into

the statistic due to both the Fourier transform and the inexact nature of the counts

computed. Other methods compute the approximate npcf using space-partitioning

trees [185]. However, given the scientific importance of the results being investigated

with the npcf and the sensitivity of the results, it is crucial to reduce all possible

sources of error. Therefore, we confine our attention to exact methods for computing

the npcf.
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Since we deal exclusively with estimating the exact npcf, we only compare against

other methods for this task. The existing state-of-the-art methods for exact npcf

estimation use multiple space-partitioning trees to overcome the O(Nn) scaling of

the n-point point estimator. This approach was first introduced in [74, 120]. It

has been parallelized using the Ntropy framework [65]. This is the currently fastest

implementation of general n-point correlation estimation and was used to compute

the largest correlations of galaxy positions prior to this work [117, 118].

3.5 Algorithms

We have identified the full computational task of n-point correlation estimation. We

now turn to our new algorithmic contributions.

3.5.1 Basic Multi-Tree Algorithm

We build on previous, tree-based algorithms for the n-point correlation estimation

problem [74, 120]. The key idea is to employ multiple kd-trees to improve on the

O(Nn) scaling of the brute-force approach.

For simplicity, we begin by considering the two-point correlation estimation (Alg. 3.5.1).

Recall that the task is to count the number of unique pairs of points that satisfy a

given matcher. As in the dual-tree nearest neighbor and EMST algorithms discussed

in Chapter 2, we build a tree on the data set. We then traverse the tree and use the

bounding information stored in each node to identify opportunities for pruning.

We consider two tree nodes at a time, one from each set to be correlated. We

compute the upper and lower bounds on distances between points in these nodes

using the bounding boxes. We can then compare this to the matcher’s lower and

upper bounds. If the distance bounds prove that all pairs of points are either too far

or too close to possibly satisfy the matcher, then we do not need to perform any more

work on the nodes. We can thus prune all child nodes and save O(|T1| · |T2|) work. If

we cannot prune, then we split one (or both) nodes, and recursively consider the two
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Algorithm 3.5.1 DualTree2pt (Tree node T1, Tree node T2, matcher r)

if T1 and T2 are leaves then
for all points p1 ∈ T1, p2 ∈ T2 do

if r
(l)
12 < ‖p1 − p2‖ < r

(u)
12 then

result += 1
5: end if

end for
else if T1 and T2 are both reference or data nodes and T1 < T2 then

Prune to avoid overcounting
else if dmin(T1, T2) > r

(u)
12 or dmax(T1, T2) < r

(l)
12 then

10: Prune
else

DualTree2pt(T1.left, T2.left)
DualTree2pt(T1.left, T2.right)
DualTree2pt(T1.right, T2.left)

15: DualTree2pt(T1.right, T2.right)
end if

(or four) resoling pairs of nodes. If our recursion reaches leaf nodes, we consider all

pairs of points exhaustively.

We begin by calling the algorithm on the root nodes of the tree. If we wish to

perform a DR count, we call the algorithm on the root of each tree. Note also that

we only want to count unique pairs of points. Therefore, we can prune if T2 comes

before T1 in an in-order tree traversal and T1 and T2 are nodes on a tree built on the

same data set. This ensures that we see each pair of points at most once.

We can extend this algorithm to the general n case. Instead of considering pairs

of tree nodes, we compare an n-tuple of nodes in each step of the algorithm. This

multi-tree algorithm uses the same basic idea – use bounding information between

pairs of tree nodes to identify sets of nodes whose points cannot satisfy the matcher.

We need only make two extensions to Alg. 3.5.1. First, we must do more work to

determine if a particular tuple of points satisfies the matcher. We accomplish this

in Alg. 3.5.3 by iterating over all permutations of the indices. Each permutation of

indices corresponds to an assignment of pairwise distances to entries in the matcher.

We can quickly check if this assignment is valid, and we only count tuples that have
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Algorithm 3.5.2 MultiTreeNpt (Tree node T1, . . . , Tree node Tn, matcher r)

if all nodes Ti are leaves then
for all points p1 ∈ T1, . . . , points pn ∈ Tn do

if TestPointTuple(p1, . . . , pn, r) then
result += 1

5: end if
end for

else if not TestNodeTuple(T1, . . . , Tn, r) then
Prune

else
10: Let Ti be the largest node

MultiTreeNpt(T1, . . . , Ti.left, . . . , Tn, r)
MultiTreeNpt(T1, . . . , Ti.right, . . . , Tn, r)

end if

at least one valid assignment. The second extension is a similar one for checking if a

tuple of nodes can be pruned (Alg. 3.5.4). We again iterate through all permutations

and check if the distance bounds obtained from the bounding boxes fall within the

upper and lower bounds of the matcher entry. As before, for an D(i)R(j) count, we

call the algorithm on i copies of the data tree root and j copies of the random tree

root.

We can also consider more efficient ways of traversing the tree. We give one such

method in Alg. 3.5.5. Consider a matcher r. Let r̂(l) = min r
(l)
ij and r̂(u) = max r

(u)
ij .

Then, we know that if a pair of nodes are separated by more than r
(u)
ij (or less

than r
(l)
ij ), any tuple of nodes that contains this pair can be pruned. Using this

observation, we can avoid the full tree traversal in Alg. 3.5.2. Instead, we proceed

in two phases. First, for each tree leaf, we construct an interaction list containing

all leaves at a distance in the range [r̂(l), r̂(u)], which can be done efficiently a simple

dual-tree traversal. Then, for each leaf Tl, we iterate through all unique n-tuples of

nodes consisting of Tl and n−1 nodes from its interaction list. We can then compute

the base case on this node tuple.

This algorithm can provide some efficiency gains over the full multi-tree algorithm.

However, the full advantage of this algorithm becomes apparent when it is combined
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Figure 7: An illustration of pruning multiple matchers simultaneously.
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Figure 8: An illustration of our new efficient jackknife resampling algorithm.

64



Algorithm 3.5.3 TestPointTuple (points p1, . . . , pn, matcher r)

mark all permutations σ of [1, . . . , n] as valid
for all indices i, j ∈ [1, n], i < j do
dij = ‖pi − pj‖
for all permutations σ do

5: if σ is marked valid then
if r

(l)
σ(i)σ(j) > dij or r

(u)
σ(i)σ(j) < dij then

mark σ as invalid
end if

end if
10: end for

end for
if At least one permutation σ is marked valid then

return true
else

15: return false
end if

with our optimized base case implementation (discussed below).

3.5.2 Multi-Matcher Algorithm

The algorithms presented above all focus on computing individual counts of points –

i.e. Computational Task 1, from Section 3.3.2. This approach improves the overall

dependence on the number of data points – N – and the order of the correlation –

n. However, this does nothing for the other two parts of the overall computational

complexity. We now turn to our novel algorithm to count tuples for many matchers

simultaneously, thus addressing Computational Task 2.

Intuitively, computing counts for multiple matchers will repeat many calculations.

For simplicity, consider a two-point correlation computation. Let A and B be a pair

of nodes separated by a distance that is large compared to any distances in the

matcher. If we compute the raw correlation counts for multiple matchers by iterating

over matchers and using Algorithm 3.5.1, we will eventually consider nodes A and B.

Since the minimum distance between them is large when compared to the matcher, we

will prune this pair. On the next iteration, for a new matcher, we will again compute
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Algorithm 3.5.4 TestNodeTuple (Tree node T1, . . . , Tree node Tn, matcher r)

mark all permutations σ of [1, . . . , n] as valid
for all indices i ∈ [1, n− 1] and indices j > i do
dmax
ij = dmax(Ti, Tj)
dmin
ij = dmin(Ti, Tj)

5: for all permutations σ of [1, . . . , n] do
if σ is marked valid then

if r
(l)
σ(i)σ(j) > dmax

ij or r
(u)
σ(i)σ(j) < dmin

ij then
mark σ as invalid

end if
10: end if

end for
end for
if At least one permutation σ is marked valid then

return true
15: else

return false
end if

the minimum distance between A and B, and since it is still large, we will prune

again. We can If we can consider the two matchers simultaneously, we can make the

pruning decision for both and save the unnecessary work. We can also save work in

the base case. We need only compute the distance between each pair of points once

(if we have not been able to prune the pair completely). We can then immediately

identify which matcher(s), if any, the pair satisfies.

In the two-point case, this improvement is straightforward, and has already been

shown in [74]. We must only modify Alg. 3.5.3 and Alg. 3.5.4 to consider a collection

of matchers. If the matchers are regularly spaced, then we can identify which (if any)

the node or point pair may satisfy in constant time. For arbitrary matchers, we can

sort them and find possible matching pairs in logarithmic time.

The general n-point case requires more caution. The presence of permutations in

Alg. 3.5.4 makes the straightforward approach mentioned above more difficult. Each

pair of nodes in each permutation will possibly satisfy different matchers. It becomes

prohibitively expensive to determine which, if any, matchers may be satisfied.
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Algorithm 3.5.5 InteractionListNpt (Tree root T , matcher r)

FormInteractionListsDualTree(T, T )
for all leaves Tl of T do

for all unique (n− 1)-tuples of nodes T ′1, . . . , T
′
n−1 in L(Tl) do

if TestNodeTuple(Tl, T
′
1 . . . , T

′
n−1, r) then

5: for all unique n-tuples of points p1 ∈ Tl, . . . , points pn ∈ T ′n−1 do
if TestPointTuple(p1, . . . , pn, r) then

result++
end if

end for
10: end if

end for
end for

Algorithm 3.5.6 FormInteractionListsDualTree

(Tree nodes T1, T2, distance r̂)

if T1 and T2 are leaves then
Add T2 to T1’s list (and vice versa)

else if dmin(T1, T2) > r̂ then
Prune

5: else
Split the larger node and recurse

end if

Instead, we can avoid searching all permutations entirely. We make use of the

following observation, proven below: if the distance bounds violate a matcher in a

particular order, they will violate it in all possible permutations.

Theorem 3.5.1. Given a matcher r, let
{
ui : 1 ≤ i ≤

(
n
2

)}
be the set of upper bounds

r
(u)
ij , in the matcher, sorted in ascending order. Let

{
dli : 1 ≤ i ≤

(
n
2

)}
be the set of

lower-bound distances dmin
ij obtained from the bounding boxes of n tree nodes, also

sorted in ascending order. Then, if dli > ui for any i, no n-tuple of points from the

nodes can satisfy the matcher.

Proof. Any permutation σ of the bounding boxes assigns each lower-bound distance

dli to some upper bound distance in the matcher uσ(i). In order for this permutation

to work, we need that dli < uσ(i) for all i. Let i′ be the index such that dli′ > ui′ in the

condition of the theorem. Then, any permutation must map i′ to an index j. If j < i′,
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then dli′ > uj = uσ(i′). If j > i′, then σ(j) < i′. Therefore, dlj > uσ(j). Therefore, no

permutation can satisfy the matcher.

We can easily arrive at a similar conclusion regarding upper bounds.

Corollary 3.5.2. Let
{
li : 1 ≤ i ≤

(
n
2

)}
be the set of lower bounds in the matcher,

sorted in ascending order. Let
{
dui : 1 ≤ i ≤

(
n
2

)}
be the set of upper-bound distances

obtained from the bounding boxes of n tree nodes, also sorted in ascending order.

Then, if dui < li for any i, no n-tuple of points from the nodes can satisfy the matcher.

Using these observations, we can improve the pruning rule in Alg. 3.5.4. With each

n-tuple of nodes, we store the upper and lower bound distances, sorted in ascending

order. Given a collection of matchers, we can extract the largest upper bound and

smallest lower bound among all matchers for each of the
(
n
2

)
entries. We can then

sort these distances and use the theorems above.

The total running time for pruning checks is therefore reduced from something

proportional to n! to a single loop of size
(
n
2

)
along with comparable overhead from

updating the sorted lists of bounds. Unfortunately, for common values of n (2 and

3), this is not a significant advantage. However, this approach makes a much greater

difference in the multi-matcher version of the algorithm.

We can then provide a multi-matcher version of Alg. 3.5.4. We sort the minimum

and maximum matcher ranges in ascending order. We can then compare these against

the bounds from the nodes’ bounding boxes.

We extend Alg. 3.5.3 by marking a permutation invalid if the point-point distance

is greater than the maximum matcher distance or less than the minimum. If the

distance falls in between, we can identify which bin (or bins) it contains and mark

them as possibly valid. We store a vector of possible bins for each permutation, and

if a permutation has a valid bin for each dimension, we can increment our count for

that dimension. Note that we still only count each tuple at most once.
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Algorithm 3.5.7 MultiTestNodeTuple (Tree node T1, . . . , Tree node Tn, matcher
minima rmin

i , matcher maxima rmax
i )

Compute node-node bounds li and ui and sort
for i = 1 :

(
n
2

)
do

if li > rmax
i or ui < rmin

i then
return false

5: end if
end for
return true

So far, we have discussed multiple matchers in a completely generic way, with-

out discussing any structural relationships that we may be able to exploit for our

algorithms.

We can specify a set of matchers rm by giving a minimum and maximum range,

rmin
ij , rmax

ij for each of its
(
n
2

)
dimensions along with a number of equally-sized bins

bij for each dimension. Each possible choice of bins, one from each dimension, then

forms a single matcher. The total set of matchers consists of
∏
bij matchers, where

the product runs over all dimensions of the matcher.

Another widely used matcher specification for 3-point correlations fixes two sides

of a triangle and varies the angle between them. This angle matcher specification

is widely used to study configuration dependence in the 3pcf [131, 117, 118]. We

have implemented specialized base cases and pruning rules for this case. The user

can input one or more sets of lengths for a triangle, along with a range of angles

to be considered. Using a simplified version of our general multi-matcher pruning

algorithm, we can efficiently compute results for all of these matchers.

Our specifications of multiple matchers may seem somewhat restrictive. On the

one hand, our framework allows for a wide range of possible configurations by allowing

each dimension to be specified separately. However, we have assumed that no bins

overlap and that the thickness of each bin is fixed. Neither of these restrictions are

fundamental to our method. We are currently developing an extension which will

allow overlapping bins and varying thicknesses, such as commonly occurs in three
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point computations. This modification requires only limited extensions to the pruning

rule and base case.

3.5.3 Efficient Resampling Algorithm

We now turn to another new algorithm – a method to efficiently compute counts for

resampling regions (Computational Task 3). Recall from Section 3.3.2 that we are

given a partitioning of the data set into subsets Di. We then construct i data sets

D(−i) = {i ∈ D|i 6∈ Di}. We now compute counts which satisfy the matcher for

each set D(−i). Assuming that the subregions each contain roughly the same number

of points, we see that for J subregions and an n-point estimation algorithm which

requires T (N) time for N data points, we require O(JT (N − N/J)) time for each

matcher. Instead, we can rearrange this computation to share work between different

subcomputations.

The intuition for our new approach is shown in Fig. 8. Assume we are computing

a count of the form DDD(r) and that the three points shown in the figure satisfy the

matcher. For all but the three regions in which the tuple’s points lie, we will need to

do the work to find and count the tuple since it factors into the total DDD count for

all the D(−i). Therefore, we will perform all the work needed to find this tuple J − 3

times.

We can avoid this extra work by working with the subsetsDi directly. For instance,

if we compute the count DiDiDi(r), this result will appear in the counts for all

D(−j)D(−k)D(−l)(r). We can then compute this count once and add its intermediate

result into the J − 1 final results. In general, we consider n distinct sets Di, compute

the number of tuples from them that satisfy the matcher, and add that intermediate

count into the result for each D(−j) that does not appear in the computation. We

show this approach in Alg. 3.5.8. We maintain an array of results of length J , where

the jth entry corresponds to the count D(−j) · · ·D(−j)(r). This method can be easily
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Algorithm 3.5.8 EfficientResampling (Data sets Di : 1 ≤ i ≤ J , matcher r)

Construct a tree Ti on each Di

for all unique n tuples of indices (i1, . . . , in) in [1, . . . , J ] do
result = MultiTreeNpt(Ti1 , . . . , Tin , r)
for all j 6∈ {ii, . . . , in} do

5: results[j] += result
end for

end for

extended to include random sets by including the random set as one of the Di in the

input to Alg. 3.5.8.

For J resampling regions, each containing roughly N/J points, this algorithm

requires O(
(
J
n

)
· T (N/J)) time, where T (N) is the time required for a single n-point

correlation computation on N points. The naive version loops over all resampling

regions, so it requires O(J · T (N)) time. While the combinatorial dependence on

n may seem to be a disadvantage, it is easily made up for by the reduced problem

size for each n-point computation. As we will show in our experimental results, this

method provides a considerable speedup.

This algorithm can easily be combined with our multi-matcher algorithm above.

3.6 Base Case Optimizations

We focus here on the base case computation of the Raw Correlation Counts (defined

in Section 3.3.2). We restrict our attention to counts for the 3-point correlation

for simplicity. We have three sets of points A, B, C. Our task is to identify all

triples of points (a, b, c) where a ∈ A, b ∈ B, c ∈ C and the triple satisfies a given

matcher. A brute force algorithm for the base case calculation would simply iterate

through all triples using a triply-nested loop and test each triple against the matcher.

Assuming the sets of points have cardinality N , such an approach involves O(N3)

distance calculations and O(N3) conditional evaluations to determine if the matcher

is satisfied.

71



dV1

dV2r12

dV3

r13

r23

Figure 9: An illustration of the counts required for the three-point correlation func-
tion.
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The brute-force approach computes many redundant distances. We use a two-

phase base case calculation that first computes all of the unique pairwise distances

and stores the result of whether or not the distance satisfied each of the matcher

constraints. Note that the distances themselves need not be stored. We then iterate

through all triples and check the stored set of matcher results to determine if the

matcher has been satisfied. Thus, this algorithm involves O(N2) distance calculations,

O(N2) conditional checks, and O(N3) matcher satisfiability checks. We demonstrate

in the following section that the O(N3) matcher satisfiability checks can be performed

without the use of conditionals.

3.6.1 Bitwise Interpretation of Raw Correlation Counts

We now turn to an approach to count the number of triples satisfying a matcher using

only bitwise logical operations and population counts. Let rAB12 represent a K-width

set of bits corresponding to pairs of points from sets A and B and indicating whether

or not the matcher distance r12 was satisfied by each pair of points. In other words,

the ith bit of rAB12 is one if the distance between the ith pair is between r
(l)
12 and r

(u)
12 .

For three sets of points A,B, and C, there are nine such K-width values to represent

the three different matcher thresholds and three different pairings of sets of points.

We can then increment the total matcher count for a set of K triples by

POPCNT

 (rAB12 ∧ rAC23 ∧ rBC13 ) ∨ (rAB12 ∧ rAC13 ∧ rBC23 ) ∨ (rAB23 ∧ rAC12 ∧ rBC13 )∨

(rAB23 ∧ rAC13 ∧ rBC12 ) ∨ (rAB13 ∧ rAC12 ∧ rBC23 ) ∨ (rAB13 ∧ rAC23 ∧ rBC12 )


(3.6.1)

where POPCNT indicates the population count (i.e., the number of bits set to one).

Each of the six parenthesized bit-field conjunctions above represents one of the pos-

sible assignments of pairwise distances to edges of the triangle given by the matcher.

The conjunction of terms will be one if the matcher is fully satisfied by that arrange-

ment of edges and distances and the disjunction of all six arrangements will thus be

one if any such arrangement satisfies the matcher. Therefore, counting the set bits
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in the resulting K-width bit vector will count the number of triples that satisfy the

matcher.

For many K-width vectors, the above computation involves only logical opera-

tions, population counts, and integer additions to accumulate the total count. No

distances are calculated and no conditionals are required in the O(N3) portion of the

two-phase algorithm. This significantly increases the performance of the part of the

kernel that dominates the asymptotic computational complexity.

3.6.2 Base Case Merging

The interaction list tree traversal algorithm (Alg. 3.5.5) provides opportunities for

further optimizations. We consider the interaction list for a leaf node A and a node

in the list B. We then merge together all remaining nodes in the interaction list for

A into a single “meta-node” C. Thus, we generate a set of base cases with node C

as large as possible to exploit the efficient bit-field-based kernels.

As we show in Section 3.8.1.2, optimal runtimes for the entire algorithm come

from leaf nodes with 10-20 points. The resulting base cases will not use all the bits

of even a 32-bit register. By combining nodes into one large node, we can make use

of an entire word and test many potential tuples in parallel.

3.6.3 Architecture-Specific Optimizations

While the bitwise interpretation of Raw Correlation Counts described in Section 3.6.1

is already an efficient representation for most platforms, there are several architec-

tural features that will significantly impact ultimate performance. In particular, the

optimal width K of the triples to be considered simultaneously will depend upon the

register widths and supported instruction sets. In addition, population count instruc-

tions (i.e., a single instruction that returns the number of set bits in some bit-field)

are particularly useful. Fortunately, such instructions are available on most modern

CPUs and GPUs.
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In this section, we consider Raw Correlation Counts on several modern CPUs,

including Intel Nehalem and Sandy Bridge processors and AMD K10 and Bulldozer

processors. We also discuss optimizations for low-power systems including Intel Atom

and ARM Cortex-A9 processors.

As noted above, we split the base case computation into two phases: the calcula-

tion of all pairwise distances between points and the population counts based on the

logical expression in Eqn. 3.6.1. These two phases, one consisting of floating-point

instructions and the other logical operations and population counts, are largely inde-

pendent and can be optimized separately. To achieve optimal performance we have

implemented several kernels for each phase and selected the fastest by running on

actual hardware.

3.6.3.1 Floating Point Phase

For phase one of the base case calculation, we have implemented kernels using scalar

SSE2 instructions, 128-bit vector SSE2, SSE3, and FMA4 instructions, and 256-bit

AVX instructions. With two exceptions, using the highest available instruction set

delivered optimal performance. The exceptions are Intel Atom and AMD Bulldozer

processors. Although Atom supports the SSE3 instruction set and Bulldozer supports

the AVX instruction set, both handle the widest vector cases by either issuing multiple

narrower microoperations or fusing narrower vector resources.

The ARM architecture does not support double-precision SIMD instructions, so

double-precision computations are performed on a standard VFPv3 floating-point

unit. However, the ARMv7-A ISA uses the floating point status register for double

precision comparison results rather than writing a bitmask to a floating point register.

In order to avoid transfers of comparison results to general purpose registers, we

exploit the fact that the NEON SIMD unit uses the same registers as the floating-

point unit and construct a comparison bitmask using available NEON instructions.
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Table 2: Processors used in the experiments shown in Fig. 10.
Processor Clock ISA Microarchitecture

OMAP 4460 1.2 GHz ARMv7 Cortex-A9
Atom N270 1.6 GHz x86 Bonnell
Opteron 244 1.8 GHz x86-64 K8
P4 Xeon 3067 3.1 GHz x86 NetBurst
Opteron 2354 2.2 GHz x86-64 K10
Xeon X5472 3.0 GHz x86-64 Harpertown
Opteron 6282 2.6 GHz x86-64 Bulldozer
Xeon X5660 2.8 GHz x86-64 Nehalem
Core i7 2600K 3.4 GHz x86-64 Sandy Bridge

NEON is a widespread SIMD extension to the ARMv7 ISA. This approach is faster

than the näıve approach of transfers from the status registers to general-purpose

registers. Figure 10 illustrates the performance of the floating-point intensive phase

of the base case calculation on the CPUs listed in Table 2.

3.6.3.2 Logical operations phase

For the second phase of the base case computation, we leverage 64-bit instructions

available on modern CPUs and vector representations of the bit-fields to achieve

optimal performance. We restrict the sizes of sets A, B, and C to be at most 64.

This restriction is acceptable for our tree-based implementation because very few

leaf nodes have more than 64 points in an optimal tree (see Section 3.8.1.2). We

handle base cases with nodes containing more than 64 points by splitting the nodes

and making multiple smaller kernel calls. Thus, we can reduce the phase two inner

loop to a small number of logical operations on 64-bit binary vectors and a final

population count computation on a 64-bit binary vector. It is worth noting that

64-bit instructions are available on all modern x86 CPUs.

Since logical operations are fast on all CPUs, relative performance of the kernel

is determined by the speed of the population count computation. Intel Nehalem and

Sandy Bridge and AMD K10 and Bulldozer CPUs all have hardware support for this
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Figure 10: Execution times for the first phase (two way) and second phase (three way)
of the base case calculations. Reported times correspond to the minimum time over
100,000 kernel executions. All kernels were compiled with gcc 4.6.3 using architecture-
specific optimization flags.
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operation via a POPCNT instruction. We found that on all of these CPUs using

POPCNT instructions results in optimal performance or near optimal performance.

For older CPUs we tried several methods of computing population counts. First, we

considered using 8-bit, 11-bit and 16-bit lookup tables. We also tried a simple divide-

and-conquer implementation, its more sophisticated variant in Alg. 5.1 from [173],

the algorithm from HAKMEM [15], and its variant with 4-bit fields from [173]. For

the last algorithm, we also designed SIMD versions using MMX and SSE2 instruc-

tions. Additionally, we implemented SSSE3 and XOP versions of the SIMD-oriented

population count algorithm suggested by W. Mula[122].

The basic ARMv7 instruction set does not contain a population count instruction,

but NEON provides a SIMD instruction VCNT that performs population counts on

SIMD vectors. Cortex-A9 CPUs have only 64-bit execution units, so using 128-bit

instructions does not yield performance benefits. Moreover, Cortex-A9 can issue

only one NEON SIMD instruction per clock cycle compared to two scalar operations.

Despite these limitations, in our tests the NEON version is about 50% faster than

our fastest scalar version. Figure 10 illustrates the performance of phase two of the

base case computation on various CPUs.

Additionally, we can see further performance benefits by short-circuiting the loop

over the third element of the tuple. When considering a tuple (a, b, c), if we find that

the distance between a and b will not satisfy any constraint in the matcher, then we

can stop testing possible values of c.

3.7 Implementations

We now discuss implementations of our new n-point correlation function estimation

algorithms.
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leaf sizes 1 2 4 8 16 32 64 128
Avg. Points 
Per Box 
(Uniform)
Avg. Points 
Per Box 
(Galaxy)
Small
Mid
Large
Small
Mid
Large

1 1.59 2.89 5.61 11.23 22.6 46.16 95.6

1 1.54 2.68 5.06 10.1 20.6 41.7 85.5

5.12 6.06 6.26 6.30 7.12 14.9 39.3 159.0
8.9 12.75 16.7 15.9 15.4 24.0 45.6 162.7

681.2 369.7 193.4 94.2 55.0 38.2 45.7 162.0
8.19 7.06 6.70 5.87 5.97 9.61 28.2 125.8
13.0 13.6 14.5 13.5 12.9 19.5 42.6 147.0

1467 588.6 237.9 104.5 59.6 51.1 54.9 149.5
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Figure 11: Runtime vs. average number of points per leaf node in the optimized kd-
tree algorithm. The data are 1.1 × 106 points from an N -body simulation of galaxy
positions in a cube with side length 1000 Mpc h−1. The three series correspond to
a matcher with side lengths 3, 6, 3.1 (small), 10, 10, 10 (Mid), and 9, 27, 35 (Large),
with all measurements in units of Mpc h−1.

79



3.7.1 Parallel Implementation

The naive npcf estimation algorithm can be trivially parallelized. Each n-tuple of

points can be checked independently using Algorithm 3.5.3. Although this method

is embarrassingly parallel, it suffers from performing mostly unnecessary work. We

therefore turn to parallelizing our more efficient algorithms.

In general, different parts of the multi-tree traversal are independent. Therefore,

we can perform these computations in parallel. In other words, the two recursive calls

in Algorithm 3.5.2 can be done independently. In a shared memory setting, this can

be done by allocating space for the results of subtasks and combining them when the

computation finishes.

In the pairwise traversal (Algorithm 3.5.5), the formation of interaction lists can

be parallelized as described above. The loop over leaves can be done in parallel, again

by allocating separate space for the results for each thread and reducing over these

partial lists after the loop completes.

The above ideas can be carried to the distributed setting as well. However, we

can make further use of the observation that underlies all our fast algorithms: a point

will only belong to a tuple that satisfies the matcher with points that are “close” to

it.

Parallelizing tree traversals across distributed compute nodes may require us to

send large blocks of data during the computation. Instead, for p processors, we can

simply divide the space into p equal-sized regions and allocate the points in each region

to the corresponding processor. We then “ghost” the points along the boundaries.

Let d̂ be the maximum upper bound distance among all entries in all matchers.

Then, in order to count all matching tuples that include points it owns, each process

only needs points that lie within d̂ of its region. Therefore, each process needs ghost

copies of all points in other processors’ regions satisfying this distance constraint.

Process i sends copies of its points that lie within distance d̂ of its boundaries to all
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processes j where j < i. The last restriction is necessary to avoid overcounting.

Once each process has it’s ghost points, it can perform its computations inde-

pendently of the other processors. Note that we must avoid counting any tuples

consisting entirely of ghost points, since these will be handled by the process which

owns the points.

We simply assume that the points are loaded into some arbitrary subset of the

nodes. The processes also need to know the dimensions of the overall input state,

the number of other processes, and the partitioning of space among processes, all of

which are easy for nodes to compute for themselves or a master node to broadcast.

The nodes then perform a distributed shuffle so that each node owns all the points in

its region. Processors send ghosts to their neighbors as described above. Each process

performs its own counts, using the multi-tree algorithms described above. The final

result is then collected using a distributed reduce.

3.7.2 Open-Source Code

We have implemented all of the above ideas in an open-source library, npoint. The

code is implemented in C++. It uses space-partitioning trees from the MLPACK

open-source machine learning library [39].

The code consists of an MPI layer which handles the parallel computation de-

scribed above. The efficient resampling code knows how to assign owned and ghost

points to resampling regions and handles the calculations over individual regions and

combines them into the final counts. It calls the multi-tree algorithm (single or multi-

matcher as needed). As noted above, the base cases and pruning checks are contained

within matcher classes, which are selected using templates. The CPU optimizations

are contained within specialized matcher classes. All of these options can be selected

using command line parameters.

The library currently supports kd-trees, with octrees being replaced after a major
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refactoring. It supports single matchers for general values of n, multi-matchers using

evenly spaced bins for general n, and angle matchers for 3pcf calculations. It also

includes CPU optimized calculations for 3 and 4 point, both single and multi-matcher.

Additional methods and options will be added based on demand from users.

3.7.3 Specifying Multiple Matchers

Previously, we discussed algorithms to efficiently compute raw correlation counts for

multiple matchers by sharing work between computations over different matchers.

We now turn to the question of how the user will specify these matchers.

A single matcher is simple to specify. The user inputs a matrix (as in Equa-

tion 3.3.1) and thickness dr (or an upper and lower bound matrix). Multiple matchers

can take a variety of forms.

The most straightforward method for multiple matchers is to simply input a list

of matrices. We can apply the multi-matcher algorithms above by simply finding the

minimum lower bound and maximum upper bound in each entry of the matcher over

all matchers. However, the base case is less straightforward. For M matchers, we can

iterate through all of them when checking a pairwise distance. In general, we cannot

do better than this, since a given n-tuple of points may satisfy many (or all) of the

matchers.

It is possible to obtain additional performance improvements by restricting the

class of matchers available. One possibility is to specify a set of matchers by giving an

upper and lower bound in each dimension along with a number of bins to divide the

dimension into. In this setting, we can make the prune checks as before. However, in

the base case computations,

Implementations are governed by what practitioners really want. Currently, the

code includes the fixed bins implementation above. It also has a specialized imple-

mentation for 3-point correlations based on angles, described in Section 3.5.2. Three

82



point correlations in astronomy are often studied by fixing the lengths of two sides of

a triangle and varying the angle between them [117]. The library includes an imple-

mentation of a specialized “angle matcher” which shares work between these different

matchers.

In addition to the existing implementations, it is easy to add new methods for

specifying multi-matchers to the current code base. Currently, the pruning checks (Al-

gorithms 3.5.4 and 3.5.7) and base case (Algorithm 3.5.3) are contained in a matcher

class. The tree traversals, jackknife resampling, and distributed parallel codes can

all take a matcher class as a template. As long as a new matcher class uses a simple

interface, it can be simply inserted into the multi-tree algorithm and run in parallel

on distributed or shared memory architectures.

3.8 Results

We now discuss and evaluate our new algorithms and compare against the previously

existing approaches on data of real scientific interest. We also present a theoretical

runtime analysis of our algorithms.

3.8.1 Empirical Results

We present empirical results on our new algorithms. Many of these results are from

two previous papers: KDD 2012 [113] and Supercomputing 2012 [114]. As noted pre-

viously, all these experiments used our new C++ implementation based on MLPACK

[39].

3.8.1.1 Multi-Matcher and Efficient Resampling

We begin by examining the performance increases from our multi-matcher and ef-

ficient resampling algorithms. We compare these to a naive resampling algorithm,

which removes subregions one at a time and repeats the entire computation. We also

compare to a naive multi-matcher algorithm which loops over each matcher and calls
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Figure 12: Runtimes for two-point correlation estimation on uniformly distributed
data with 20 matchers and 30 equally-sized resampling regions.

Algorithm 3.5.2. These experiments were all performed in serial on a six core, AMD

Phenom 3.3 GHz machine.

In our charts and tables, we use the following labels for these algorithms:

• single-naive – The original multi-tree algorithm [74] inside loops over resampling

regions and matchers.

• single-efficient – The original multi-tree algorithm [74] inside a loop over match-

ers but using our improved resampling algorithm (Alg. 3.5.8).

• multi-naive – Our improved multi-matcher algorithm inside a loop over resam-

pling regions.

• multi-efficient – Both new algorithms used together.
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Figure 13: Three-point correlation estimation on uniformly distributed data with 50
matchers and 30 equally-sized resampling regions.
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Table 3: Mock catalog experimental results new multi-matcher and efficient resam-
pling algorithms for 2-point correlations. The multi or single refers to the method
used to for matchers, naive and efficient refer to the methods used for resampling. All
experiments used 106 points, 30 equally-sized resampling regions, and 20 matchers.

Algorithm Time (s)
Speedup Speedup

(over brute-force) (over [74])
multi-efficient 328.6 1.4× 106 105
multi-naive 10229 4.6× 103 3.36

single-efficient 1365.5 3.4× 105 25.2
single-naive 34397 1.4× 103 –

We provide experimental results on uniform (Poisson data) in three dimensions

and a mock galaxy catalog generated from N -body simulations. Both these sets

are representative of the data used in actual n-point correlation estimation. Galaxy

catalogs reproduce the correlation statistics of observed data. Computations involving

Poisson distributed sets, such as those in the estimators in Section 3.2.3, represent a

significant fraction of the total computational overhead.

In Figures 12, 13, and 14, we show runtimes for all four algorithms on uniform

data of different sizes. The numbers of matchers and resampling subsets are shown

with each figure. Note that for all three figures, each of our new methods provides

a large speedup, shown in Table 5. We see that in our experiments, each of our

new algorithms provides roughly an order-of-magnitude speedup. These effects stack

when used together, so we see speedups of well over 100.

The efficient resampling algorithm provides a greater advantage than the multi-

matcher method in our experiments. However, this effect is less pronounced in our 4-

point experiments (Fig. 14). These experiments used more matchers than the others,

suggesting that the savings due to the multi-matcher algorithm will increase with

more matchers.
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Table 4: Mock catalog experimental results new multi-matcher and efficient resam-
pling algorithms for 2-point correlations. The multi or single refers to the method
used to for matchers, naive and efficient refer to the methods used for resampling. All
experiments used 106 points, 12 equally-sized resampling regions, and 18 matchers.
Speedups are over the brute-force algorithm. The naive-naive algorithm was omitted
because of time constraints.

Algorithm Time (s) Speedup
multi-efficient 10057 2.2× 105

multi-naive 96620 2.3× 104

naive-efficient 21935 9.9× 104

Table 5: Speedups of our new multi-matcher and efficient resampling algorithms over
the brute-force algorithm and current state-of-the-art. Timings are from the largest
values of N in Figures 12, 13, and 14.

n Algorithm
Speedup Speedup

(brute-force) (over [74])

2
multi-efficient 1.08× 106 77.4
multi-naive 4.95× 104 3.6

single-efficient 3.7× 105 26.6

3
multi-efficient 5.9× 104 228.6
multi-naive 2.03× 103 7.87

single-efficient 8.47× 103 32.8

4

multi-efficient 2.3× 106 583
multi-naive 5.28× 103 21.3

single-efficient 1.2× 104 2.72

3.8.1.2 Optimized Kernel

We now turn to some performance results for our optimized solution for the Raw

Correlation Count problem. We compare the runtimes against an efficient implemen-

tation of a tree-based npcf estimation algorithm in the Ntropy framework [65]. This

implementation was used for the previously largest 3pcf computation for studying

large scale structure in the galaxy distribution, using 106,824 galaxies at 45 scales

[119].

We plot runtimes for the galaxy set and a uniformly distributed set of 106 points,

both of which are contained in a cube of side length 1,000 megaparsecs (Mpc). We

specify matchers in terms of three lengths and a tolerance parameter f ; the upper
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/ lower bounds of the matcher are then rij ± f
2
rij. We show computations for three

matchers with r = 0.25: a small matcher with side lengths 3, 6, and 3.09 Mpc,

a mid matcher consisting of an equilateral triangle with side length 10 Mpc, and

a large matcher with side lengths 9, 18, and 27 Mpc. These parameters represent

the smallest and largest matchers used in the previously largest galaxy catalog 3pcf

computation mentioned above [119].

Experiments were run on a dual-socket node with two quad-core Intel X5550 2.67

GHz Nehalem processors, 24GB of DDR3 host memory, running Red Hat Enterprise

Linux 5.

In Fig. 17, we compare the runtime for our optimized implementation with the

Ntropy framework. We show both the tree traversal time and the base case time.

Note that our implementation almost exclusively spends time in the base case, while

Ntropy tends more heavily toward tree traversal. For both methods, we used the

overall optimal tuning parameter settings. For Ntropy, this meant a bucket size of 2

for all cases. In our algorithms, we used kd-trees with small leaf sizes for the smaller

matchers and octrees for the large one.

In Fig. 11, we show the runtime of our kd-tree implementation as a function of

the average number of points per leaf on the three matchers mentioned above. Note

that the optimal leaf size depends on the size of the matcher. As the scale of the

correlation being computed increases, a slightly larger leaf size becomes optimal.

3.8.1.3 Scaling Behavior

We begin by examining the empirical scaling behavior of the multi-tree algorithm

with increasing numbers of points. As we discuss further in Section 3.8.2 below,

we expect the runtime to depend on both the number of points and density of the

distribution the data are drawn from. We examine the runtimes of our algorithm as

the number of points increases for both 2-point and 3-point computations. In one set
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leaf sizes 1 2 4 8 16 32 64 128
Avg. Points 
Per Box 
(Uniform)
Avg. Points 
Per Box 
(Galaxy)
Small
Mid
Large
Small
Mid
Large

1 1.59 2.89 5.61 11.23 22.6 46.16 95.6

1 1.54 2.68 5.06 10.1 20.6 41.7 85.5

5.12 6.06 6.26 6.30 7.12 14.9 39.3 159.0
8.9 12.75 16.7 15.9 15.4 24.0 45.6 162.7

681.2 369.7 193.4 94.2 55.0 38.2 45.7 162.0
8.19 7.06 6.70 5.87 5.97 9.61 28.2 125.8
13.0 13.6 14.5 13.5 12.9 19.5 42.6 147.0

1467 588.6 237.9 104.5 59.6 51.1 54.9 149.5
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Figure 15: Runtime vs. average number of points per leaf node in our optimized kd-
tree algorithm. The series show results for the small, mid, and large-sized matchers.

90



1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1 10 100 1000 10000 100000

Work as a Function of Points Per Box

W
or

k 
(b

illi
on

 tu
pl

e 
ev

al
ua

tio
ns

)

Average number of points per box 

KD-tree
Octree
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Figure 18: Execution time for 2-point correlation counts on Poisson data with density
2× 10−2(h/Mpc)3. The data are linear with R2 = 0.9996.

of experiments, we fix the density for all computations, in the other, we fix the box

size containing all of the data and increase N , thus increasing the density as N . As

shown in Figures 18 and 19, for fixed density, both our 2-point and 3-point algorithms

show linear scaling with increasing N .

For the fixed density experiments, we used a matcher with length 8 Mpc/h and a

thickness of 25%. The 3pt matcher used an equilateral triangle with all three sides of

this length. The data are Poisson in the 2-point case and from a mock galaxy catalog

for the 3-point experiments. The different sizes are the points contained in sub-cubes

of the 1000 Mpc/h cube containing the whole data set.

We also show results for increasing density. We draw samples from a Poisson

distribution with a fixed sample window with sides of length 1000Mpc/h. Therefore,
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Figure 19: Execution time for 3-point correlation counts on a mock galaxy catalog.
The data sets are subregions of a single, large mock galaxy catalog with sample density
1.2× 10−3(h/Mpc)3. The data are linear with R2 = 0.9989.
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Figure 20: Execution time for 2-point correlation counts on Poisson data with den-
sity that increases with N . The data sets are contained in a cube of side length
1000Mpc/h. The density is thus N × 10−9 points per Mpc3h−3. The data fit a
parabola with R2 = 0.9996.

the density grows as N . As shown in Figures 20 and 21, these runtimes scale super-

linearly. Both these results support our theoretical bounds in Section 3.8.2.

3.8.1.4 Overall Results

To the best of our knowledge, the previous largest 3pcf calculation of real scientific

interest used 106,824 galaxies, 30 jackknife subsamples, and 45 different matchers.

This required approximately 30,000 cpu-hours [117, 119].

By combining our efficient resampling multi-matcher, and optimized base case

implementations, we were able to compute the 3pcf of 1.1 million galaxy positions at

the same scales and using 27 resampling regions in 112 cpu-hours using a commodity

cluster. Note that this calculation requires computing the Raw Correlation Counts

on a random set of 20 million points. To our knowledge, this represents the largest
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Figure 21: Execution time for 3-point correlation counts on Poisson data with den-
sity that increases with N . The data sets are contained in a cube of side length
1000Mpc/h. The density is thus N ×10−9 points per Mpc3h−3. The data fit a degree
3 polynomial with R2 = 0.9999.
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3pcf calculation of large scale structure at scientifically relevant scales.

3.8.2 Runtime Theory

We now turn to a theoretical analysis of the runtime for our algorithms. As was

the case for the EMST problem discussed previously, worst-case analysis will be too

blunt a tool for this analysis. An adversary can easily construct an input for which

our algorithms take the worst case O(Nn) time. For example, consider the raw

correlation counts for 2pcf estimation for a matcher (0, r). Let all N points lie in

a ball of diameter r and let the rest of the sample window be empty. Then, our

algorithm cannot prune any pair of points, and will have to consider all O(N2) pairs.

Even for the uniformly distributed data, worst-case analysis is not suitable. For a

point set drawn from a Poisson ensemble, there is still a non-zero probability that a

realization like the one described above will be chosen.

Since we are dealing with random processes, expected runtime is a natural choice

for the analysis. We will give expected runtime results in terms of intrinsic properties

of the data. Since we are dealing with point processes, the natural properties of the

data are the n-point correlations themselves. The most important quantity is the

density (or 1-point correlation) ρ. We will show that this is sufficient to characterize

the runtimes of our algorithms on Poisson data. This result is useful on its own,

since in practice the random set used in Monte Carlo npcf estimators is much larger

than the data, so the computations on the random set often dominate the total time.

We will also characterize the runtimes on structured data using correlation integrals

– integrals over the n-point correlation functions. The n-point correlation functions

can be considered as perturbations on a Poisson distribution. These integrals show

up in our analysis in a similar fashion – as the amount of extra work required (in

expectation) over a Poisson set of the same size.

97



Throughout, we consider only data-data computations for simplicity. These re-

sults generalize to data-random computations in a natural way. We denote the size

of the data set by N , the order of the correlation being estimated by n, the (sample)

density of the data by ρ, and the largest upper bound distance in the matcher by r̂.

Throughout, we work in three dimensional space.

In this section, we show the following:

Claim 3.8.1. Raw correlation counts for npcf estimation can be computed in O(N)

time after O(N logN)-time tree construction.

The space partitioning trees considered here require O(N logN) time for tree

construction. This step can be done as a pre-computation, and in general, this ac-

counts for a small fraction of the overall runtime. We therefore focus on the actual

computation of the raw correlation counts, since this will dominate the runtime.

Intuitively, as the sample window and number of points grow, the number of points

close to a given point will remain small. Therefore, the number of tuples which satisfy

a given matcher (which does not grow with the size of the data) and which include a

given point will remain constant. Since all points in a tuple must be close, the total

number of tuples is at most O(N).

In order to turn the above claim into a proof, we require several steps. First, we

must make precise what we mean by asymptotic growth in the number of points. If

the sample window remains fixed while more points are contained within it, then the

density of points will increase. Our analysis will make use of this density, and analogs

in the higher-order correlation functions, as runtime parameters.

We then give a formal proof that the number of tuples satisfying a matcher grows

as O(N) under reasonable assumptions. Combined with a result that our interaction

list-based tree traversal algorithm runs in O(N) time, we arrive at a proof of the

claim above.
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We bound the runtime in terms of the number of points N and the density of the

point process ρ. The size of the data is a natural parameter. The density ρ gives

us the expected number of points in a unit volume in a Poisson set. Intuitively, a

set with a high density will have more points satisfying a given matcher and will

thus require more time to compute. Also, although the number of points can affect

the density, it does not directly control it. As N increases, the size of the sample

window may grow as well. Depending on these relative rates of growth, the density

may increase, decrease, or remain constant. Therefore, the runtime will depend on

the density as well as the overall number of points.

There are two sources of work in the algorithm: the tree traversals (and pruning

checks) and the base case computations. If we can bound the amount of work in each,

then we can bound the total work required.

3.8.2.1 Computing Interaction Lists

We begin by examining the formation of interaction lists in the pairwise traversal

algorithm (Algorithm 3.5.5).

Lemma 3.8.2. The formation of interaction lists in Algorithm 3.5.6 requires O(N ·ρ)

work for any order of correlation using an octree on Poisson data.

Proof. We begin by rescaling our data to fit within a unit cube. When we do this,

we must also rescale the distances in the matcher by the same amount. Let r̂ be the

largest upper bound distance in the matcher. Then, assume we scale the data in each

dimension by a factor b. Then, r = r̂ · b−1 is the maximum upper bound distance in

the rescaled matcher.

A node at level i has sides of length 2−i. There are 23i nodes at level i. Since the

data are uniformly distributed, the expected depth of our octree is log8N .

A node at level i is contained within a ball of radius
√

32−(i+1) at the center of

the node. This node can prune any other node except those that lie within a radius
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of:

rb = r +
√

32−i +
√

32−(i+1) (3.8.1)

where the second term comes from the diameter of a box.

The number of boxes that intersect a ball of radius r+
√

3
(
2−i + 2−(i+1)

)
at level

i is bounded by the number that can be packed into a ball of radius r +
√

32−(i−1).

This number Bi is bounded by the ratio of these two volumes:

Bi ≤
4
3
π
[
r +
√

3
(
2−(i−1)

)]3
2−3i

(3.8.2)

Since it takes constant work to check for the ability to prune and then split a

node, the total amount of work done at level i of the tree can be bounded by

Wi = 23iBi (3.8.3)

≤ 4

3
π26i

[
r +
√

32−(i−1)
]3

(3.8.4)

=
4

3
π26i

[
r3 + 3

√
3r22−(i−1) + 9r2−2(i−1) + 3

√
3 · 2−3(i−1)

]
(3.8.5)

We can sum this over all levels of the tree.

Breaking this down term-by-term, the first term gives us

log8N∑
i=0

4

3
π26ir3 =

4

3
πr3

log8N∑
i=0

(8i)2 (3.8.6)

= r3

log8N∑
i=0

64i (3.8.7)

= r3 1− 64log8N

1− 64
(3.8.8)

= O(r3N2) (3.8.9)

Similarly, the second term is O(r2N
5
3 ), the third is O(rN

4
3 ), and the last is O(N).

So, the total amount of work required is

W = O(r3N2 + r2N
5
3 + rN

4
3 +N) (3.8.10)

Recall that r is the scaled upper bound distance in the matcher. So, this bound

on the total work depends on how the data were scaled. We assumed that the data
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originally were contained in a cube of side length b, which we rescaled so that r =

r̂ · b−1. Therefore, the density of the data is

ρ =
N

b3
(3.8.11)

From this, we see that

ρ =
Nr3

r̂3
(3.8.12)

Assuming that the matcher distance of interest r̂3 is fixed as N increases, then by

substituting into Equation 3.8.10, we have

W = O(N · ρ) (3.8.13)

3.8.2.2 Base Case Work

We now discuss the amount of work required in the base cases.

Lemma 3.8.3. The work required in the base case of Algorithm 3.5.5 is bounded by

O(ρn−1N) for an n-point correlation computation on a Poisson distributed set.

Proof. Using the proof of lemma 3.8.2 above, we know that for a given node, we have

pruned all other nodes within a given distance. From this, we can obtain the number

of nodes in the interaction list of a given node. The expected total work in the base

case is bounded by the number of n-tuples of points that were not pruned in the

formation of the interaction lists.

From Equation 3.8.2, we know that for a given box, the number of boxes in it’s

interaction list is bounded by

Blog8(N) ≤
4
3
π
[
r +
√

3
(
2−(log8(N)−1)

)]3
2−3 log8(N)

(3.8.14)

=
4

3
πN

[
r + 2

√
3N−

1
3

]3
(3.8.15)

=
4

3
π
(
r3N + 6

√
3r2N

2
3 + 18rN

1
3 + 24

√
3
)

(3.8.16)
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In expectation, since we have taken the tree to depth log8(N), each box has a

single point. The total work is bounded by the number of tuples that can lie within

this distance. For each node, there are at most O(Bn−1
i ) tuples to consider. Since

there are N nodes, the work is bounded by

W ≤ N ·O
[(
r3N + r2N

2
3 + rN

1
3 +N

)n−1
]

(3.8.17)

Note that the true amount of work will be reduced through symmetry; however, this

only reduces the constant pre factor.

As before, we can relate r to ρ through Equation 3.8.12. Therefore, we see that

W = O
(
ρn−1N

)
(3.8.18)

3.8.2.3 Complete Results

Theorem 3.8.4. Using Algorithm 3.5.5, the raw correlation counts for npcf estima-

tion can be computed in O(ρn−1N) time for Poisson data and any value of n after

tree construction.

Proof. After tree construction, the algorithm simply constructs the interaction lists.

It then, in the case that none of the base cases can be pruned in line 4, considers every

n-tuple of leaf nodes and computes a base case on them. Therefore, the runtime is the

combination of the times needed for these two steps. The proof follows immediately

from the lemmas 3.8.2 and 3.8.3.

Corollary 3.8.5. The multi-matcher algorithm (Algorithm 3.5.7) using the pairwise

traversal runs in O(ρn−1N) time after O(N logN) tree construction time.

Proof. The proofs used here only refer to the largest upper bound distance in the

matcher . We can apply the same reasoning to the largest upper bound distance

among all the matchers considered to obtain the result.

102



We have shown that for Poisson data for which the density does not grow with

N (or in other words, if the sample window grows along with the number of data

points), then the raw correlation counts can be obtained in O(N) time for any order

of correlation. This restricted case is still of considerable interest, since much of

the time in a real npcf calculation is spent obtaining raw correlation counts for the

Poisson set. However, the natural follow-up problem is to bound the runtime of the

algorithm on more general data sets.

The key difficulty comes in quantifying the departure of the real data set from a

Poisson set. If we could do so, then it may be possible to modify the proofs above

to take into account these perturbations. Unfortunately, the natural way to quantify

a distributions distance from Poisson is through the n-point correlation functions.

This suggests an output-sensitive analysis – one which shows the dependence of the

runtime on the size of the correlation functions estimated.

The proofs above rely on the Poisson distribution in two fundamental ways: in

counting the number of points (or boxes) that lie within a given radius of a fixed point

and in ensuring that the octree is shallow and points are evenly distributed throughout

it. In the case of counting points within a given volume, this can be done through

the n-point correlations. As noted previously, the npcf completely determines the

distribution of counts in fixed volumes. Given this distribution, it should be possible

to bound the number of points to be considered in base cases.

As for the tree construction, octrees were used in this analysis for simplicity.

More sophisticated trees can guarantee logarithmic depth for less than perfect input

distributions. Given these two factors, it seems possible, although challenging, to

generalize our bounds to general input distributions.
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CHAPTER IV

FOCK MATRIX CONSTRUCTION IN HARTREE-FOCK

THEORY

We now turn to a radically different problem: estimating electronic wavefunctions in

Hartree-Fock theory. Given a molecule (or complex of many molecules), we would

like to be able to accurately predict its behavior under a variety of circumstances.

Classical molecular dynamics simulations are effective for some tasks, but are unable

to handle fundamentally quantum mechanical problems, such as bond breaking and

formation. Instead, we would like a fully rigorous, quantum theory that will allow us

to handle general molecular systems.

Hartree-Fock theory provides an upper bound on the ground-state energy of a

system of nuclei and electrons. This bound can be tightened with more accurate

theories, such as configuration interaction and coupled cluster theories. These meth-

ods use the Hartree-Fock ground state as an input. Additionally, the bound can be

improved by increasing the size of the basis set (described below).

Unfortunately, the rate-limiting step in a Hartree-Fock calculation scales asO(N4).

This step is the construction of the Fock matrix, an N×N symmetric (possibly dense)

matrix, each entry of which is composed of two nested sums, each over N terms. Here,

we describe the computational task in Hartree-Fock theory in more detail. We also

discuss some existing approaches for overcoming the O(N4) bottleneck.

We then examine the application of multi-tree algorithms to this fundamental

computational problem. We present several new contributions:

• We unify existing efficient algorithms for this problem with the common frame-

work provided by multi-tree algorithms.

104



• We explore several avenues for the application of general multi-tree ideas to this

problem and demonstrate some preliminary empirical results.

• We present the first real theoretical runtime analyses of both the most commonly

used algorithms in the literature and our own algorithms.

We begin by examining the underlying computational task in Hartree-Fock theory.

After highlighting the problem, we discuss existing methods from the literature. We

then turn to an in-depth discussion of two of these algorithms, the Continuous Fast

Multipole Method and the Linear K algorithm, and show how these fit within our

multi-tree framework. We then introduce two new multi-tree algorithms. We discuss

rigorous runtime guarantees for each of these algorithms and show some preliminary

empirical results. We conclude by discussing future directions for this body of work.

4.1 Hartree-Fock Theory

Hartree-Fock theory is a used to approximate the total energy of a given configu-

ration of atomic nuclei by computing an approximate wavefunction to describe the

distribution of electrons around those nuclei.

We have M atomic nuclei (of known charges ZA and masses MA) indexed by A and

B at and K electrons, indexed by i, j, k, l. Our task is to solve the time-independent

Schrodinger equation (given here in atomic units) to determine the minimum energy

configuration of this system:

HΨ(ri : i = 1, . . . , K; rA : A = 1, . . .M) = EΨ(ri : i = 1, . . . , K; rA : A = 1, . . .M)

(4.1.1)

where the wavefunction Ψ is a function of the K electronic coordinates ri and the M

nuclear coordinates rA, and the Hamiltonian operator is given by:

H = −1

2

∑
i

∇2
i −

1

2

∑
A

MA∇2
A −

K∑
i

M∑
A

ZA
riA

+
K∑
i,j

1

rij
+

M∑
A,B

ZAZB
rAB

(4.1.2)
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Following standard practice, we invoke a series of approximations to make the

above problem tractable. First, we decouple the electronic and nuclear interactions

(the Born-Oppenheimer approximation) and consider the nuclei to be fixed, classical

point charges. Under this assumption, we take the positions of the nuclei as input

and use a wavefunction which depends only on the positions of the electrons.

We further assume that the electronic wavefunction factors:

Ψ(ri : i = 1, . . . , K) =
K∏
i=1

ψi(ri) (4.1.3)

This is a powerful assumption which eliminates electron correlation effects. However,

it is necessary for tractability, and correlation effects can be replaced later. We must

also enforce the quantum mechanical postulate that the wavefunction be antisym-

metric in its arguments. Therefore, rather than the simple form in Equation 4.1.3, we

use a Slater determinant, written [ψ1(r1) · · ·ψK(rK ]. This is the following (symbolic)

determinant: ∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) · ψ1(rK)

ψ2(r1) ψ2(r2) · ψ2(rK)

...
...

...
...

ψK(r1) ψK(r2) · ψK(rK)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.1.4)

It can be easily verified that Slater determinants have the necessary anti-symmetry

property.

Furthermore, for this discussion, we will assume that there are no open molec-

ular orbitals – all electrons belong to spin-antispin pairs. This leads to restricted

Hartree-Fock theory. Generalizing this discussion to open-shell or unrestricted HF is

straightforward, but is eliminated for simplicity.

In order to arrive at a computationally tractable formulation, we require one more

important approximation. We assume each of the single-electron wavefunctions ψi
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are a linear combination of a set of basis functions :

ψi(r) =
N∑
j=1

cijφj(r) (4.1.5)

By making these assumptions, our task has been reduced from solving the full Schrodinger

equation to determining the matrix of coefficients C.

These basis functions are generally chosen to approximate the known solutions to

the Schrodinger equation for single atoms. These are commonly known as the s, p, d

etc. shells.

The most commonly used basis functions (and those considered in this chapter)

consist of atom-centered Gaussians. A “primitive” basis function is given by:

φj(r) = NA(x− Ax)lj (y − Ay)mj (z − Az)nj exp
(
−αj‖r−A‖2

)
(4.1.6)

where the vector A is the position of a nucleus on which the function is centered, the

angular momentum is L = (lj + mj + nj), αj is the exponent or bandwidth of the

function, and NA is a dimensionless normalization factor. The function is defined for

any r in R3.

A basis set is generally specified by atom. Typically, a basis set consists of a set

of functions for each different atomic number. When performing a calculation, we

use a basis consisting of the functions for each atomic type centered on the nucleus

of each atom of that type. In practice, basis sets generally consist of “contracted”

basis functions. Each basis function is itself a linear combination of primitive basis

functions.

The names of basis sets often include the number of functions in the contractions.

For instance, the commonly used 6-31G basis consists of a single contracted function,

comprised of six primitive functions, for inner shells and two contracted functions,

with three and one primitive, for valence shells. The “G” stands for Gaussians,

the form of all the primitive functions. In a calculation using the 6-31G basis, each

hydrogen atom will have the same two primitives to represent its s shell. Each oxygen
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atom will have a single function comprised of six primitives for its s shell and two

functions with three and one primitive for the sp shell. The momenta of the functions

correspond to the momenta of the shells they represent – so s functions have L = 0,

p functions have L = 1, and so on.

Basis functions are grouped into shells. So, a p shell of functions consists of three

separate functions, all with the same center and exponent, and exactly one of lj, mj,

nj equal to one for each function.

A full Hartree-Fock calculation takes as inputs:

• A set of nuclear coordinates A and atomic numbers ZA.

• A number of electrons – K.

• A basis set consisting of N contracted functions.

and outputs an N approximate electronic wavefunctions and corresponding energies.

4.1.1 The Roothan-Hall Equations

By inserting the approximations listed above to the Schrodinger equation, we obtain

the following linear algebraic formulation [162]. In place of the Schrodinger equation,

we obtain the Roothan-Hall equation:

FC = SCE (4.1.7)

where

• S is the N ×N overlap matrix: Sij =
∫
dr φi(r)φj(r) for basis functions i and

j.

• E is a N ×N diagonal matrix of eigenvalues.

• C is the N ×N matrix of basis weights, with entries given in Equation 4.1.5.
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• F is the N×N Fock matrix, the Hamiltonian in the basis given by our Gaussian

functions and defined below.

The Fock matrix can be decomposed as:

F = Hcore + J − 1

2
K (4.1.8)

where

• Hcore contains the kinetic and nuclear attraction terms and can be precomputed.

• J is the Coulomb matrix, representing the electrostatic repulsion between elec-

trons.

• K is the exchange matrix, a term which arises from anti-symmetry.

The elements of J and K are given by:

Jij −
1

2
Kij =

∑
k

∑
l

Dkl

[
(ij|kl)− 1

2
(ik|jl)

]
(4.1.9)

where (ij|kl) is a two-electron integral (defined below). D is the density matrix,

Dkl =
∑occ

m CkmClm, where the sum is over the columns of C corresponding to the

K/2 smallest eigenvalues in E (the “occupied” orbitals).

The key quantity in the Fock matrix definition is the two-electron integral:

(ij|kl) =

∫
dr1dr2φi(r1)φj(r1)

1

‖r1 − r2‖
φk(r2)φl(r2) (4.1.10)

where r1 and r2 are dummy variables integrated over all of R3. If the basis functions

are Gaussians (or linear combinations of Gaussians) then this integral has a closed

form solution.

In the formulation above (Eqn. 4.1.7), the Fock matrix depends on the density

matrix, which depends on the coefficient matrix C, which is in turn the solution to the

equation. Therefore, we must iteratively compute a solution self-consistently, shown

in Algorithm 4.1.1. The generalized eigenvalue problem can be solved in O(N3) time.
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Algorithm 4.1.1 SCF (Basis Set, Nuclear coordinates, Number of electrons K)

Precompute S and Hcore
ij

Construct guess density D(0)

3: while ‖D(n) −D(n−1)‖ > ε do
Compute F (n) from D(n) using Eqns. 4.1.8 and 4.1.9
Solve FC = SCE to get C(n) and E(n)

6: Sum over the K/2 lowest energy levels to get D(n+1)

n← n+ 1
end while

The computation of the new Fock matrix (Line 4) is the rate-limiting step, since it

requires O(N2) operations for each of the O(N2) entries, for a total complexity of

O(N4).

Each step of this algorithm is subject to considerable attention in the literature.

The construction of a guess density in line 2 is crucial to efficiently finding an accurate

solution. The density update and convergence checks can be performed by more

sophisticated methods such as the direct inversion of the iterative subspace (DIIS)

[140]. However, in this work, we restrict our attention to the asymptotic rate limiting

step: the construction of the Fock matrix in line 4.

Since the Hcore contribution to F can be precomputed before the SCF iterations,

we focus on the construction of the Coulomb and exchange matrices. The construction

of these matrices is the focus of the remainder of this chapter.

Problem 4.1.1. Fock Matrix Construction. Given a set of N (Gaussian) basis

functions, M nuclei, and a density matrix D, compute the Coulomb and exchange

matrices:

Jij =
N∑
k=1

N∑
l=1

Dkl (ij|kl) (4.1.11)

Kij =
N∑
k=1

N∑
l=1

Djl (ik|jl) (4.1.12)

for 1 ≤ i, j ≤ N .
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4.1.2 Two-Electron Integrals

Problem 4.1.1 requires repeated evaluation of the two-electron integrals in Equation

4.1.10. We briefly discuss the computational challenges involved in evaluating this

integral.

Gaussian basis functions allow a closed-form solution to Equation 4.1.10. The key

to evaluating this integral lies in application of the Gaussian product theorem. In

Equation 4.1.10, φi and φj are Gaussian basis functions over a common variable with

centers at ri and rj. Applying the GPT to two zero-momentum basis functions, we

have

φi(r)φj(r) = NiNj exp(−β)r2
ij)× exp

(
−β‖r − rij‖2

)
(4.1.13)

Where

β = αiαj/(αi + αj) (4.1.14)

rij =
αiri + αjrj
αi + αj

(4.1.15)

Note that all terms except the last one are independent of the dummy variable r.

Similarly, we can apply the GPT to functions of arbitrary angular momentum. This

again results in a term of the form exp(−βr2
ij) times a summation of length equal to

the total angular momentum.

We obtain the full two-electron integral for four zero-momentum primitive Gaus-

sians by applying the Gaussian product theorem to both pairs of functions.

(ij|kl) = M
[
(αi + αj) (αk + αl)

√
αi + αj + αk + αl

]−1

× exp

(
− αiαj

αi+αj

∥∥∥αiAi−αjAj

αi+αj

∥∥∥2
)
× exp

(
− αkαl

αk+αl

∥∥∥αkAk−αlAl

αk+αl

∥∥∥2
)

× erf
(∥∥∥αiAi−αjAj

αi+αj
− αkAk−αlAl

αk+αl

∥∥∥×√ (αi+αj)(αk+αl)

αi+αj+αk+αl

) (4.1.16)

where erf is the error function and M is a constant times the product of the normal-

ization factors. Integrals between higher momentum basis functions can be derived

from taking derivatives of the zero-momentum integral. This leads to a sum of terms
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[47].

(ij|kl) = M exp

(
− αiαj

αi+αj

∥∥∥αiAi−αjAj

αi+αj

∥∥∥2
)

× exp

(
− αkαl

αk+αl

∥∥∥αkAk−αlAl

αk+αl

∥∥∥2
)

×
∑L

m=0CmFm(‖rij − rkl‖)

(4.1.17)

where L is the sum of the momenta of the four functions, the coefficients Cm depend

on the exponents and distances between the functions and

Fm(x) =

∫ 1

0

dt t2m exp(−xt2) (4.1.18)

Contracted integrals are just linear combinations of primitive integrals due to the

linearity of the integral operator.

The form of Equation 4.1.17 suggests that there are many common terms between

different integrals. For instance, let i, j, and k be zero-momentum functions and let l

have momentum 1. As noted above, in all commonly used basis sets, there are three

functions l with the same center and exponent but with different angular momentum

directions. Since many of the terms in Equation 4.1.17 do not depend on the angular

momentum, it makes sense to compute them once. Furthermore, in practice, higher-

momentum integrals are constructed from lower momentum intermediate quantities

through recurrence relations [81, 126].

Both of these observations suggest the importance of caching and reusing interme-

diate quantities in integral construction. In particular, integrals involving functions

in the same shell (e.g. the three p functions or six d functions) are computed together

in a batch. A set of four shells (or its corresponding integrals) is referred to as a

shell quartet. Throughout, we will always compute integrals between four shells, in

keeping with standard integral evaluation codes.

In keeping with standard notation in quantum mechanics, we sometimes refer to

the pair of shells i and j and the “bra” pair and k, l as the “ket” pair. We will also

commonly refer to such pairs as shell pairs, and two shell pairs (four shells) as a shell

quartet.
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Efficient evaluation of integrals is a complicated and demanding topic. For the

remainder of this chapter, we assume access to an efficient integral evaluation engine.

Both the related work and new algorithms discussed below will make calls to this

engine for particular integrals. A key measure of speedup will be the number of

integral computations avoided through these methods.

4.1.2.1 Integral Symmetry

From the definition of the two-electron integral (Equation 4.1.10), we can see that

the integral (ij|jk) has an eight-fold symmetry. The functions in the bra and ket

pair can each be swapped, since multiplication is commutative. Also, the bra and ket

pairs themselves can be swapped by renaming the dummy variables of integration.

Since the computation of integrals is the most intensive step in Fock matrix con-

struction, it is important to take advantage of these symmetries. For instance, in the

Coulomb matrix, the integral (ij|kl) is multiplied by the density entries Dkl and Dlk,

and each of these results are added to Jij and Jkl. When we compute an integral, we

can obtain a significant (though constant as N grows) improvement by contracting it

with all necessary density entires at once. The algorithms discussed below will make

extensive use of the symmetry within the bra and ket pairs.

4.1.2.2 Bounding Two-Electron Integrals

The two-electron integrals are generally very expensive to compute exactly. Therefore,

the key to efficient Fock matrix construction algorithms lies in efficiently computing

bounds or approximations on two-electron integrals. Here, we quickly survey some of

the widely used techniques.

The most common bound on the two electron integral comes from application of

the Schwarz inequality [80]. The two-electron integral satisfies the axioms for an inner

product between shell pairs. Therefore, we can apply the Schwarz inequality to get

(ij|kl) ≤ (ij|ij)
1
2 (kl|kl)

1
2 (4.1.19)
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We frequently write Qij for (ij|ij)
1
2 . Note that we have decomposed a four-index

quantity into a product of two two-index quantities. This is an important potential

source of efficiency improvements, since it is much easier to precompute and store

two-index quantities.

Other bounds build on this foundation. Gill, Johnson, and Pople [67] proposed an-

other bound using the Holder inequality applied to integrals over charge distributions

from the bra or ket pair. Gadre et al. focused on approximations that avoid comput-

ing the more expensive parts of a two-electron integral [64]. However, these bounds

often require additional computational overhead to use, thus limiting their applicabil-

ity for efficient approximation algorithms. Furthermore, these methods only provide

approximations of the integral, rather than rigorous bounds. Since these make the

overall error more difficult to control, they often require tighter convergence criteria

and lower approximation thresholds. These requirements can easily eliminate any

computational savings the bounds provide.

The Schwarz inequality-based bounds correctly capture the exponential decay of

the integrals as the distance between the two functions in the bra or ket pair increases.

However, the full integral also decreases linearly as the distance between the two

contracted centers increases, while the Schwarz bound does not. More sophisticated

bounds attempt to capture this behavior. The Multipole Based Integral Estimates

(MBIE) [102], provide a rigorous bound on integral behavior. However, these suffer

front he expensive multipole pre computations required to use them, thus limiting

their effectiveness.

The QQR bounds [116] attempt to overcome this problem. They approximate an

integral as the Coulomb interaction between a pair of classical charge distributions.

The charge distributions are obtained from the Gaussian product theorem on the bra

and ket pair.

(ij|kl) ≈ QijQkl

r − ext′ij − ext′kl
(4.1.20)
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where R is the distance between the center of the bra and ket shell pairs and

ext′ij =

√
2

αi + αj
erfc−1(θ) (4.1.21)

for an error threshold θ. While the QQR approximation can be computed extremely

efficiently, it is not strictly an upper bound for the true integral.

4.2 Fock Matrix Construction Algorithms

Since the creation of the new Fock matrix in each iteration is the bottleneck, we

focus on methods to efficiently approximate it. In order to exactly (up to numerical

precision) compute the Fock matrix at each iteration, we must exactly (again up

to machine precision) compute all O(N4) two-electron integrals. Since the integrals

only depend on the (fixed) basis functions, they can be computed once, stored, and

re-used in each SCF iteration. With this method, it is only necessary to contract

the two-electron integrals with the density matrix in each step. However, this naive

method is doomed by it’s O(N4) storage requirement and computation time.

Depending on the amount of time required to access disk, it may be faster to simply

recompute integrals as needed. The Direct SCF method, first proposed by Almlof,

Faegri, and Korsell [5], attempts to overcome the O(N4) bottleneck. In Direct SCF,

rather than computing and storing all two-electron integrals, we will only compute

those that are “significant” for a particular Fock matrix and neglect the rest. If we

can avoid computing enough of the integrals in each step, this will be significantly

faster than the naive method.

The original Direct SCF paper determined if an integral is significant by computing

an estimate which neglects angular momentum. A more effective and widely-used

bound uses the Schwarz inequality bound from Equation 4.1.19. As a preprocessing

step, we find all the “significant” bra or ket shell pairs (Algorithm 4.2.1). We then

iterate over all pairs of significant shell pairs, check if the integral is large enough to be
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Algorithm 4.2.1 FormSignificantShellPairs(Basis Set B, error threshold ε)

List SP = ∅
for all pairs of shells i, j ∈ B do

Compute Qij =
√

(ij|ij)
if Qij > ε1 then

5: Add (i, j) to SP .
end if

end for
Return SP

Algorithm 4.2.2 DirectSCF(Basis Set B, error thresholds ε1, ε2)

SP = FormSignificantShellPairs(B, ε1)
Given a new density matrix D
for all Shell pairs (i, j) ∈ SP do

for all Shell pairs (k, l) ∈ SP do
5: if Qij ·Qkl > ε2 then

Compute (ij|kl) and contract with Dkl, Dlk, Dij, Dji

end if
end for

end for

computed, and if so, compute it and contract it with the density matrix (Algorithm

4.2.2). Different bounds can also be substituted for the Schwarz bound.

In the literature, direct screening methods are generally claimed to scale as O(N2)

for N basis functions[48]. The first part of Algorithm 4.2.2 clearly takes O(N2)

work for N shells. The second part requires O(T 2) work, where T is the number of

significant shell pairs obtained from the first part. T generally claimed to scale as

O(N). However, it is straightforward to construct a counter example where T grows

quadratically, for example, by placing all N shells on a common center. Below, we

give the first rigorous adaptive analysis of the direct SCF method, and show that T

does scale as O(N) under assumptions satisfied by real computations of interest.

Direct computation of new Fock matrices is a widely used method. However, for

very large molecules, the quadratic scaling of the method will still be prohibitively

expensive. If the Coulomb and exchange matrices are sparse (with only O(N) non-

zero entries), it may be possible to compute them in O(N) time. This would make
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truly large scale computations possible. We now turn to algorithms which exploit

properties of the Coulomb and exchange matrices separately and attempt to scale

linearly.

4.2.1 Coulomb Matrix Construction

We start by considering the Coulomb matrix. We can consider the terms φi(r1)φj(r1)

to be charge distributions Φij(r1). Under this interpretation, the Coulomb matrix

entry Jij is simply the total electrostatic potential at the charge distribution Φij due

to all other charges Φkl. This is the N -body problem from Chapter 2 applied to

charge distributions rather than point charges.

In the case of point charges, we saw that the Fast Multipole Method [76] can

compute these potentials for N charges in O(N) time. Several methods have proposed

applying this approach for the Coulomb matrix entries [176, 100, 174, 160].

Essentially, these methods approximate the potential collections of distant charge

distributions with multipole expansions. For example, the Continuous Fast Multi-

pole Method (CFMM) [176] treats distant charge distributions as point charges or

higher-order multipoles (for higher momentum distributions), then uses the same

multipole translation operators as the FMM. This FMM-base approach leads to a

faster algorithm. However, the error due to the point-charge approximation is not

bounded formally. Also, one must first apply a prescreening method (such as the one

mentioned above) to eliminate most of the O(N2) possible charge distributions.

The J-matrix engine optimizes the evaluation of integrals for the Coulomb case

[175]. Rather than looping over independent calls to the integral construction engine

(as in line 6 of Algorithm 4.2.2 ), common quantities are extracted from inner loops.

The quantum chemical tree code (QCTC) combines the tree-based FMM approach

for distant shell pairs with the J-matrix engine for nearby pairs for the best currently

available speedups [29].
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4.2.2 Exchange Matrix Computation

All of the Coulomb matrix methods discussed above rely on the fact that the density

matrix entry only depends on the ket shell pair. This allows us to treat the compu-

tation as a variant of the N -body problem for FMM-based methods and is the key

to the optimizations in the J-matrix engine. The exchange matrix does not have this

simple form. Instead, the density matrix entry contracted with each integral depends

on a shell from both the bra and the ket pair.

Efficient exchange matrix algorithms modify the direct SCF algorithm in Algo-

rithm 4.2.2. The near-field exchange (NFX) method [23] only computes those in-

tegrals that are determined to be in the near-field of an FMM-based method. The

order-N exchange (ONX) method [148] attempts to account for the 1/r dependence

of the two-electron integral on the distance between the bra and ket pairs. The linear

K (LinK) method [127] adds bounds on the density matrix for additional speedups

for sparse systems with localized densities. We discuss this method in further detail

below.

4.3 Multi-Tree Algorithms for Fock Matrix Construction

Computing the Fock matrix directly requires O(N4) work, and is thus completely

intractable. Faster methods exist, but suffer from several limitations. Prescreening is

still at best quadratic, even for systems where the density of basis functions in space

does not increase with N . Coulomb and exchange matrix methods require separate

implementations, lack rigorous error guarantees, and suffer from the same lack of

formal runtime analysis and hidden dependence on how properties of the system

scale with N . Thus, the field is still lacking a single, unified fast method for Fock

matrix construction with both rigorous error bounds and runtime guarantees.

In this section, we discuss some preliminary steps toward overcoming these prob-

lems through the unifying framework of multi-tree algorithms. We present two new

118



Algorithm 4.3.1 MultiTree(Tree nodes I, J,K, L)

if I, J,K, L are leaves then
Compute all integrals and contract with densities

else
Compute bounds (IJ |KL)min , (IJ |KL)max

5: if (IJ |KL)max | < ε then
Prune

else if | (IJ |KL)max − (IJ |KL)min | < ε then

(IJ |KL)∗ =
(

(IJ |KL)max + (IJ |KL)min
)
/2

Contract (IJ |KL)∗ with densities
10: else

Split largest node and recurse
end if

end if

algorithms for Fock matrix construction and discuss the ongoing effort to make them

competitive with existing methods. We then show how two of the most successful

algorithms from the literature can be considered as multi-tree algorithms.

4.3.1 A New Multi-Tree Algorithm

A multi-tree approach suggests itself immediately. We build a tree on the centers of

the shells. In addition to the bounding information on the centers of the shells, we

store bounds on the exponents. We perform a four-way recursion. When considering

nodes (I, J,K, L), we compute upper and lower bounds on distances. Combining

these with bounds on the exponents, we can obtain lower and upper bounds on the

integrals.

We make use of the following notation:

(IJ |KL)min = min
i∈I,j∈J,k∈K,l∈L

(ij|kl) (4.3.1)

(IJ |KL)max = max
i∈I,j∈J,k∈K,l∈L

(ij|kl) (4.3.2)

This algorithm can be used to compute the Coulomb and exchange matrices in a

single pass, or separate passes can be used for each. This algorithm is straightforward

to implement. However, there are several impediments to using it for very large
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problems.

The most important part of this algorithm is the computation of the bounds in

line 4. Useful upper and lower bounds are difficult to obtain. Integrals can be negative

or positive. Furthermore, many of the available bounds are not ideal. The kernel is not

monotonic with respect to all of its arguments. In particular, the integral may change

sign as the distance between the common centers of the bra and ket pairs changes.

Most of the literature is interested in upper bounds or more generic approximations.

Our method requires both upper and lower bounds. While the method can use

approximations, doing so runs the risk of greater error in the matrix.

Simple bounds, such as the Schwarz bound in Equation 4.1.19, do not account

for all of the distance dependencies of the integral. In order to achieve maximum

speedups, we need a bound that correctly captures the exponential decay as the dis-

tance between functions in the bra or ket increases along with the linear decay in the

distance between the two pairs. In particular, obtaining speedups from approxima-

tions in line 9 requires very tight bounds.

Our ultimate goal in Hartree-Fock computations is accuracy in the error of the

final energy. However, this energy is the final result of many iterations of Fock matrix

construction and diagonalization, making it difficult to control directly. The existing

methods discussed above have several sources of error. First, sufficiently distant shell

pairs are neglected entirely. Second, integrals which fall below some threshold are

also neglected. Third, FMM-based methods incur some error in their treatment of

far-field interactions.1

Algorithm 4.3.1 provides an additional source of error. We approximate entire

collections of integrals if the error incurred by doing so is small (by some user defined

parameter). However, we can improve on this algorithm. Past work on dual-tree

1The LinK method does not incur any additional error compared to the DirectSCF method since
it only prunes the integrals that the direct method would have.
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kernel summations [107] guarantees absolute or relative error in the final result.

We sketch how this can be done for absolute error Conceptually, we allow some

total error in each entry of the computed Coulomb or exchange matrix, or equivalently,

we allow the error for each bra shell pair. Then, in the prune check (line 4, we see

if the total possible error in the integrals is less than the total error allocated to the

bra shell pairs in nodes I and J . If it is, then we make the prune. We then deduct

the maximum error we can have incurred from the error available to bra shell pairs.

It is not clear in Algorithm 4.3.1 how to efficiently obtain bounds on the den-

sity matrix. While it is possible to iterate through the density matrix to obtain

these bounds whenever needed, this can be unnecessarily expensive. Furthermore,

we cannot expect the density matrix structure to correspond to the spatial structure

captured by the tree.

Note that both of these points, the enforcement of rigorous error guarantees and

efficient storage and indexing of bounds on the density matrix, require us to handle

quantities that depend on more than one shell. It is not clear how to efficiently store

and sort such quantities.

4.3.2 Dual-Tree Algorithm

Inspired by our pairwise traversal algorithm in the n-point correlation context, we

can take a more direct approach. We first call FormSignificantShellPairs. We

then build a tree directly on shell pairs. We perform a dual tree algorithm on this

tree.

Note that this algorithm is similar to the multi-tree algorithm. However, instead

of a four-way recursion over trees built directly on shells from the basis, we do a

two-way recursion on trees built on basis shells. This immediately lets us find many

of the opportunities for pruning without the overhead of the four-way recursion.

As with the multi-tree algorithm, this algorithm can be used to compute both
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Algorithm 4.3.2 DualTreeFockMatrix(ShellPair Tree Nodes Q,R)

if Q and R are leaves then
Compute all integrals directly and contract with density

else
Compute bounds (Q|R)min , (Q|R)max

5: if | (Q|R)max | < ε then
Prune

else if | (Q|R)max − (Q|R)min | < ε then

(Q|R)∗ =
(

(Q|R)max + (Q|R)min
)
/2

Contract (Q|R)∗ with densities
10: else

Split largest node and recurse
end if

end if

matrices, or just one at a time. Furthermore, for Coulomb matrix calculations, we

can store bounds on density matrix entries in the node R and use them in pruning

and approximations.

4.3.3 Related Work as Multi-Tree Algorithms

We now turn to two seemingly unrelated algorithms from the literature – the CFMM

[176] and LinK [127] methods for Coulomb and exchange matrix construction, respec-

tively. We show that each of these fits within our dual- and multi-tree framework.

4.3.3.1 The Continuous Fast Multipole Method

As noted above, the most efficient methods for Coulomb matrix construction are

based on generalizations of the Fast Multipole Method. If we view the bra and ket

pairs as charge distributions, then the Coulomb matrix construction problem can be

viewed as computing a Coulomb potential. The target points are bra pairs, and the

source points are ket pairs. The charges on source points are given by the density

matrix D. If the source and target distributions are sufficiently distant, they can be

approximated by an interaction between point charges.

Since we are now dealing with charge distributions with infinite extent, some

122



modifications to the standard FMM are required. The well-separatedness condition

needs to be modified. In general, the accuracy of the FMM is controlled by fixing

the distance at which an interaction can be considered far-field. This well-separated

index, denoted WS, is 1 if nearest neighbors are considered far-field, two if next

nearest neighbors are, and so on. For the standard FMM, a global value of WS is

fixed before computation (generally 2).

For Gaussian basis sets, the charge distributions will themselves be Gaussians.

Since Gaussians have infinite support, we must truncate them in order to have any

far-field interactions. The CFMM uses the following definition of extent:

Definition 4.3.1. Let A and B be Gaussian shells. Let α be the exponent of the

contracted shell (obtained from the Gaussian Product Theorem. Then, for a given

error tolerance ε, the extent of the charge distribution AB is

rext =
1

2

√
2

α
ln(ε)− rAB (4.3.3)

The error caused treating the interaction between two charge distributions as far

field will increase as the extents of the distributions grow. We therefore define a well

separated parameter for each distribution

WS = max(2drext/l,WSref) (4.3.4)

where l is the box size and WSref is the well-separated criterion chosen for point

charges.

We then modify the octree data structure to account for differing values of WS

for different distributions. Each box is divided into several separate nodes. Each

node contains all distributions with a given WS index for the box. We can then treat

interactions between nodes at a given level as near-field or far-field independently.
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Algorithm 4.3.3 CFMM(Basis Set B, density D, error thresholds ε1, ε2)

T = FormSignificantShellPairs(B, ε1)
Build modified octree on centers of pairs in T
Given a density D
// Upward Pass

5: Form multipole expansions at each leaf node
Pass multipole expansions upward to form expansions for internal nodes
// Downward Pass
For each node, starting from the root, find well-separated nodes at the same level
that have not been previously accounted for
Translate multipoles to well-separated nodes to handle far-field interactions

10: At the leaves, account for any remaining near-field interactions directly

We can now describe the full CFMM algorithm. We begin by screening for sig-

nificant charge distributions as before. We then build the modified octree on the

charge distribution. We then perform the usual FMM by first building multipole

expansions from the bottom of the tree up, then passing down the tree, performing

translations to account for far-field interactions. We finally perform any remaining

near field interactions directly.

The Fast Multipole Method is one of our prototypical dual-tree algorithms from

Chapter 2. Clearly, the CFMM fits within the same framework. It again makes use of

space-partitioning trees and prunes parts of the computation by approximating the

interactions between pairs of tree nodes. Although it uses the fixed pattern of near-

and far-field interactions common to the FMM, this can be viewed as a more efficient

version of the recursive traversal pattern used in dual-tree algorithms.

4.3.3.2 The Linear K Algorithm

We now turn to the most efficient existing method for exchange matrix construction

– the Linear K (LinK) method [127]. The Linear K method modifies the Direct

SCF algorithm (Algorithm 4.2.2). In Direct SCF, we screen shell pairs individually,

without sharing information between any parts of the computation. LinK sorts lists

of possible integrals in decreasing order of the estimate Qij. By doing so, once we
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have determined that we have reached the point in the list where integrals are no

longer significant, we can stop computation entirely.

The two key efficiency improvements come at lines 19 and 23. Essentially, the

necessary integrals are prescreened and sorted by both the size of the bound and the

size of the largest density entry to be contracted with the integral. The sorting allows

one to leave the loop over shells early, since the lists are sorted in order of decreasing

integral estimate.

We compute a bound on the maximum possible value Qij for each shell i:

((max|(max)
1
2 i) = max

j
(ij|ij)

1
2 = max

j
Qij (4.3.5)

This algorithm seems to be completely different from any dual- or multi-tree

algorithms examined so far. However, we claim it resembles our pairwise traversal

npcf algorithm (Algorithm 3.5.5). The first step in LinK is identifying the significant

shell pairs. Although this step is neglected in previous analyses, the version given

in Algorithm 4.2.1 clearly requires O(N2) work. We will show that this step can be

performed in linear time using a dual-tree algorithm.

The major improvements in the LinK method come from sorting the lists of shell

pairs so that the loops can be exited early. We claim that sorting is a one-dimensional

analog of space-partitioning trees. The efficiencies in dual-tree algorithms come from

the indexing (sorting) provided by the tree and the corresponding ability to prune.

The LinK method simply precomputes all of the bounds and sorts (or indexes) by

them. Thus, all the pruning is done at once, rather than piecemeal as it is encountered

during the algorithm. A space partitioning tree that takes into account the integral

and density bounds used by LinK may be able to replicate LinK’s success in a more

obviously dual-tree or multi-tree fashion.
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Algorithm 4.3.4 LinK(Basis Set B, density D, error thresholds ε1, ε2)

T = FormSignificantShellPairs(B, ε1)
Create array of lists S
for all shells i such that (i, j) ∈ T for some j do
S[i] = ∅
for all shells k such that (k, l) ∈ T for some l do

if Dik (imax|imax)
1
2 (kmax|kmax)

1
2 > ε then

Insert k into S[I]
end if

end for
Sort S[i] by decreasing Dik (kmax|kmax)

1
2

end for
for all Shell pairs (i, j) ∈ T do
MLi = ∅;MLj = ∅
for all Shells k ∈ S[i] do

for all Shells l such that (k, l) ∈ T do
if DikQijQkl > ε then

Insert (k, l) in MLi
else

Leave loop over l
end if

end for
if MLi = ∅ then

Leave loop over k
end if

end for
Fill in MLj in the same fashion
Merge MLi and MLj to form ML
for all pairs (k, l) ∈ML do

Compute (ij|kl) and contract with Dik, Dil, Djk, Djl

end for
end for
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4.4 Results

4.4.1 Theoretical Results

We now turn to an adaptive analysis of the Fock matrix construction problem and the

algorithms we have discussed for its solution. As before, we require a more nuanced

idea than simply the size of the data set, or in this case, the number of basis functions.

An adversarial distribution of basis functions can easily cause any of the algorithms

discussed above to take the full O(N4) time of the naive algorithm.

To see this, consider a distribution in which the basis functions all share a common

center. In this case, every shell pair is significant. Furthermore, no integrals can

be pruned through Schwarz criteria, the LinK pruning steps, or treated as far-field

interactions in the CFMM. Therefore, all of these algorithms will require O(N4) time.

As before, we can take the distribution of the data into account. In the npcf set-

ting, we were able to prove results about uniform distributions. In the HF setting, we

can also restrict the possible input distributions. Our distributions of basis functions

will consist of functions centered on atoms of real molecules. This immediately gives

us several powerful conditions.

Most importantly for our analysis, we assume that atomic nuclei are not arbitrarily

close. We assume that any two nuclei are separated by a distance at least b. This

assumption is physically motivated, since in chemical processes, nuclei will remain

separated by the repulsive forces between them.

In the npcf setting, as N grows, we differentiated between the case where the

sample window grows as well and where the density increases. Here, we have a

similar condition. The number of basis functions can grow for two reasons: either

the number of atoms grows, or the number of basis functions on each nucleus grows.

Once again, our analysis will distinguish between these possibilities.

Our analyses make use of the following notations:

• N – The total number of basis functions.
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• b – The minimum distance between nuclei.

• c – The maximum number of basis functions on a single nucleus.

• A – The total number of atoms.

• Fmax – In Equation 4.1.17, we showed that the two electron integral can be

decomposed into exponential terms and a term over incomplete gamma func-

tions, denoted
∑

mCmFm(r). We will use the term Fmax = maxi,j
∑

mCmFm(0)

where the summation comes from integrals of the form (ij|ij).

We can immediately note the following inequality from these definitions:

N ≤ A · c (4.4.1)

Our analyses bound runtimes in terms of A and c, thus allowing us to highlight the

different scaling behavior that occurs as the basis set becomes more complete and as

the molecule grows but the basis set remains fixed.

We also take into account the number of integrals the algorithms actually need to

compute.

4.4.1.1 Preliminaries

Lemma 4.4.1. There are at most O(c(r/b)3) basis shells within a radius r of a given

function.

Proof. If there is a basis shell at a given point, then there are at most c − 1 other

shells at that point and no other shells within a ball of radius b.

We can therefore bound the number of functions within a distance r of a given

function by bounding the number of balls of radius b that can be packed within a ball

of radius of r + b/2. Therefore, the maximum number of spheres that can be packed

is:

S ≤
(r
b

+ 1
)3

(4.4.2)
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The proof follows from the fact that there are at most c functions at the center of

each of these spheres.

Lemma 4.4.2. There are at most O(A · c2) significant shell pairs.

Proof. We fix a single basis shell, and count the number of possible shells that can

be paired with it to form a significant shell pair. Recall that we prune a shell pair

(i, j) if

(ij|ij) < ε (4.4.3)

We wish to solve this inequality for a radius r∗ beyond which all pairs will be

pruned. We fix shell i at the origin (without loss of generality) and let r be the

distance to the center of shell j.

Then, using a standard shell quartet decomposition [22, 47]

(ij|ij) = 2π
5
2 exp

(
−α2r4

) L∑
m=0

Fm(0) (4.4.4)

Where

α =
αiαj
αi + αj

(4.4.5)

and L = 2mi + 2mj. The terms Fm are all evaluated at zero because the bra and ket

pairs are identical.

Solving for r, we have

r∗ =

[
− log

(
ε

2π
5
2 Fmax

)] 1
4

α
1
2

(4.4.6)

where Fmax is defined above.

Given this r∗, we can bound the number of other shells that lie within it. Since

we have assumed the minimum distance between atoms to be bounded from below,

we have that the maximum number of shells S within distance r∗ of a fixed shell is

bounded by the number of balls of radius b that can be packed into a ball of radius

r∗.

S ≤ c ·
(
r∗

b

)3

(4.4.7)
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Therefore, the total number of shell pairs T is bounded by

T ≤ N ·
(
r∗

b

)3

(4.4.8)

≤ A · c2 · b−3 ·O
([
− log

( ε

Fmax

)] 3
4

)
(4.4.9)

Lemma 4.4.3. The list of significant shell pairs can be computed in time proportional

to the number of pairs, or O(A · c2) time.

Proof. (Sketch.) The FormSignificantShellPairs algorithm (Alg. 4.2.1) clearly

runs in O(N2) time since it loops over all pairs of shells. However, a dual-tree algo-

rithm can do it in O(N) time.

Our goal is to construct a list of all pairs satisfying the integral cutoff criterion.

This list is contained in a list of all shell pairs within the distance r∗ given above.

Constructing this list is similar to the construction of the interaction list for npcf

estimation described in Chapter 3. We can apply a similar dual-tree algorithm, and

the analysis closely follows that of the previous algorithm.

Note that both of these results exhibit different scaling behavior based on what

we mean by increasing N . If the number of atoms grows while the basis used is fixed,

then we see linear growth in the number of shell pairs. However, as we move to a more

complete basis, we see quadratic growth, since this increases the number of shells per

atom c.

Definition 4.4.4. Localized Density Assumption. Let r be the distance between

the centers of shells i and j. We say the density is localized if there exist constants

c′, d, and r̂ such that for all i and j such that r > r̂,

Dij <
c′

rd
(4.4.10)
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Previous work on linear scaling methods for exchange matrix construction gen-

erally makes an informal assumption on the structure of the density matrix. For

insulating systems, the density is expected to decay exponentially with distance. On

the other hand, for conductors, the density may be non-localized even on large scales.

Our proofs below show that a weaker assumption than exponential decay is sufficient.

With these preliminary results, we can turn to the main contributions of this

section.

4.4.1.2 Runtime Theorems

Theorem 4.4.5. The DirectSCF algorithm (Algorithm 4.2.2) runs in at most O(A2 ·

c4) time.

Proof. The computation of the significant shell pairs takes O(A · c2) time and finds

the same number of pairs by lemma 4.4.3. After this step, the algorithm consists of

two nested loops over all shell pairs. Since there are O(A2 · c4) such pairs, the entire

algorithm takes O(A2 · c4) time.

Theorem 4.4.6. The LinK algorithm (Alg. 4.3.4) runs in at most O(A2 · c4 · b−6 ·

| log (ε)
3
2 |) time and computes integrals of at most O

(
A · c3 · b−6 · ε− 3

d

)
shell quartets

under the assumption that D(r) ≤ c′r−d for some constants c′ and d and r large

enough.

Proof. We assume throughout that there are T significant shell pairs, where T is

bounded by Lemma 4.4.2.

We first construct the list of significant shell pairs. Note that the max integrals

(imax|imax)
1
2 can be computed while forming the list of significant shell pairs at no

additional asymptotic cost.

The next step constructs the lists S[i] for each shell i. A shell is placed in this

list if both integral bounds (imax|imax)
1
2 and (kmax|kmax)

1
2 are large and if the density

matrix entries Dik are large. Assuming that all the (imax|imax)
1
2 are bounded from
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above by some constant, then, using our assumption on the structure of the density

matrix, we have that the number of shells in list S[i] is bounded by the number of

shells that can be packed in a radius r′:

r′ ≤

(
ε

c′ (imax|imax)
1
2 maxk (kmax|kmax)

1
2

)− 1
d

(4.4.11)

Therefore, the size of the list is bounded by

|S[i]| ≤ cb−3

(
ε

c′ (imax|imax)
1
2 maxk (kmax|kmax)

1
2

)− 3
d

(4.4.12)

and sorting this list takes O(|S[i]| log |S[i]|) time. However, forming the lists S[i] for

all shells i requires a double loop over the list of significant shell pairs, which takes

O(T 2) time.

The main portion of the algorithm consists of a triply-nested loop over all shell

pairs (i, j), all shells k in the list S[i], and over all shells l such that (k, l) is a significant

pair. This requires O(T · |S[i]| ·T ) ≤ O(T 2 maxi |S[i]|) work, if all the loops run to the

end. However, the loops all exit once we encounter an integral that is small enough

to be neglected.

For a fixed i, the the number of possible k is bounded by Eqn. 4.4.12. Then,

the number of l that are in a shell pair with k is bounded by Eqn. 4.4.7. Therefore,

we have an O(T ) bound on the number of integrals we actually have to compute.

Therefore, the total number of integrals I is bounded by:

I ≤ O
(
A · c3 · b−6 · ε−

3
d

)
(4.4.13)

The runtime of the second part is determined by the number of integrals computed,

since the loops exit early when they encounter an integral that does not need to be

computed.

The runtime stated in the theorem follows from the fact that the loops to construct

S[i] dominate the total runtime with their O(T 2) time.
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So, we have an algorithm which formally runs in quadratic time in the size of the

molecule, but which only computes linearly many integrals under the assumption of

localized density. However, the time spent computing integrals easily dominates the

total computation time on most molecules of interest. In fact, the actual crossover

point may be difficult to observe with current hardware. This probably explains why

the runtime is generally observed to be linear in empirical studies.

We now turn to runtimes for our new algorithms. For simplicity, we only address

the runtime of our dual-tree algorithm.

Theorem 4.4.7. If the bounds (Q|R)min and (Q|R)max can be computed in constant

time for given nodes Q and R, then the dual-tree Fock matrix construction algorithm

(Algorithm 4.3.2) runs in at most O(A · c3 + A · c2 log (A · c2)) time and computes

O(A · c3 · b−6ε−3) integrals using an octree built on the centers of shell pairs.

Proof. We first construct the list of significant shell pairs, in O(T ) time and containing

T pairs using lemma 4.4.3. Tree construction requires O(T log T ) time.

Note that an integral of the form (q|r) for some shell pairs q and r decreases as

r−1 where r is the distance between the centers of the shell pairs. Therefore, for a

given shell pair q, we will only compute integrals for shell pairs within some distance

of q that depends on ε.

We have that

(a|b) = 2π
5
2 e−αar2ae−αbr

2
b

∑
m

Fm(r) (4.4.14)

where ∣∣∣∣∣∑
m

Fm(r)

∣∣∣∣∣ ≤ f

r
(4.4.15)

for some constant f and large r [47].

From, this we can see that we can prune any shell-pairs separated by a distance

greater than

r∗ =
f

ε

(
2π

5
2 max

a

{
e−αar2a

}
max
b

{
e−αbr

2
b

})
=

2π
5
2f

ε
(4.4.16)
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Using the same reasoning as Equation 4.4.7 above, we see that the maximum

number of integrals I that need to be computed is

I ≤ T · c ·
(
r∗

b

)3

(4.4.17)

≤ T · c ·O(b−3ε−3) (4.4.18)

Combining this with the number of significant shell pairs from Lemma 4.4.2, we

have that

I ≤ O
(
A · c3 · b−6ε−3

)
(4.4.19)

Any nodes separated by a distance greater than r∗ will be pruned in line 5 of

Algorithm 4.3.2. Therefore, we can apply the same reasoning as lemma 3.8.2 in

Chapter 3. As before, we only need to consider pairs of tree nodes within a fixed

distance which is independent of the problem size. This distance is slightly larger than

the distance r∗, so there are only a constant factor more bases case pairs to consider

than the number of integrals to compute. Therefore, we perform work proportional

to the number of integrals in the base case.

At each level of the tree, we prune any nodes that are more distant than r∗. We

can bound the number of nodes to be considered at each level, from the root to the

leaves. As before, this is proportional to the work in the base case.

Note that the proof does not depend on the ability to prune batches of integrals

in line 7. The key to potential speedups of this algorithm over existing methods lies

in how well we can take advantage of this opportunity. This in turn depends on the

quality of our bounds, the details of the basis set, and the structure of the molecule.

We return to these factors in our discussion of the empirical results involving this

molecule.

Furthermore, the LinK bound is tighter than our dual-tree bound by a factor of

ε−d, since LinK is able to take advantage of the decay in the density matrix.
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Table 6: Results for exchange matrix construction algorithms. All error tolerances
are set to 10−8 Errors are relative to direct screening with error cutoff 10−10.

Molecule Algorithm Time (s) Error (µhartrees)

Amylose
LinK 2407.68 2.86

Dual-Tree 2206.91 2.58

Carbon Nanotube
LinK 2397.03 3.27

Dual-Tree 2268.46 2.94

4.4.2 Preliminary Empirical Results

We turn now to a brief overview of some preliminary results for our multi-tree Fock

matrix construction algorithms. Here, we focus on the construction of the exchange

matrix as potentially lower hanging fruit. The FMM is very powerful and efficient,

so we suspect it may be harder to outperform. Also, the Coulomb matrix in general

has been studied more – it appears in DFT as well.

We show results for our implementation of the LinK algorithm (Alg. 4.3.4). We

also show results for our dual-tree algorithm (Alg. 4.3.2), specialized for exchange

matrix computation. We use the QQR bounds [116] described in Equation 4.1.20.

We implement all algorithms in a development version of the Psi4 computational

chemistry package [169].

We show a few preliminary results on our implementations in Table 6. We examine

two molecules, amylose and a carbon nanotube. The calculations were done in a 6-

31G* basis. Amylose consists of 45 atoms and 182 shells. The carbon nanotube has

30 atoms and 140 shells. The structure files were those used in evaluations of the

QQR bounds [116].

The preliminary results in Table 6 show very small speedups over the LinK

method. We highlight a very few results Clearly, these results are not in line with the

massive empirical speedups obtained from dual and multi-tree algorithms for other

problems, such as those discussed in Chapters 2 and 3. There are several possible

reasons for this.
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First, these molecules are relatively small. All multi-tree algorithms will have

some crossover point, below which the direct iterative approach will be more efficient.

While we do obtain some small improvements here, it is possible that these will grow

with larger molecules.

The second possible reason is related to the first. The integral code currently used

in Psi4 is not very efficient. While this should produce larger speedups sooner (by

making base cases more expensive relative to pruning checks), it does severely limit

the overall size of systems that we can consider. This may prevent us from getting a

clear look at the actual performance of the algorithms in the large system limit.

The third possibility is that the extra complications in our dual- and multi-tree

algorithms are simply not worth the extra expense. The LinK method is simple

and efficient. Note that it is similar to our two-stage traversal algorithm for raw

correlation counts in Chapter 3.

One significant feature of our limited experiments is the overall lack of the approx-

imations made possible in line 7 of Algorithm 4.3.2. This may be due to insufficiently

tight bounds. Another possibility is that the molecules we are able to experiment

on are too small to allow for efficient pruning. Determining the answers to all of

these questions will require more efficient integral code to be able to explore larger

molecules.
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CHAPTER V

CONCLUSION

We conclude this dissertation by discussing some overall lessons for multi-tree algo-

rithms, along width directions for future work. We recap our central thesis and the

evidence we have provided in support of it.

5.1 Practical Lessons for Multi-Tree Algorithm Develop-
ment

This thesis explores the application of the principles of dual-tree algorithms to higher-

order problems through efficient implementations on problems of real scientific inter-

est. We summarize a few of the general lessons learned through this process.

Focus on the base case. In any future dual- or multi-tree algorithm, we believe

that the algorithm for base case computations will be more important than the choice

of space-partitioning tree or efficiency improvements in the tree traversal. Even for

very simple base cases, such as nearest neighbor or the npcf, the base case accounts

for the majority of the execution time.

Both our work on n-point correlation function estimation and Fock matrix con-

struction emphasized the importance of efficient evaluation of the base cases. By

optimizing the base case computation for 3-point correlations, we were able to show

up to an order of magnitude speedup over an unoptimized version of our algorithm.

Furthermore, our efforts to evaluate efficient exchange matrix construction algo-

rithms were hampered by the relative inefficiency of integral evaluation. Without

fast integrals, we were unable to perform Hartree-Fock calculations on truly large

molecules, thus limiting the opportunities for pruning in our new multi-tree algorithms

and keeping us from truly understanding the crossover points of these algorithms.
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Take on the whole problem. We were able to achieve significant speedups with

our multi-matcher and efficient resampling npcf estimation algorithms by taking on

the whole problem, rather than just the part most amenable to a dual- or multi- tree

algorithm. In particular, it pays to look for any opportunities to share work between

different parts of the computation.

This approach led to the reformulation of the jackknife sampling task for npcf

estimation, previously done as an outer loop around a multi-tree algorithm, into

something done more directly. We also discuss further possibilities opened by this

approach in the context of Fock matrix construction.s

Try to find a fixed recursion pattern. A smaller or fixed recursion pattern is

a recurring theme in the algorithms explored. We achieved significant speedups from

our pairwise tree traversal in the npcf context. This improvement comes from two

main sources. first, it allowed us to both cut down on the time spent identifying work

for our optimized base case code. Second, we were able to better take advantage of

the throughput offered by the bitwise interpretation of the matcher results.

Alternative recursion patterns appear in other tree-based methods. The CFMM

reduces a problem based on four-tuples to one based on pairs, then further improves

by using the fixed expansion pattern of the FMM. LinK avoids explicit recursion

entirely as well by identifying and sorting all potential sources of work in advance.

5.2 Future Directions

We briefly discuss a few remaining loose ends from this dissertation and future direc-

tions in which this work can move. This is only a partial list, some items are withheld

so I can publish them later without getting scooped.

5.2.1 A Formal Theory of Multi-Tree Algorithms

Our exploration of multi-tree algorithm suggests that they can provide massive speedups,

tight theoretical runtime guarantees, and a unifying framework. While this work is
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mostly exploratory, the next logical step is a more rigorous treatment of multi-tree

algorithms. Ongoing work with Ryan Riegel and others concerns a formal theory of

multi-tree algorithms and the problems they solve. This work centers around the def-

inition of a class of generalized N-body problems, and the decomposition of multi-tree

algorithms into an abstract algorithmic framework with particular instantiations of

pruning rules and base cases. A first step in this latter direction was undertaken in

the context of dual-tree algorithms [40].

5.2.2 Multi-Tree Algorithms for Higher-Order Correlation Theories

The Hartree-Fock wavefunction is often used as the starting point for other methods

which treat correlations between electrons. These methods, such as configuration

interaction, coupled cluster theories, and various perturbation theories compute a

linear combination of the HF ground state wavefunction and higher energy solutions.

The bottleneck computations in these methods consist of tensor contractions – multi-

index summations – over distance-dependent functions. This suggests that multi-tree

algorithms may be a natural fit for these problems. In the past, the narrow focus of

FMM-based algorithms (for Coulomb matrix construction) and sorting methods (for

exchange matrix construction) prevented their being generalized to other problems.

By providing a unifying framework for these methods, we have opened the possibility

of applying techniques learned from Fock matrix construction to more accurate and

computationally-demanding methods.

5.2.3 Omitting Fock Matrix Construction Entirely

One of the lessons about multi-treee algorithms mentioned above is to “take on the

whole problem.” Our formulation of the Fock matrix construction problem does not

do this. The Fock matrix itself is not the object of interest. Instead, we diagonalize

this matrix to obtain its spectrum.

Instead of approaching this task directly, ours and other previous work have simply
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tried to efficiently approximate the Fock matrix itself. Here, the measure of accuracy

used for approximations is simply the amount of error allowed in individual entries

of the matrix (or contributions to it). Instead, it may be beneficial to approximate

its spectrum directly. The spectral decomposition of a matrix is generally accom-

plished through repeated matrix-vector multiplications, which are themselves simply

summations. This entire problem may be suitable for the development of multi-tree

algorithms.

5.2.4 Generalizing Applications of N-Point Correlation Functions

Our correlation function work focuses exclusively on computing well-known estimators

of the npcf. As such, it is purely a computational problem, with no statistical aspect

to our algorithms. This work fits with the primary motivation for our work – the use

of the npcf in astronomy and cosmology. Cosmological models can be used to derive

concrete predictions for the n-point correlations of real data. Therefore, evaluating the

models is as simple as estimating the npcf of data and comparing it to the predictions

of the models.

However, the n-point correlations are broadly applicable to any point processes.

Unfortunately, in other applications, it is not always clear how to use them. Further-

more, they are limited as an exploratory data analysis tool by their combinatorial

growth with n and the number of configurations considered.

One approach, used in materials science applications in particular [90], is to com-

pute the npcf for some set of configurations, then apply a dimensionality reduction

technique such as PCA to allow one to visualize the results. As in the chemistry

context above, we are computing a full matrix, then extracting its spectrum. It may

again be possible to combine these two steps into a single, more efficient multi-tree

algorithm.
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5.2.5 Runtime Analysis of N-Point Computation Using Correlation Inte-
grals

Our adaptive analyses of our npcf estimation algorithms were restricted to Poisson

data. Although this is a very important special case, we would like to generalize to

arbitrary point processes. In the analysis, the Poisson assumption was necessary to

bound the number of points in a given volume. However, this bound can be obtained

for a general distribution using the n-point correlation functions.

Preliminary work here suggests that the final bounds obtained will depend on

integrals over the entire hierarchy of correlation functions. However, it may be pos-

sible to restrict this analysis to a bound that depends on only the correlations being

estimated. This could lead to a useful bound which describes the runtime as a time

spent on a Poisson set, plus a perturbation which varies with the size of the departure

from uniformity.

5.2.6 Subsampling Based Methods

In the past, dual-tree algorithms have been successfully combined with Monte Carlo

methods for truly massive speedups [84, 83]. By subsampling, rather than fully

computing each base case, this combination allows dual-tree algorithms which run

in time independent of the total size of the data. In principle, this approach can

be combined with multi-tree algorithms. By incorporating the error bounds from the

Monte Carlo method into the error estimation obtained from the jackknife, we believe

that npcf estimation is a natural candidate for this approach.

5.2.7 Better Basis Sets through Machine Learning

One of the difficulties in bounding integrals in Fock matrix construction is the dif-

ferent properties of the basis functions. A range of momenta and exponents, along

with contracted functions, make accurate and tight bounds for groups of functions

difficult to obtain. Basis sets are chosen for their accuracy in approximating true
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wavefunctions with the fewest functions possible. This size objective is in turn driven

by the severe constraints of O(N2)-sized matrices and quartic scaling Fock matrix

construction.

In the statistics literature, kernel density estimation using a basis of Gaussians

has been used to approximate any distribution to any desired accuracy. In principle,

the same could be done for the HF wavefunction, given a large enough basis set. This

approach seems undesirable, since N may be much larger in this case. However, if the

benefits of improved multi-tree algorithms are substantial enough, we may be able to

obtain more accurate solutions at reduced computational cost.

5.3 Recap of this Thesis

Our central thesis is that multi-tree algorithms can provide orders-of-magnitude

speedups on fundamental problems while providing a unifying framework for un-

derstanding these problems and bounding the runtimes of their solutions. We have

supported this thesis through two main applications: the estimation of n-point cor-

relation functions and the construction of the Fock matrix in Hartree-Fock theory.

For the n-point correlation estimation problem, a combination of new multi-tree

algorithms, a comprehensive approach to the entire problem, and optimized base case

and distributed implementations led to up to three orders-of-magnitude speedup over

the previous state-of-the-art. Our work has enabled much larger 3-point correlation

analyses than were previously possible. We also show detailed runtime analyses for

important special cases of our algorithm, and suggest methods to obtain more general

bounds.

The Fock matrix construction problem proved to be more difficult. Although our

explorations of multi-tree algorithms did not immediately deliver significant speedups,

we were able to unify previously disparate methods under our framework. Further-

more, our theoretical analysis provides the first detailed look at the different factors
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in the performance of existing algorithms.

Our exploratory efforts do provide the promised speedups in some cases. Fur-

thermore, our efforts do provide a unifying framework, both for previous and new

methods in both problem contexts, and to the overall types of problems that are

amenable to solution through multi-tree algorithms. Both these results point to the

promise of future applications of multi-tree algorithms.

143



REFERENCES
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